JPH0814404A - Ring-shaped seal - Google Patents

Ring-shaped seal

Info

Publication number
JPH0814404A
JPH0814404A JP6151867A JP15186794A JPH0814404A JP H0814404 A JPH0814404 A JP H0814404A JP 6151867 A JP6151867 A JP 6151867A JP 15186794 A JP15186794 A JP 15186794A JP H0814404 A JPH0814404 A JP H0814404A
Authority
JP
Japan
Prior art keywords
fluid
ring
pressure
annular
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6151867A
Other languages
Japanese (ja)
Inventor
Taizo Miyamoto
泰三 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6151867A priority Critical patent/JPH0814404A/en
Publication of JPH0814404A publication Critical patent/JPH0814404A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sealing Devices (AREA)

Abstract

PURPOSE:To set optimally the pressing contact force to a slide contacting surface by furnishing a ring-shaped contacting piece to be in resilient contact with the slide contacting surface and a ring-shaped fluid accommodation part in which the pressing force pf the ring-shaped contacting piece to the slide contacting surface can be set with the pressure of the fluid flowing into the inside. CONSTITUTION:When applied to an infrared ray sensing device to be mounted in a specified position on an airplane, a ring-shaped seal 32 is located at the periphery on the outside in order to shield a bearing 6 and inside thereof against the external environment, and thereby foreign matter such as water, moisture, dust. etc., is prevented from intruding. The ring--shaped seal 32 is fitted in a ring-shaped groove 25 formed at the peripheral surface of a supporting arm 12 confronting the slide contacting surface 19 of the base part 5, and at the oversurface, ring-shaped contacting pieces in V-shape 36, 37 are formed in a single piece structure. These ring-shaped contacting pieces 36, 37 are pressed to the slide contacting surface 19 when fluid pressure is supplied to a fluid accommodation part 38 from a fluid supplying means 39 through a tube 41, and thereby the contacting force to the slide contacting surface 19 is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、摺接面に弾性接触し該
摺接面との間をシールする新規なる環状シールに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel annular seal which elastically contacts a sliding contact surface and seals between the sliding contact surface and the sliding contact surface.

【0002】回転あるいは回動する部分の対向間をシー
ルし内外部を遮蔽状態とすることは種々の分野で適用実
施されている。たとえば、精密な電波装置あるいは可視
光ないしは不可視光領域おける光学装置などにおいて
も、所要の方向を向ける必要から高精度な駆動制御装置
により、回転あるいは回動させる部分の相互間をシール
した状態で外部間を遮蔽し、塵埃などの異物が入り込ま
ないようにしている。
Sealing between opposing parts of a rotating or rotating part to shield the inside and outside is applied in various fields. For example, even in a precise radio wave device or an optical device in the visible or invisible light range, it is necessary to direct the required direction, and a high-precision drive control device is used to seal the parts that rotate or rotate with each other. The spaces are shielded to prevent foreign matter such as dust from entering.

【0003】このような装置類を航空機、飛翔体、車輛
あるいは艦船などの移動体に搭載させる場合には、動揺
などによる影響をなくして目的とする対象方向に向けら
れた姿勢を維持させ安定に位置決めするために、高性能
なジンバル装置を介して取り付け、自動制御によりジン
バル装置の安定維持を行なわせる。
When such devices are mounted on a moving body such as an aircraft, a flying body, a vehicle, or a ship, a stable posture can be maintained by eliminating the influence of shaking or the like and maintaining a posture toward a target object. For positioning, the gimbal device is attached via a high-performance gimbal device, and the gimbal device is maintained stably by automatic control.

【0004】上記のような各装置の回転あるいは回動部
分のシールについても、制御動作に対して確実なシール
機能を有することが必要であるとともに、装置への制御
による応動に可能なかぎりシール圧の変動による影響を
およぼすことがないようにすることもまた不可欠であ
る。
Regarding the seal of the rotating or rotating part of each device as described above, it is necessary to have a reliable sealing function for the control operation, and the seal pressure should be as high as possible in response to the control of the device. It is also essential not to be affected by fluctuations in

【0005】航空機搭載用の光学装置、たとえば図9に
示される赤外線検出装置1は図示左右方向のX軸2と図
示前方と手前方向のZ軸3の2軸制御のジンバル装置を
有するものであり、それぞれの軸を中心に所定の回動制
御装置(図示なし)からのサーボ制御信号によって回動
されるものである。
An optical device mounted on an aircraft, for example, an infrared detection device 1 shown in FIG. 9 has a biaxially controlled gimbal device having an X-axis 2 in the left-right direction in the drawing and a Z-axis 3 in the front and front directions in the drawing. , About each axis is rotated by a servo control signal from a predetermined rotation control device (not shown).

【0006】なお、図は正面視断面に示してあり詳細な
細部を図示省略した要部のみの概略図であるとともに、
断面を示す斜線も図が煩雑となることから省略してあ
る。Z軸3を垂直方向として取り付け基部5のベアリン
グ6,7によって支持された以下の部分をZ軸3を中心
とする水平方向への回動と、X軸2を水平方向として本
体部8の両軸9,11を支持する支持腕12側のベアリ
ング13,14によって支持された本体部8をX軸2を
中心とする俯仰方向への回動と、をそれぞれに行なわせ
本体部8をつねに目的とする方向に向けさせることがで
きる。
Incidentally, the drawing is a schematic view of only a main part shown in a front view cross-section, and detailed details thereof are omitted.
The diagonal lines showing the cross section are also omitted because the figure becomes complicated. The following portions supported by the bearings 6 and 7 of the mounting base 5 with the Z-axis 3 as the vertical direction are rotated about the Z-axis 3 in the horizontal direction, and both of the main body 8 with the X-axis 2 as the horizontal direction. The main body 8 supported by the bearings 13 and 14 on the side of the support arm 12 that supports the shafts 9 and 11 is caused to rotate about the X axis 2 in the elevation direction, respectively, and the main body 8 is always intended. Can be directed in the direction of.

【0007】装置1は航空機などの所定位置に取り付け
搭載されるのであるが、機体外部に露出される状態の外
部環境下に接するように曝される。そこで、ベアリング
6,7,13,14およびその内部側を外部環境から遮
蔽状態として水分、湿気、塵埃などの異物が侵入しない
ようにするために、外部側の周囲に環状シール15,1
6,17を配置させる。
The device 1 is mounted and mounted at a predetermined position on an aircraft or the like, but is exposed so as to come into contact with the outside environment of the state of being exposed to the outside of the body. Therefore, in order to keep the bearings 6, 7, 13, 14 and the inner side thereof from the external environment so that foreign matter such as moisture, moisture and dust does not enter, the annular seals 15, 1 are provided around the outer side.
Place 6,17.

【0008】環状シール15,16,17の部分を中心
からの片側のみを拡大するとともに断面図とした状態を
図10に示す。
FIG. 10 shows a state in which the annular seals 15, 16 and 17 are enlarged only on one side from the center and are shown in cross section.

【0009】[0009]

【従来の技術】図10は代表的に基部5と支持腕12の
回動部である環状シール15の部分を示し、この部分に
ついて説明するが、他の部分についても基本的には同様
であると理解されたい。
2. Description of the Related Art FIG. 10 typically shows a portion of an annular seal 15 which is a rotating portion of a base portion 5 and a support arm 12, and this portion will be described. However, other portions are basically the same. Please understand.

【0010】図10の図(a)は横方向のV字形の環状
シール15aであり、図(b)は縦方向のV字形の環状
シール15bである。なお、このような環状シール15
は一般に合成ゴムの成型品でなる。
FIG. 10 (a) shows a horizontal V-shaped annular seal 15a, and FIG. 10 (b) shows a vertical V-shaped annular seal 15b. In addition, such an annular seal 15
Is generally a synthetic rubber molding.

【0011】図(a)のV字形の環状シール15aは支
持腕12に形成された凹溝18内に嵌め込まれ装置の内
部側AにV溝側を向けられる。基部5の摺接面19に接
触する環状の接触片21は摺接面19によって所定量押
圧される押圧力に対する復元力で圧接され、それによっ
て異物の侵入を確実に阻止させる。
The V-shaped annular seal 15a shown in FIG. 3A is fitted in the groove 18 formed in the support arm 12 and the V-groove side is directed to the inside A of the apparatus. The annular contact piece 21 that comes into contact with the sliding contact surface 19 of the base portion 5 is pressed by the restoring force against the pressing force pressed by the sliding contact surface 19 by a predetermined amount, thereby reliably blocking the entry of foreign matter.

【0012】このように、V字形の開口を閉じるように
押圧される復元力により摺接面19に接触されること
は、外部側Bの気圧が低下すると内部側Aの気圧は一定
であっても、相対的には気圧差を生じて内部側Aが高く
なる。その結果環状の接触片21を摺接面19に押しつ
ける作用力が加わり、一層の環状シール15aによる摩
擦抵抗を生じる。
As described above, the contact with the sliding contact surface 19 by the restoring force pressed to close the V-shaped opening means that when the atmospheric pressure on the outer side B decreases, the atmospheric pressure on the inner side A remains constant. However, a relative atmospheric pressure difference is generated and the inside A becomes higher. As a result, an action force for pressing the annular contact piece 21 against the sliding contact surface 19 is applied, and friction resistance due to the one-layer annular seal 15a is generated.

【0013】このようなことは、高度差にもとづく気圧
差により摩擦抵抗は一定せず、不特定に変化するため
に、X軸2またはZ軸3の回りに回動動作させる制御用
の駆動モータへの負荷が一定しないことから、制御精度
の安定性に少なからない影響をおよぼす。影響を避け安
定化のためには駆動制御系の大型化となり重量ならびに
消費電力の増大となる。
This is because the frictional resistance is not constant and changes indefinitely due to the atmospheric pressure difference based on the altitude difference, so that the drive motor for control is rotated around the X-axis 2 or the Z-axis 3. Since the load on the control is not constant, the stability of the control accuracy is affected to a considerable extent. In order to avoid the influence and stabilize, the drive control system becomes large and the weight and power consumption increase.

【0014】図(b)のV字形の環状シール15bは支
持腕12に形成された凹溝18内に嵌め込まれ基部5の
摺接面19にV溝側を向けられる。摺接面19に接触す
る環状の接触片22,23は摺接面19によって所定量
押圧される押圧力に対する復元力で圧接され、それによ
って異物の侵入を確実に阻止させる。
The V-shaped annular seal 15b shown in FIG. 1B is fitted in the groove 18 formed in the support arm 12 and the V groove side is directed to the sliding contact surface 19 of the base 5. The annular contact pieces 22 and 23 contacting the sliding contact surface 19 are pressed against each other by a restoring force with respect to the pressing force pressed by the sliding contact surface 19 by a predetermined amount, thereby reliably blocking the entry of foreign matter.

【0015】V字形の開口24を開くように押圧される
復元力により摺接面19に接触されることは、外部側B
の気圧が低下すると外部側の接触片23はV字形の開口
24内の気圧によって、外部側B方向へ押圧変形させら
れて摺接面19に対する接触圧は低下する。このことは
摺接面19との摩擦抵抗が減少する。
The contact with the sliding contact surface 19 by the restoring force pressed to open the V-shaped opening 24 means that the outer side B
When the atmospheric pressure decreases, the external contact piece 23 is pressed and deformed in the external B direction by the atmospheric pressure in the V-shaped opening 24, and the contact pressure on the sliding contact surface 19 decreases. This reduces the frictional resistance with the sliding contact surface 19.

【0016】一方の内部側の接触片22は内部側Aの圧
力が外部側Bよりも相対的に高くなり、V字形の開口2
4内との圧力差にもとづく圧力が内部側の接触片22を
外部側B方向へ押し出そうとする作用力となり摺接面1
9への接触圧力が増大することとなる。
The pressure on the inner side A of the one contact piece 22 on the inner side becomes relatively higher than that on the outer side B, so that the V-shaped opening 2 is formed.
The pressure based on the pressure difference with the inside of 4 becomes an acting force to push the contact piece 22 on the inner side toward the outer side B, and the sliding contact surface 1
The contact pressure on 9 will increase.

【0017】このようなことについて図11を参照して
説明する。図11は環状シール15bのみを概略的に示
すものであり、図(a)は平面図、図(b)は断面図、
図(c)は図(b)の部分拡大図、である。
Such a thing will be described with reference to FIG. FIG. 11 schematically shows only the annular seal 15b. FIG. 11A is a plan view, FIG.
Figure (c) is a partially enlarged view of Figure (b).

【0018】上述のように、内部側の接触片22に働く
内部側Aの圧力をP1 、外部側Bの圧力をP2 とし、こ
の場合、P1 >P2 とする。これにより、圧力差P1
2=Pで表す。
As described above, the pressure on the inner side A acting on the contact piece 22 on the inner side is P 1 and the pressure on the outer side B is P 2, and in this case, P 1 > P 2 . As a result, the pressure difference P 1
It is represented by P 2 = P.

【0019】内部側の接触片22の中心Cからの半径を
r、接触幅をb、傾き角度をα、摺接面19との摩擦係
数をμ、とすると、圧力差Pによる摺接面19との間に
生じる押圧力qは、 q=P・sinα (1) となる。
When the radius from the center C of the inner contact piece 22 is r, the contact width is b, the inclination angle is α, and the friction coefficient with the sliding contact surface 19 is μ, the sliding contact surface 19 due to the pressure difference P is given. The pressing force q generated between and is: q = P · sin α (1)

【0020】摺接面19と内部側の接触片22との接触
摩擦係数をμとすると、押圧力qと摩擦係数μとの積で
ある摩擦力Pfは、 Pf=μ・q=μ・P・sinα (2) である。この摩擦力Pfによる軸回りの回転力として必
要な回転トルクTは、 T=Pf・2πrb・r =2πbr2 μ・P・sinα (3) となり、必要な回転トルクTは圧力差Pに概略比例する
ことになる。
When the coefficient of contact friction between the sliding contact surface 19 and the inner contact piece 22 is μ, the frictional force Pf, which is the product of the pressing force q and the friction coefficient μ, is Pf = μ · q = μ · P • sin α (2). The rotational torque T required as the rotational force about the axis due to the frictional force Pf is T = Pf · 2πrb · r = 2πbr 2 μ · P · sinα (3), and the required rotational torque T is approximately proportional to the pressure difference P. Will be done.

【0021】[0021]

【発明が解決しようとする課題】上記従来の環状シール
によると、装置1は地上の標準気圧の1気圧(1at
m)の状態において調整設定された装置内部の気圧は、
高度の上昇とともに外部気圧の低下にもとづく圧力差を
生じ、内外を遮蔽している環状シールにおよぼす内部側
の圧力で環状シールの摺接面に対する押圧力が逐一変動
することとなり、その結果高度差に応じて装置制御のた
めの回転トルクの増減変動となる。
According to the above-mentioned conventional annular seal, the device 1 is 1 atm (1 atm) of the standard atmospheric pressure on the ground.
The air pressure inside the device adjusted and set in the state of m) is
As the altitude rises, a pressure difference occurs due to a decrease in the external atmospheric pressure, and the pressure on the sliding contact surface of the annular seal fluctuates step by step due to the internal pressure exerted on the annular seal that shields the inside and outside. Accordingly, the rotational torque for controlling the device is increased / decreased.

【0022】本発明は上記従来の環状シールの問題点に
対して、2段シール形のV字形の環状シールにより装置
の回動シール部分の外部からの異物の侵入阻止、組み立
て誤差、気圧変動などにもとづく回転トルクの変化を調
整し、摺接面に対する押圧接触力を最適接触力に設定さ
せ得る環状シールの提供を目的とするものである。
In contrast to the above-mentioned problems of the conventional annular seal, the present invention uses a two-stage V-shaped annular seal to prevent foreign matter from entering the rotary seal portion of the apparatus from the outside, assembly error, atmospheric pressure fluctuation, etc. It is an object of the present invention to provide an annular seal capable of adjusting the change of the rotational torque based on the above and setting the pressing contact force to the sliding contact surface to the optimum contact force.

【0023】[0023]

【課題を解決するための手段】上記課題を解決するため
の本発明手段の構成要旨とするところは、摺接面に弾性
接触する環状接触片と上記摺接面に対する上記環状接触
片の押圧力を内部に流入される流体圧により設定し得る
環状の流体収容部とからなる環状シールであり、上記流
体の好ましい態様としては気体である。また、上記環状
シールには流体圧を外部圧力に応じて可変調整し得る流
体圧可変供給手段をそなえるものも含まれる。
The object of the present invention to solve the above-mentioned problems is to provide an annular contact piece that elastically contacts the sliding contact surface and a pressing force of the annular contact piece against the sliding contact surface. Is an annular seal including an annular fluid accommodating portion that can be set by the fluid pressure of the fluid flowing inside, and a preferable mode of the fluid is gas. Further, the annular seal includes one having a fluid pressure variable supply means capable of variably adjusting the fluid pressure according to the external pressure.

【0024】[0024]

【作用】上記本発明の構成手段によると、摺接面に対す
る環状接触片の押圧力を流体収容部への流体流入圧を可
変調節させることで任意押圧力に調整し得るものであ
る。
According to the above-mentioned constitutional means of the present invention, the pressing force of the annular contact piece against the sliding contact surface can be adjusted to an arbitrary pressing force by variably adjusting the fluid inflow pressure into the fluid containing portion.

【0025】流体を任意気体とすることで微小な圧力調
節を行なうことが可能となる。この気体は空気が一般的
であるが、状況に応じて適宜な気体を適用し得ることで
ある。要すれば、油性の液体などの流体を適用すること
も可能なことである。
Fine pressure adjustment can be performed by using an arbitrary gas as the fluid. Air is generally used as this gas, but an appropriate gas can be applied depending on the situation. If necessary, a fluid such as an oily liquid can be applied.

【0026】流体収容部に流体を供給する流体圧可変供
給手段は外部圧力に応じて可変調整し得ることから、圧
力差に応じて自動的に押圧力を相対的に所定範囲内とし
得ることができる。
Since the fluid pressure variable supply means for supplying the fluid to the fluid container can be variably adjusted according to the external pressure, the pressing force can be automatically set within the predetermined range in accordance with the pressure difference. it can.

【0027】[0027]

【実施例】以下、本発明の環状シールについて構成手段
にもとづいた実施例により図を参照して詳細に説明す
る。なお、全図を通じて同一部分には同一の符号を付し
て示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The annular seal of the present invention will be described in detail below with reference to the drawings based on an embodiment based on the constituting means. The same parts are denoted by the same reference symbols throughout the drawings.

【0028】図1は本発明にかかる赤外線検出装置31
の正面視断面図であり、この装置31は、たとえば航空
機搭載用である。既述の装置と同様に、詳細な細部を図
示省略した要部のみの概略図であるとともに、断面を示
す斜線も図が煩雑となることから省略してある。
FIG. 1 shows an infrared detector 31 according to the present invention.
FIG. 3 is a front view cross-sectional view of the device 31. The device 31 is mounted on an aircraft, for example. Similar to the above-described device, it is a schematic view of only a main part of which detailed details are omitted, and oblique lines showing a cross section are also omitted because the drawing is complicated.

【0029】図示左右方向のX軸2と図示前方と手前方
向のZ軸3の2軸制御のジンバル装置を有するものであ
り、それぞれの軸を中心に回動制御装置(図示なし)か
らの所定のサーボ制御信号によって回動される。
It has a gimbal device for biaxial control of an X-axis 2 in the left-right direction in the drawing and a Z-axis 3 in the front and front directions in the drawing. It is rotated by the servo control signal of.

【0030】Z軸3を垂直方向として取り付け基部5の
ベアリング6,7によって支持された以下の部分をZ軸
3を中心とする水平方向への回動と、X軸2を水平方向
として本体部8の両軸9,11を支持する支持腕12側
のベアリング13,14によって支持された本体部8を
X軸2を中心とする俯迎方向への回動と、をそれぞれに
行なわせ本体部8をつねに目的とする方向に向けさせる
ことができる。
The following portions supported by the bearings 6 and 7 of the mounting base 5 with the Z axis 3 as the vertical direction are rotated about the Z axis 3 in the horizontal direction, and the main body section with the X axis 2 as the horizontal direction. The main body 8 supported by bearings 13 and 14 on the side of the support arm 12 that supports both shafts 9 and 11 of 8 is rotated about the X axis 2 in the depression direction. 8 can always be oriented in the desired direction.

【0031】装置31は航空機などの所定位置に取り付
け搭載されるのであるが、気体外部に露出される状態の
外部環境下に接するように曝される。そこで、ベアリン
グ6,7,13,14およびその内部側を外部環境から
遮蔽状態として水分、湿気、塵埃などの異物が侵入しな
いようにするために外部側の周囲に環状シール32、3
3、34を配置させる。
The device 31 is mounted and mounted in a predetermined position of an aircraft or the like, but is exposed so as to come into contact with the external environment in a state of being exposed to the outside of the gas. Therefore, in order to prevent foreign matter such as moisture, moisture, and dust from entering the bearings 6, 7, 13, 14 and the inner side thereof from the external environment, annular seals 32, 3 are provided around the outer side.
Place 3, 34.

【0032】環状シール32,33,34の部分を拡大
するとともに原理的断面図とした状態を図2に示す。図
2は代表的に基部5と支持腕12の回動部である環状シ
ール32の部分を示し、この部分について説明するが、
他の部分についても基本的には同様であると理解された
い。この支持腕12はベアリング6を介して基部5にZ
軸3の回りを回動可能に支持されている。
FIG. 2 shows a state in which the annular seals 32, 33, 34 are enlarged and the principle cross-sectional view is shown. FIG. 2 typically shows a part of the annular seal 32 which is a rotating part of the base part 5 and the support arm 12, and this part will be described.
It should be understood that the other parts are basically the same. This support arm 12 is attached to the base 5 via a bearing 6
It is rotatably supported around the shaft 3.

【0033】基部5の摺接面19と対向する支持腕12
の周囲面には環状の凹溝35が形成されており、ここに
環状シール32が嵌め込まれている。環状シール32の
上面にはV字形の環状接触片36,37が一体形成され
ており、先端部が摺接面19に弾性的に接触されてい
る。
Support arm 12 facing the sliding surface 19 of the base portion 5.
An annular groove 35 is formed on the peripheral surface of the, and the annular seal 32 is fitted therein. V-shaped annular contact pieces 36 and 37 are integrally formed on the upper surface of the annular seal 32, and the tip end thereof is elastically contacted with the sliding contact surface 19.

【0034】環状シール32の凹溝35と嵌まり合って
いる本体部分はチューブでなる環状の流体収容部38で
あり、内部に流体が流入される。この流体収容部38に
は下方に延び流体供給手段39との間を接続する供給チ
ューブ41につながれる。この環状シール32は合成ゴ
ムの成型品でなる。
The main body portion fitted into the concave groove 35 of the annular seal 32 is an annular fluid storage portion 38 made of a tube into which the fluid flows. The fluid container 38 is connected to a supply tube 41 extending downward and connecting to the fluid supply means 39. The annular seal 32 is made of synthetic rubber.

【0035】摺接面19に接触する環状接触片36,3
7の先端は摺接面19によって所定量押圧される押圧力
に対する復元力で圧接される初期値により、異物の侵入
を確実に阻止させる。
Annular contact pieces 36, 3 that contact the sliding contact surface 19
The tip end of 7 reliably prevents foreign matter from entering due to the initial value that is pressed by the restoring force against the pressing force pressed by the sliding contact surface 19 by a predetermined amount.

【0036】流体供給手段39はたとえば流体用のポン
プであり、流体収容部38内の流体圧を任意に加減し得
るものである。このことについて、図3の部分拡大図を
参照して説明すると、図(a)は内部側Aの気圧P1
外部側Bの気圧P2 とがともに1気圧の標準状態である
とともに、流体収容部38内の圧力も同じ状態の場合が
示される。すなわち、釣り合った状態で摺接面19への
環状接触片36,37が初期値の押圧力で接触してい
る。
The fluid supply means 39 is, for example, a pump for fluid, and can arbitrarily adjust the fluid pressure in the fluid container 38. This will be described with reference to the partially enlarged view of FIG. 3. In FIG. 3A, the atmospheric pressure P 1 on the inner side A and the atmospheric pressure P 2 on the outer side B are both 1 atmospheric pressure, and The case where the pressure in the housing portion 38 is also in the same state is shown. That is, in a balanced state, the annular contact pieces 36, 37 are in contact with the sliding contact surface 19 with an initial pressing force.

【0037】図(b)に示される状態は、流体収容部3
8内の流体圧力を外部圧力P1 よりも減圧させた状態で
あって、流体収容部38の高さが低くなり、凹溝35の
内部に入り込んだ様子が示される。
The state shown in FIG. 3 (b) is in the fluid container 3
It is shown that the fluid pressure inside 8 is lower than the external pressure P 1 and the height of the fluid storage portion 38 becomes low and the fluid storage portion 38 has entered the inside of the groove 35.

【0038】環状接触片36,37は立ち上がるように
なり、その間に形成されるV字形の開口42が閉じられ
るようになる。この状態は環状接触片36,37の弾性
復元力によるもので、摺接面19への接触力は減少され
る。
The annular contact pieces 36, 37 are raised, and the V-shaped opening 42 formed therebetween is closed. This state is due to the elastic restoring force of the annular contact pieces 36 and 37, and the contact force to the sliding contact surface 19 is reduced.

【0039】図(c)に示される状態は、流体収容部3
8内の流体圧力を外部圧力P1 よりも加圧させた状態で
あって、流体収容部38の高さが凹溝35の表面よりも
高くなった様子が示される。
The state shown in FIG. 3C is in the fluid container 3
It is shown that the fluid pressure inside 8 is higher than the external pressure P 1 and the height of the fluid storage portion 38 is higher than the surface of the groove 35.

【0040】環状接触片36,37は摺接面19に押し
つけられ、その間に形成されるV字形の開口42が開か
れるようになる。この状態は環状接触片36,37によ
る弾性復元力が増大され、摺接面19への接触力は増加
される。
The annular contact pieces 36, 37 are pressed against the sliding contact surface 19 so that the V-shaped opening 42 formed therebetween is opened. In this state, the elastic restoring force by the annular contact pieces 36, 37 is increased, and the contact force on the sliding contact surface 19 is increased.

【0041】図(d)に示される状態は、図(a)に示
される状態を示しているが、ここで内部側Aの気圧P1
に対して外部側Bの気圧P2 を低下された状態、すなわ
ちP 1 >P2 となった場合には、内部側Aの環状接触片
36は二点鎖線で示されるように外部側B方向に押圧さ
れる結果、摺接面19に対しての押圧接触力が増加す
る。このようなことは、図11を参照して既述したと同
様なことである。
The state shown in FIG. 3D is shown in FIG.
The pressure P on the inner side A is shown here.1
Against the outside air pressure P2Lowered, i.e.
Chi P 1> P2If it becomes, the annular contact piece on the inner side A
36 is pressed in the direction of the outer side B as shown by the chain double-dashed line.
As a result, the pressing contact force with respect to the sliding contact surface 19 increases.
It This is the same as described above with reference to FIG.
Something like that.

【0042】外部側Bの環状接触片37はV字形の空間
開口42の初期気圧P1 と外部側Bの気圧P2 との気圧
差により外部側Bに引き倒されるようになるが、環状接
触片37自身の弾性復元力で摺接面19に接触するが、
気圧差にもとづく押圧力の低下により接触の押圧力は当
然に低くなる。
The annular contact piece 37 on the outer side B is pulled toward the outer side B by the pressure difference between the initial pressure P 1 of the V-shaped space opening 42 and the atmospheric pressure P 2 on the outer side B. The elastic restoring force of the piece 37 itself makes contact with the sliding contact surface 19,
Due to the decrease in the pressing force due to the pressure difference, the contact pressing force naturally decreases.

【0043】しかしながら、摺接面19に接触する復元
力以上に気圧P2 が低下すると、摺接面19との接触間
から空間42内の空気が漏洩し、復元力に釣り合った状
態に復元する。この状態は、空間部42の気圧をP3
すると、P1 >P3 >P2 となる。
However, when the atmospheric pressure P 2 decreases more than the restoring force of contacting the sliding contact surface 19, the air in the space 42 leaks between the contact with the sliding contact surface 19 and restores the state in which the restoring force is balanced. . In this state, P 1 > P 3 > P 2 when the atmospheric pressure in the space 42 is P 3 .

【0044】図2に示されるように、環状シール32の
摺接面19への摺接箇所の中心とZ軸3間の半径をr、
流体収容部38の幅をd、流体収容部38の高さをh、
環状接触片36,37の高さの変化量をδx、とし、δ
xの変化に対する回転トルクTをモデル実験により求め
たデータを図4に示す。
As shown in FIG. 2, the radius between the Z-axis 3 and the center of the sliding contact point of the annular seal 32 on the sliding contact surface 19 is r,
The width of the fluid containing portion 38 is d, the height of the fluid containing portion 38 is h,
Let δx be the amount of change in height of the annular contact pieces 36, 37, and let δ
FIG. 4 shows data obtained by the model experiment of the rotation torque T with respect to the change of x.

【0045】図4において横軸にδxを0.1mm間隔
に、縦軸に回転トルクkg・f−cmとして得られた値
を示す。すなわち、環状シール32を基準状態とした値
の回転トルクを0とし、δxを0.1,0.3,0.
5,0.8,0.9mm増大するように流体収容部38
内の流体圧を増加させた場合について求めたものであ
る。
In FIG. 4, the abscissa represents δx at intervals of 0.1 mm, and the ordinate represents values obtained as rotational torque kg · f-cm. That is, the rotational torque of the value based on the annular seal 32 is set to 0, and δx is set to 0.1, 0.3, 0.
The fluid accommodating portion 38 is increased by 5, 0.8, 0.9 mm.
This is obtained when the fluid pressure inside is increased.

【0046】使用したモデルは、r=75mm、d=1
0mm、h=5mm、としたもので、それぞれの各δx
の上記点での複数回の実験値は矢印で示した範囲とな
り、それぞれの矢印間を平均する曲線43が得られる。
The model used is r = 75 mm, d = 1.
0 mm, h = 5 mm, and each δx
The experimental values obtained a plurality of times at the above points are within the range indicated by the arrows, and the curve 43 that averages between the respective arrows is obtained.

【0047】つまり、流体圧の増加による変化量δxの
増大とともに摩擦力が草加して回転トルクTの増加とな
る。このことは流体圧を基準状態から減圧させると回転
トルクTは減少することになることも表している。
That is, as the amount of change δx due to the increase in fluid pressure increases, the frictional force increases, and the rotational torque T increases. This also means that the rotational torque T decreases when the fluid pressure is reduced from the reference state.

【0048】図5を参照すると、図(a)は横軸に高度
H、縦軸に高度に対応する気圧p2、を示し、高度Hの
上昇とともに曲線44で示されるように気圧p2 が減少
することを示している。
Referring to FIG. 5, FIG. 5 (a) shows the altitude H on the horizontal axis and the atmospheric pressure p 2 corresponding to the altitude on the vertical axis. As the altitude H increases, the atmospheric pressure p 2 changes as shown by the curve 44. It shows that it decreases.

【0049】図(b)は横軸に装置内外の気圧差p、縦
軸に気圧差pにともなう回転トルクTの変化、を示し、
気圧差pの増加にともなって曲線45で示されるように
回転トルクTの増加することを示している。
In FIG. 6B, the horizontal axis shows the atmospheric pressure difference p inside and outside the apparatus, and the vertical axis shows the change of the rotational torque T with the atmospheric pressure difference p.
It is shown that the rotational torque T increases as shown by the curve 45 as the atmospheric pressure difference p increases.

【0050】図(c)は横軸にδx、縦軸に回転トルク
Tの変化、を示し、δxの増加にともなって曲線43で
示されるように回転トルクTの増加することを示してい
る。これは図4で説明したことと同じである。
FIG. 6C shows δx on the horizontal axis and changes in the rotational torque T on the vertical axis, and shows that the rotational torque T increases as the curve 43 increases with an increase in δx. This is the same as described in FIG.

【0051】以上のことから、図5の図(d)に示され
るように横軸に気圧差p、縦軸にδx、とすると、曲線
46で示されるように気圧差pの増加とともにδxを所
要量減少させて回転トルクTを低下させ、環状シールに
よる回転トルクの増加を抑える必要性のあることが判明
する。
From the above, assuming that the horizontal axis represents the atmospheric pressure difference p and the vertical axis represents δx as shown in FIG. 5D, δx increases as the atmospheric pressure difference p increases as shown by the curve 46. It turns out that it is necessary to reduce the required amount to reduce the rotational torque T and suppress the increase in the rotational torque due to the annular seal.

【0052】図6を参照し図(a)の原理的概要図によ
り流体圧可変供給手段との関係について具体的に説明す
る。環状シール32の流体収容部38の外径をD1 、内
径をD2 、その高さをh、とする。
Referring to FIG. 6, the relationship with the fluid pressure variable supply means will be specifically described with reference to the principle schematic diagram of FIG. The outer diameter of the fluid storage portion 38 of the annular seal 32 is D 1 , the inner diameter is D 2 , and its height is h.

【0053】ベローズでなる流体圧可変供給手段39の
有効内径をD3 、長さをY、とする。また、環状シール
32の直径方向の寸法変化は凹溝35に規制されて変化
しないものとし、高さh方向のみの変化量をδhとす
る。流体圧可変供給手段39についても有効内径D3
変化はなく、長さY方向の変化量をδyとする。
The effective inner diameter of the fluid pressure variable supply means 39 made of a bellows is D 3 , and the length is Y. In addition, the dimensional change in the diameter direction of the annular seal 32 is restricted by the concave groove 35 and does not change, and the change amount only in the height h direction is δh. Also in the fluid pressure variable supply means 39, there is no change in the effective inner diameter D 3 , and the amount of change in the length Y direction is δy.

【0054】以上の関係から、 π/4・(D1 2 −D2 2 )δh=π/4・D3 2 ・δy (4) たとえば、 環状シール32の流体収容部38の外径D1 =160mmφ 内径D2 =140mmφ 流体圧可変供給手段39の有効内径 D3 = 20mmφ とすると、(4)式から、 15δh=δy となる。したがって、δhを0.5mm上昇変化さるた
めには、流体圧の変化にともなう体積変化を考えないも
のとすると、単純には流体圧可変供給手段39の連桿4
8を押し込み、流体圧可変供給手段39の長さYを7.
5mm圧縮させればよいことになる。
From the above relationship, π / 4 · (D 1 2 −D 2 2 ) δh = π / 4 · D 3 2 · δy (4) For example, the outer diameter D 1 of the fluid containing portion 38 of the annular seal 32 is = 160 mmφ inner diameter D 2 = 140 mmφ effective inner diameter of the fluid pressure variable supply means 39 If D 3 = 20 mmφ, then from equation (4), 15δh = δy. Therefore, in order to increase δh by 0.5 mm, if the volume change due to the change in the fluid pressure is not considered, the connecting rod 4 of the fluid pressure variable supply means 39 is simply used.
8 is pushed in to set the length Y of the fluid pressure variable supply means 39 to 7.
It should be compressed by 5 mm.

【0055】すなわち、この7.5mmがこの場合の圧
縮量δyである。ここで、δhで表される変化量は、環
状シール32の環状の環状接触片36,37を摺接面1
9に圧接させる環状接触片の高さの変化量δxに対応す
ることにほかならないものである。すなわち、高さ変化
量δhの増加はδx量の増加となり、δhの減少はδx
量の減少となる。
That is, this 7.5 mm is the compression amount δy in this case. Here, the amount of change represented by δh is determined by comparing the annular contact pieces 36 and 37 of the annular seal 32 with the sliding contact surface 1.
It corresponds to the change amount δx of the height of the annular contact piece that is brought into pressure contact with 9. That is, an increase in the height change amount δh results in an increase in the δx amount, and a decrease in δh results in δx.
The amount will decrease.

【0056】したがって、外気圧の低下によるδxの増
加による回転トルクTの増加を減少させるには、δhを
減少させるべく環状の流体収容部38の高さhを所要量
低下させることによって可能となるものである。
Therefore, in order to reduce the increase of the rotational torque T due to the increase of δx due to the decrease of the external pressure, it is possible to reduce the height h of the annular fluid accommodating portion 38 by a required amount in order to reduce δh. It is a thing.

【0057】そのような状態から逆に外気圧が上昇し内
圧に近づきシール機能の低下のおそれ、または回転トル
クを標準状態に合わせる必要の生じた場合には、δhを
上昇させるべく環状の流体収容部38を高さhを所要量
上昇させることによって可能となる。
On the contrary, when the external air pressure rises to approach the internal pressure and the sealing function is likely to deteriorate, or when it becomes necessary to adjust the rotational torque to the standard state, the annular fluid storage is increased to increase δh. This can be achieved by increasing the height h of the portion 38 by a required amount.

【0058】図6の図(b)に示される流体圧可変供給
手段39はプランジャ式ポンプ、またはピストン式ポン
プであって、連桿48の進退によって環状シール32へ
の流体圧増減を行なうことができる。この有効内径D3
はシリンダ49の内径そのものとなる。符号の51はシ
リンダ49内面に接触するシール用のOリングである。
The fluid pressure variable supply means 39 shown in FIG. 6B is a plunger type pump or a piston type pump, and the fluid pressure to the annular seal 32 can be increased or decreased by moving the connecting rod 48 forward or backward. it can. This effective inner diameter D 3
Is the inner diameter of the cylinder 49 itself. Reference numeral 51 is an O-ring for sealing that contacts the inner surface of the cylinder 49.

【0059】流体圧可変供給手段39の装置への装着状
態を図1を参照して説明すると、装置31のX軸2の環
状シール33に対しては支持腕12の部分に符号55で
示される箇所に取り付け、チューブ56で環状シール3
3と接続させる。
The mounting state of the fluid pressure variable supply means 39 on the apparatus will be described with reference to FIG. 1. The annular seal 33 of the X-axis 2 of the apparatus 31 is indicated by the reference numeral 55 on the support arm 12. Attach it in place, and use tube 56 to make an annular seal 3.
Connect with 3.

【0060】同じく、環状シール34に対しては支持腕
12の部分に符号57で示される箇所に取り付け、チュ
ーブ58で環状シール34と接続させる。装置31のZ
軸3の環状シール32に対しては支持腕12の部分に符
号59で示される箇所に取り付け、チューブ61で環状
シール32と接続させる。
Similarly, with respect to the annular seal 34, it is attached to the portion of the support arm 12 at a portion indicated by reference numeral 57, and is connected to the annular seal 34 by the tube 58. Z of device 31
The annular seal 32 of the shaft 3 is attached to a portion of the support arm 12 at a position indicated by reference numeral 59, and is connected to the annular seal 32 by a tube 61.

【0061】本発明の環状シールの第2,第3実施例に
ついて図7を参照して説明する。図7の図(a)は第2
実施例の環状シール32−2の要部断面図であり、環状
接触片36,37の部分と環状の流体収容部38とをそ
れぞれ別体として製造し、一体的に接合形成させたもの
である。このような製造方法によると比較的に製造が容
易になるとともに、それぞれを要求に応じて性能の異な
るものとの組み合わせが可能となるものである。
Second and third embodiments of the annular seal of the present invention will be described with reference to FIG. FIG. 7 (a) is the second
It is a principal part sectional view of the annular seal 32-2 of an Example, and the part of the annular contact pieces 36 and 37 and the annular fluid accommodating part 38 are manufactured as a separate body, respectively, and are integrally joined and formed. . According to such a manufacturing method, manufacturing is relatively easy, and each of them can be combined with those having different performances according to requirements.

【0062】図(b)は第3実施例の環状シール32−
3の要部断面図であり、環状接触片36,37の内部に
も流体収容部38の延長部を形成させたものである。こ
のようにすることで、流体収容部38内への流体加圧時
に環状接触片36,37の先端間隔を開くような作用
と、全体を押し上げるような作用とを生じることから接
触力を減少させ、減圧時には先端間隔を閉じるようにな
り接触力を増加させるような作用と、全体を引き下げる
ように作用し、それぞれの場合について摩擦力を調整可
能となるものである。
FIG. 9B shows an annular seal 32-of the third embodiment.
3 is a cross-sectional view of an essential part of FIG. 3, in which an extended portion of the fluid storage portion 38 is also formed inside the annular contact pieces 36, 37. By doing so, when the fluid is pressurized in the fluid containing portion 38, the action of opening the interval between the tips of the annular contact pieces 36, 37 and the action of pushing up the whole are generated, so the contact force is reduced. When the pressure is reduced, the tip interval is closed to increase the contact force, and the action is to lower the whole, and the friction force can be adjusted in each case.

【0063】本発明の環状シールの第4,第5実施例に
ついて図8を参照して説明する。図8の図(a)は第4
実施例の環状シール32−4の要部断面図であり、流体
収容部38の下方を開放させるとともに、流体収容部3
8の内外周にシール片65,66を形成させ、このシー
ル片65,66を凹溝35の周囲壁面に摺接移動可能に
嵌め込んだものである。
The fourth and fifth embodiments of the annular seal of the present invention will be described with reference to FIG. FIG. 8 (a) is the fourth
It is a principal part sectional drawing of the annular seal 32-4 of an Example, while opening the lower part of the fluid accommodating part 38, the fluid accommodating part 3 is shown.
Sealing pieces 65 and 66 are formed on the inner and outer circumferences of 8, and these sealing pieces 65 and 66 are slidably fitted into the peripheral wall surface of the recessed groove 35.

【0064】このようにすることで、凹溝35を流体収
容部とすることで可能となり環状シール32−4の製造
が容易なものとなる。凹溝35の幅を有効利用し得るか
ら、加圧力を高めることができるものとなる。
By doing so, it becomes possible to use the concave groove 35 as a fluid accommodating portion, and the annular seal 32-4 can be easily manufactured. Since the width of the groove 35 can be effectively used, the pressing force can be increased.

【0065】図(b)は第5実施例の環状シール32−
5の要部断面図であり、流体収容部38の下方を開放さ
せるとともに、流体収容部38の内外周にシール片6
5,66を形成させ、このシール片65,66を凹溝3
5の周囲壁面に摺接移動可能に嵌め込む。
FIG. 9B shows an annular seal 32-of the fifth embodiment.
5 is a cross-sectional view of a main part of FIG.
5 and 66 are formed, and these sealing pieces 65 and 66 are formed into the groove 3
It is slidably attached to the surrounding wall surface of 5.

【0066】流体収容部38の内面には環状の金属製凹
金具67を一体に埋め込み成型させる。このようにする
ことで、凹溝35を流体収容部とすることで可能とな
り、金属製凹金具67の補強効果で流体収容部38の容
積を大きくすることができる。同様に、凹溝35の幅を
有効利用し得るものである。
An annular metal concave metal fitting 67 is integrally embedded and molded on the inner surface of the fluid containing portion 38. By doing so, it becomes possible to use the concave groove 35 as a fluid accommodating portion, and the volume of the fluid accommodating portion 38 can be increased by the reinforcing effect of the metal concave metal fitting 67. Similarly, the width of the groove 35 can be effectively used.

【0067】本発明になる環状シールの流体収容部への
流体の加減圧については、高度変化をともなう場合には
高度情報、たとえば高度計からの信号によって外部圧と
の差圧を求めるか、相互の圧力差を圧力計によって求
め、それによって最適状態に加減圧を自動的に制御させ
ることにより回転トルク変動のない状態とすることがで
きる。
Regarding the pressurization and depressurization of the fluid in the fluid storage portion of the annular seal according to the present invention, when the altitude changes, altitude information, for example, the differential pressure from the external pressure is obtained from the signal from the altimeter, or the mutual pressure is calculated. By obtaining the pressure difference with a pressure gauge and automatically controlling the pressurization and depressurization to the optimum state, it is possible to obtain a state in which there is no fluctuation in the rotational torque.

【0068】もちろん、温度変化による圧力の変化に対
しても補償させることは可能であり、あらかじめ設定さ
せることで制御し得る。このような制御手段以外にも、
駆動制御用のトルクモータの駆動電流値を基準電流値と
の比較による変化量と、圧力信号との関係から変動量を
求め最適状態に設定制御させることも可能なことであ
る。
Of course, it is also possible to compensate for changes in pressure due to changes in temperature, and it is possible to control by making preset settings. Besides such control means,
It is also possible to obtain the variation amount from the relationship between the change amount of the drive current value of the torque motor for drive control by comparing with the reference current value and the pressure signal and perform the setting control in the optimum state.

【0069】流体についても、一般的には空気を利用し
得るものであるが、不活性な窒素ガス、あるいはその他
の適当な気体を利用可能であるが、圧力や温度変化にと
もなう体積変動を生じない、たとえば油性の液体からな
る流体、たとえばシリコーンオイルなどを利用すること
も、また可能なことである。
As for the fluid, air can be used in general, but inert nitrogen gas or other suitable gas can be used, but the volume changes with pressure and temperature changes. It is also possible to utilize a fluid that does not exist, for example an oily liquid, such as silicone oil.

【0070】本発明の実施例は航空機搭載用装置を例示
して説明したが、このような装置に限定されるものでは
なく、最適状態に設定することを要求される装置に対し
て任意に適用し得るものであることはいうまでもないこ
とである。
Although the embodiment of the present invention has been described by exemplifying the apparatus for mounting on an aircraft, the present invention is not limited to such an apparatus and is arbitrarily applied to an apparatus required to be set in an optimum state. It goes without saying that it is possible.

【0071】[0071]

【発明の効果】以上詳細に説明したように本発明の環状
シールによれば、摺接面に弾性接触する環状接触片と摺
接面に対する環状接触片の押圧力を内部に流入させる流
体圧により設定し得る環状の流体収容部とからなるもの
であるから、種々の状態変化に応じて摺接面に対する押
圧接触力を最適接触力に任意に設定し得る実用上の効果
はきわめて著しいものである。
As described in detail above, according to the annular seal of the present invention, the annular contact piece elastically contacting the sliding contact surface and the pressing force of the annular contact piece against the sliding contact surface are made to flow by the fluid pressure. Since it comprises a ring-shaped fluid accommodating portion that can be set, the practical effect of arbitrarily setting the pressing contact force to the sliding contact surface to the optimum contact force according to various state changes is extremely remarkable. .

【0072】流体は気体がもっとも扱いやすいものであ
るが、このようなものに限らず体積変化の少ない液体な
いしは粘性を有する液状を適用実施し得る。流体圧を外
部圧力に応じて可変調整し得る流体圧可変供給手段との
組み合わせによって任意に自動調整可能にし得ること
は、さらなる実用上の効果を奏するものとなり、制御手
段を安定状態に維持させることができる。
Although the gas is the easiest to handle as a fluid, it is not limited to such a gas, and a liquid having a small volume change or a viscous liquid can be applied. The fact that the fluid pressure can be automatically adjusted in combination with the fluid pressure variable supply means capable of variably adjusting the fluid pressure according to the external pressure has further practical effects, and the control means can be maintained in a stable state. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる赤外線検出装置の正面視断面図FIG. 1 is a front sectional view of an infrared detection device according to the present invention.

【図2】本発明環状シールを説明する原理的断面図FIG. 2 is a sectional view showing the principle of the present invention annular seal.

【図3】圧力変化による接触状態[Fig. 3] Contact state due to pressure change

【図4】環状接触片の高さの変化量と回転トルクとの関
FIG. 4 shows the relationship between the amount of change in the height of the annular contact piece and the rotational torque.

【図5】環状接触片の高さの変化量と圧力差との関係[Fig. 5] Relationship between the amount of change in height of the annular contact piece and the pressure difference

【図6】環状シールと流体圧可変供給手段との関係FIG. 6 shows the relationship between the annular seal and the fluid pressure variable supply means.

【図7】環状シールの第2,第3実施例FIG. 7: Second and third embodiments of annular seal

【図8】環状シールの第4,第5実施例FIG. 8 is a fourth and fifth embodiment of the annular seal.

【図9】赤外線検出装置の正面視断面図FIG. 9 is a front sectional view of the infrared detection device.

【図10】図9における環状シール部分の部分断面図10 is a partial cross-sectional view of the annular seal portion in FIG.

【図11】環状シールの概略図FIG. 11 is a schematic view of an annular seal.

【符号の説明】[Explanation of symbols]

2 X軸 3 Y軸 5 基部 6,7 ベアリング 8 本体部 9,11 ベアリング 12 支持腕 13,14 ベアリング 19 摺接面 31 赤外線検出装置 32,33,34 環状シール 35 凹溝 36,37 環状接触片 38 流体収容部 39 流体供給手段、流体圧可変供給手段 41 供給チューブ 42 開口、空間 43,44,45,46 曲線 48 連桿 49 シリンダ 51 Oリング 55,57,59 流体圧可変供給手段 56,58,61 チューブ 65,66 シール片 67 金属製凹金具 2 X-axis 3 Y-axis 5 Base 6,7 Bearing 8 Main body 9,11 Bearing 12 Support arm 13,14 Bearing 19 Sliding contact surface 31 Infrared detector 32,33,34 Annular seal 35 Recessed groove 36,37 Annular contact piece 38 Fluid accommodation part 39 Fluid supply means, fluid pressure variable supply means 41 Supply tube 42 Opening, space 43,44,45,46 Curve 48 Connection rod 49 Cylinder 51 O-ring 55,57,59 Fluid pressure variable supply means 56,58 , 61 Tube 65, 66 Seal piece 67 Metal concave metal fitting

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 摺接面に弾性接触する環状接触片と上記
摺接面に対する上記環状接触片の押圧力を内部に流入さ
れる流体圧により設定し得る環状の流体収容部とからな
ることを特徴とする環状シール。
1. An annular contact piece elastically contacting the sliding contact surface, and an annular fluid accommodating portion capable of setting the pressing force of the annular contact piece against the sliding contact surface by the fluid pressure flowing therein. Characteristic annular seal.
【請求項2】 上記流体は気体であることを特徴とする
請求項1に記載の環状シール。
2. The annular seal according to claim 1, wherein the fluid is a gas.
【請求項3】 流体圧を外部圧力に応じて可変調整し得
る流体圧可変供給手段をそなえることを特徴とする請求
項1に記載の環状シール。
3. The annular seal according to claim 1, further comprising a fluid pressure variable supply means capable of variably adjusting the fluid pressure according to an external pressure.
JP6151867A 1994-07-04 1994-07-04 Ring-shaped seal Withdrawn JPH0814404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6151867A JPH0814404A (en) 1994-07-04 1994-07-04 Ring-shaped seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6151867A JPH0814404A (en) 1994-07-04 1994-07-04 Ring-shaped seal

Publications (1)

Publication Number Publication Date
JPH0814404A true JPH0814404A (en) 1996-01-16

Family

ID=15527963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6151867A Withdrawn JPH0814404A (en) 1994-07-04 1994-07-04 Ring-shaped seal

Country Status (1)

Country Link
JP (1) JPH0814404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039699B1 (en) * 2010-05-26 2011-06-09 신영구 Wagon with tube gasket using air pressure
CN109499188A (en) * 2018-12-16 2019-03-22 中国航发沈阳发动机研究所 A kind of aero-engine height is led and the dust-extraction unit on high whirlpool outer ring air-flow road

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039699B1 (en) * 2010-05-26 2011-06-09 신영구 Wagon with tube gasket using air pressure
CN109499188A (en) * 2018-12-16 2019-03-22 中国航发沈阳发动机研究所 A kind of aero-engine height is led and the dust-extraction unit on high whirlpool outer ring air-flow road

Similar Documents

Publication Publication Date Title
EP0890753B1 (en) Rolling bearing comprising a seal with integrated encoder
US20180071885A1 (en) Coupling mechanism, substrate polishing apparatus, method of determining position of rotational center of coupling mechanism, program of determining position of rotational center of coupling mechanism, method of determining maximum pressing load of rotating body, and program of determining maximum pressing load of rotating body
JPH04268713A (en) Supporting means and attitude control device with said means
KR100421061B1 (en) Pilot-type two-port vaccum valve
JP2969157B2 (en) Valve assembly for fluid pressure adjustment
CA2033686A1 (en) Linear sensor with concentric slider and housing
JPWO2018016481A1 (en) Vehicle weight measuring device
KR100526855B1 (en) Grinder pressing device
CN1369653A (en) Precision spindle parts having low friction performance
CN216742871U (en) Electric valve
JPH0814404A (en) Ring-shaped seal
JP2634568B2 (en) Multi-directional shock sensor
US7237917B2 (en) Mirror and angle detection device
US20070029735A1 (en) Self-compensating dynamic joint
US20060054660A1 (en) Articulated gas bearing support pads
US7299817B2 (en) Passive, double acting, vacuum actuated vent valve
JP2007327628A (en) Bearing unit
US20060066966A1 (en) Mirror and angle detection device
JP3378586B2 (en) Guiding device with a movable mechanical part guided in at least one direction
US2841674A (en) Pressure responsive instrument
CA2822997C (en) Mass positioning adjustment mechanism for a seismic sensor
US4361040A (en) Integrating angular accelerometer
JP3314090B2 (en) Gas pressure bearing device
US5496075A (en) Rotative joint applicable in pneumatic air pressure control assembly
CN206530658U (en) A kind of finite angle tape handler unloaded based on permanent magnet bias

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904