JPH08143601A - Modified starch and its production - Google Patents

Modified starch and its production

Info

Publication number
JPH08143601A
JPH08143601A JP31404194A JP31404194A JPH08143601A JP H08143601 A JPH08143601 A JP H08143601A JP 31404194 A JP31404194 A JP 31404194A JP 31404194 A JP31404194 A JP 31404194A JP H08143601 A JPH08143601 A JP H08143601A
Authority
JP
Japan
Prior art keywords
starch
particles
force
modified
deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31404194A
Other languages
Japanese (ja)
Inventor
Shoichi Hirooka
正一 広岡
Sunao Kamata
直 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP31404194A priority Critical patent/JPH08143601A/en
Publication of JPH08143601A publication Critical patent/JPH08143601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE: To obtain modified starch specifically modified in transformation of the specific surface of starch particles by an action of a mechanical energy which has not been tried in a usual starch modifying technique. CONSTITUTION: This method for producing modified starch is to make starch particles flat by one or more mechanical energies selected from a compressive force, an impact force, a grinding force and a shearing force without breaking the particles or deform into fine particles by crushing flat deformed starch particles by one or more mechanical energies to obtain the modified starch. The specific surface of the modified starch is more than 2.5 times as large as that of unmodified starch.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は澱粉粒子の粉体特性に係
るもので、澱粉粒子の物理化学的性質に大きな影響を与
える現象に関し、特に澱粉粒子の比表面積を機械的エネ
ルギーにより著しく変化せしめた改質澱粉及びその工業
的な製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the powder characteristics of starch particles, and relates to the phenomenon that has a great influence on the physicochemical properties of starch particles. In particular, the specific surface area of starch particles is significantly changed by mechanical energy. And a modified starch and an industrial production method thereof.

【従来の技術】澱粉は、冷水に溶けないで沈殿する1〜
100マイクロメートル(μm)の白色の微粒子であ
る。澱粉粒子は、形状、粒径、表面模様に固有の特徴を
有するが、粒子が小さく、粒度分布が狭いので、粉体と
して固有の性質をそのまま利用する用途も多い。例え
ば、鋳造、ゴム工業などの離型剤、医薬、食品などの賦
型剤、化粧品、感光紙などの被覆剤等には、澱粉が粒子
であることに起因して多用されている。一方、澱粉は、
近似のセルロースとは異なり、アミロースとアミロペク
チンの2成分より構成されており、この2成分が規則性
を持つ微結晶を作り澱粉粒子を形成させている。その粒
子内に点在する微結晶の規則性はX線回折図形にあらわ
れるが、植物種により結晶化度は25%〜40%程度と
異なっている。この澱粉粒子を水とともに加熱していく
と、ある温度に達すると膨潤を始めてX線回折図形が消
失し、やがて粒子の破壊が始まり、低分子のアミロース
から溶出し更に加熱を続けていくと、粒子が消滅し均一
な溶液になって、いわゆる水性コロイドとなる。この水
性コロイドとしての粘弾性、接着性、粘着性、保水性、
ゲル化特性、乾燥フィルム特性などが食品、接着剤、製
紙或いは繊維、医薬などに広範囲に利用されている。し
かしながら、天然の澱粉は、例えば、膨潤溶解に加熱を
必要とすること、水性コロイドの低温安定性が悪く老化
を起こして粘度、保水力、透明度を失うこと、水性コロ
イドは乳化力が少なく、耐薬品性にとぼしいこと等の高
分子特性を有する。そこで、上記の各欠点を改良するこ
とを目的に、澱粉を化学的に、或いは物理的に、更には
酵素的に変性した化工澱粉が数多く開発されている。分
解による化学的変性した化工澱粉には焙焼によるデキス
トリン、塩酸等を用いる酸浸漬澱粉、次亜塩素酸ナトリ
ウム等を用いる酸化澱粉等があり、誘導体による化学的
変性した化工澱粉には無水リン酸等を用いる架橋澱粉、
酢酸等を用いる澱粉エステル、モノクロル酢酸等を用い
る澱粉エーテル、アクリロニトリル等を用いるグラフト
化澱粉等がある。物理的変性した化工澱粉には水、熱を
用いるα−澱粉、湿熱処理澱粉などがある。酵素変性し
た化工澱粉にはα−アミラーゼを用いるデキストリン、
イソアミラーゼ等を用いるアミロース等がある。これら
の化工澱粉は変性法を2つ以上組み合わせたり、澱粉誘
導体の置換基の種類、置換度を変化させたりすることで
多様な製品がある。この化工澱粉の改良の骨格は、澱粉
の合成過程で粒子内に点在する分子鎖相互間が強い水素
結合によって固定された微結晶構造をその目的に合わせ
て如何にコントロールするかであった。一般的な化工澱
粉の製造方法については基本的成書(例えば澱粉科学ハ
ンドブック、朝倉書店、第8刷、1987年)に詳細な
解説がある。この中で、例えば、代表的な化工澱粉であ
るα−澱粉は澱粉の微結晶構造が破壊されたものである
糊液を直ちに乾燥したもので、冷水膨潤する性質が示さ
れている。また、例えば、特開平4−130102号公
報には、減圧・加圧加熱方式による湿熱処理により、加
熱時の膨潤と溶解が抑制され、ほとんど粘度を示さない
湿熱処理澱粉が得られることが開示されているが、これ
は湿熱処理により澱粉中のアミロースが粒子内移動し、
アミロペクチンの末端分子鎖と結合し、架橋処理澱粉の
如く微結晶構造を強固にするためと推定されている。以
上に示した如く、澱粉の改質技術としては、澱粉を水、
熱、薬品類、酵素類を用いて物理的、化学的、酵素的に
変性する方法が主体で、その他の方法、例えば本発明の
如く機械的エネルギーにより、澱粉の物理化学的性質に
大きな影響を与える現象、特に澱粉粒子の比表面積を著
しく増大させるような改質技術等はほとんど着眼されて
おらず、検討されていないのが現状である。
BACKGROUND OF THE INVENTION Starch precipitates without dissolving in cold water.
It is a white fine particle of 100 micrometers (μm). Starch particles have characteristics peculiar to shape, particle size, and surface pattern, but since the particles are small and the particle size distribution is narrow, there are many applications in which the peculiar properties as powder are used as they are. For example, starch is often used in mold release agents for casting, rubber industry, etc., as excipients for medicines, foods, cosmetics, coating agents for photosensitive paper, etc. due to the fact that starch is particles. On the other hand, starch is
Unlike similar cellulose, it is composed of two components, amylose and amylopectin, and these two components form regular microcrystals to form starch particles. The regularity of the microcrystals scattered in the particles appears in the X-ray diffraction pattern, but the crystallinity differs from about 25% to 40% depending on the plant species. When these starch particles are heated with water, when they reach a certain temperature, they start to swell and the X-ray diffraction pattern disappears, and eventually the particles start to break down, elute from the low molecular weight amylose and continue heating, The particles disappear and become a uniform solution, so-called aqueous colloid. Viscoelasticity, adhesiveness, tackiness, water retention as this aqueous colloid,
Its gelling property, dry film property and the like are widely used in foods, adhesives, papermaking or textiles, medicines and the like. However, natural starch requires heating for swelling and dissolution, for example, the low-temperature stability of the aqueous colloid is poor, and aging causes the viscosity, water retention, and transparency to be lost. It has polymer characteristics such as poor chemical resistance. Therefore, for the purpose of improving the above-mentioned respective drawbacks, many modified starches have been developed in which starch is chemically, physically, or enzymatically modified. Chemically modified starches that have been chemically modified by decomposition include dextrin by roasting, acid-immersed starches that use hydrochloric acid, etc., and oxidized starch that uses sodium hypochlorite, etc. Cross-linked starch using, etc.
There are starch esters using acetic acid and the like, starch ethers using monochloroacetic acid and the like, and grafted starch using acrylonitrile and the like. Examples of the physically modified modified starch include water, α-starch using heat, and heat-moisture treated starch. Dextrin that uses α-amylase for the enzymatically modified modified starch,
There is amylose using isoamylase and the like. These modified starches have various products by combining two or more modification methods or by changing the kind and the substitution degree of the substituents of the starch derivative. The skeleton of the improvement of this modified starch was how to control the microcrystalline structure fixed by strong hydrogen bonds between the molecular chains interspersed within the particles during the starch synthesis process, according to the purpose. For general methods of producing modified starches, there are detailed explanations in basic books (for example, Starch Science Handbook, Asakura Shoten, No. 8, 1987). Among them, for example, α-starch, which is a typical modified starch, is obtained by immediately drying a paste solution in which the microcrystalline structure of starch is destroyed, and has a property of swelling in cold water. Further, for example, Japanese Patent Application Laid-Open No. 4-130102 discloses that a wet heat treatment by a reduced pressure / pressure heating method suppresses swelling and dissolution during heating, and a wet heat treated starch having almost no viscosity is obtained. However, this is because amylose in starch moves inside the particles due to heat treatment with moisture,
It is presumed that it binds to the terminal molecular chain of amylopectin and strengthens the microcrystalline structure like crosslinked starch. As described above, as a starch modification technique, the starch is water,
The method is mainly a method of physically, chemically, and enzymatically denaturing by using heat, chemicals, and enzymes, and other methods such as mechanical energy as in the present invention have a great influence on the physicochemical properties of starch. At present, the phenomenon of imparting, in particular, the modification technique for significantly increasing the specific surface area of starch particles has not been noticed and has not been studied.

【発明が解決しようとする課題】本発明は上記従来の実
情に鑑み開発されたもので、澱粉の利用が高度化する中
で従来の枠を超えたファイン(微細)な澱粉を得るため
に鋭意研究を行った結果、従来の澱粉改質技術としては
ほとんど検討されていなかった機械的エネルギーの作用
により、特に澱粉粒子の比表面積の変化を著しく生じせ
しめた改質澱粉及びその製造方法を提供することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention was developed in view of the above-mentioned conventional circumstances, and is keen to obtain a fine (fine) starch that exceeds the conventional frame in the advanced use of starch. As a result of research, there is provided a modified starch and a method for producing the same, in which a change in the specific surface area of starch particles is remarkably caused by the action of mechanical energy, which has hardly been studied as a conventional starch modification technique. That is the purpose.

【課題を解決するための手段】澱粉は植物種により粒子
の大きさも形状も夫々特徴がある。例えば代表的な澱粉
であるトウモロコシ澱粉の粉体特性は、形状は多面形単
粒、粒度は3〜35μmであるが、窒素とヘリウムの混
合ガスを用いたBET法にてその比表面積を測定したと
ころ1.0m2/gであった。また、馬鈴薯澱粉の粉体
特性は、形状は卵形単粒、粒度は10〜90マイクロメ
−トル(μm)であるが、BET法にてその比表面積を
測定したところ0.6m2/gであった。粉体としての
澱粉は個体微粒子が多数集合したものであるが、一般に
粉体特有の性質には固体が微細になったときに現れる性
質と、粒子集合体としての性質がある。固体が微細化さ
れた場合は体積効果と表面効果が現れ、粒子集合体とし
ての性質は粉体粒子1個1個がそれぞれ適度な結合力、
引力を有していることによる。本発明において用いられ
る澱粉は、トウモロコシ澱粉、ハイアミロース種トウモ
ロコシ澱粉、ワキシー種トウモロコシ澱粉、モロコシ澱
粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱粉、サゴ澱粉、
豆澱粉、小麦澱粉、大麦澱粉、米澱粉、葛澱粉、片栗澱
粉、カンナ澱粉、アロールート澱粉又は架橋処理澱粉、
湿熱処理澱粉の内から選ばれる1種若しくは2種以上の
ものである。本発明は、粉体である澱粉にある特定の機
械的エネルギーを作用させ、澱粉粒子の物理化学的性質
に大きな影響を与える現象、特に澱粉粒子の比表面積の
増大を誘起するものである。ここで機械的エネルギーと
しては、押しつぶす力である圧縮、たたきわる力である
衝撃、すりつぶす力である摩砕、切り刻む力である剪断
など種々の形式があるが、特に本発明は澱粉の粒子層を
形成する粒子1粒1粒に圧縮力、衝撃力、摩砕力、剪断
力の内のいずれか1種若しくは2種以上の機械的エネル
ギーを作用させるものである。ここで摩砕とは、粉体ど
うしが摩擦によって粒子の表面から微粉が生成される現
象を言うが、圧縮状態下での剪断による摩擦効果も知ら
れている。本発明で用いる澱粉粒子を処理する粒子状材
料処理装置としては、例えば特開平6−79192号公
報に開示されているように、容器中心に回転するメイン
シャフトを立設し、該メインシャフトに複数のサブシャ
フトを間隔を置いて周設支持するとともに、該サブシャ
フトには複数のリング状部材をサブシャフトとの間に充
分な間隔を設けて設置し、該リング状部材を前期容器内
壁に当接するようにした粒子状材料処理装置、或いは、
容器が回転して該容器よりも曲率半径の小さい粉砕チッ
プが、該容器内壁に対してある間隔をもって固定されて
おり、粒子は該容器の回転に伴う遠心力によって該容器
内壁に圧密されながら間隙部に押し込まれるようにした
粒子状材料処理装置、即ち上記回転する容器の内壁に押
しつけられた粉体を、中央で静止又はゆっくり回転する
アームのヘッドで圧縮しながら摩砕するオングミル等の
装置が適用できる。加えて、剪断摩擦式ミル、圧縮摩砕
式ミル、高速剪断型混合機等に分類されるものも利用で
きる。これらの処理装置には、大気或いは特殊なガス中
で処理を行う乾式と、液体中で処理を行う湿式とがあ
り、また操作上からは回分式、開回路及び閉回路の3種
があるが、本発明ではいずれの設定条件でも実施可能で
ある。本発明は、澱粉粒子にある特定の機械的エネルギ
ーを与えて、澱粉粒子が扁平状に変形するか又は該扁平
状に変化した澱粉粒子が微粒状に変形することにより、
特に澱粉粒子の比表面積を著しく増大させ得ることに特
徴がある。一般的には固体を細分化すると、その単位質
量あたりの表面積である比表面積は大きくなることは既
成の知見であるが、本発明のように澱粉粒子にある特定
の機械的エネルギーを与えると、細分化された澱粉粒子
は平均粒径の大きさからでは到底推定できない未知の現
象を惹起する。即ち、澱粉粒子が単に細分化されるので
はなく、既成の知見とは異なったメカニズムで澱粉粒子
の新生表面が形成されるため、澱粉粒子の比表面積が著
しく増大されるものと認められる。本発明は従来全く知
られておらず又全く予測もされ得なかった上記新規な知
見に基づいて構成されたものである。
[Means for Solving the Problems] Starch is characterized by its size and shape depending on the plant species. For example, the powder characteristics of corn starch, which is a typical starch, have a polygonal shape and a particle size of 3 to 35 μm, but its specific surface area was measured by the BET method using a mixed gas of nitrogen and helium. However, it was 1.0 m 2 / g. The powder characteristics of potato starch are egg-shaped single grain and particle size of 10 to 90 micrometer (μm), but its specific surface area was measured by BET method to be 0.6 m 2 / g. there were. Starch as a powder is an aggregate of a large number of solid fine particles, and generally, the properties peculiar to the powder include a property that appears when a solid becomes fine and a property as a particle aggregate. When the solid is miniaturized, volume effect and surface effect appear, and the property as a particle aggregate is that each powder particle has an appropriate binding force,
Because it has an attractive force. Starch used in the present invention, corn starch, high amylose corn starch, waxy corn starch, sorghum starch, potato starch, sweet potato starch, tapioca starch, sago starch,
Bean starch, wheat starch, barley starch, rice starch, kudzu starch, potato starch, canna starch, arrow root starch or cross-linked starch,
One or two or more selected from heat-moisture treated starch. INDUSTRIAL APPLICABILITY According to the present invention, a certain mechanical energy is applied to starch as a powder to induce a phenomenon that greatly affects the physicochemical properties of starch particles, particularly an increase in the specific surface area of starch particles. Here, as the mechanical energy, there are various types such as compression which is a crushing force, impact which is a tapping force, grinding which is a crushing force, shearing which is a chopping force, and in particular, the present invention uses a starch particle layer. The mechanical energy of any one of compression force, impact force, grinding force, and shearing force or two or more types of mechanical energy is applied to each formed particle. Here, milling refers to a phenomenon in which fine powder is generated from the surface of the particles due to friction between the powders, and the friction effect due to shearing under a compressed state is also known. As a particulate material processing apparatus for processing starch particles used in the present invention, for example, as disclosed in Japanese Patent Laid-Open No. 6-79192, a main shaft that rotates around a container is erected, and a plurality of main shafts are installed on the main shaft. The sub-shaft is circumferentially supported with a space, and a plurality of ring-shaped members are installed on the sub-shaft with a sufficient space between the sub-shaft and the sub-shaft. A particulate material processing device that is in contact with
The container rotates, and crushing chips having a smaller radius of curvature than the container are fixed at a certain distance to the inner wall of the container. Particles are compressed by the centrifugal force caused by the rotation of the container while being compressed into the inner wall of the container. A particulate material processing device adapted to be pushed into a portion, that is, a device such as an angmill for grinding the powder pressed against the inner wall of the rotating container while compressing it with a head of an arm that is stationary or slowly rotating at the center. Applicable. In addition, those classified into a shear friction type mill, a compression grinding type mill, a high speed shear type mixer and the like can be used. These processing apparatuses are classified into a dry type, which performs processing in the atmosphere or a special gas, and a wet type, which performs processing in a liquid. Also, there are three types of processing apparatuses: a batch type, an open circuit, and a closed circuit. The present invention can be implemented under any setting condition. The present invention provides a certain mechanical energy to starch particles, whereby the starch particles are deformed into a flat shape, or the starch particles changed into a flat shape are deformed into fine particles,
In particular, it is characterized in that the specific surface area of starch particles can be remarkably increased. Generally, when a solid is subdivided, the specific surface area, which is the surface area per unit mass, increases, which is an established finding, but when given specific mechanical energy to starch particles as in the present invention, The finely divided starch particles cause an unknown phenomenon that cannot be estimated from the average particle size. That is, it is considered that the specific surface area of the starch particles is remarkably increased because the new surface of the starch particles is not formed by simply subdividing the starch particles but by a mechanism different from the existing knowledge. The present invention is constructed on the basis of the above-mentioned novel knowledge that has never been known or predicted at all.

【実施例】以下に本発明の実施例を詳細に説明する。但
し、本発明はかかる実施例に限定されるものではない。 [実施例1]改質トウモロコシ澱粉の調製 粒子状材料処理装置は粉砕を目的とした超微粉砕機マイ
クロス(株式会社奈良機械製作所製)を用いてトウモロ
コシ澱粉を改質処理した。この処理装置はケーシングと
その中で回転する主軸及び主軸の回転と連動して公転す
る数本の副軸から構成され、各副軸にはそれぞれ多数の
リング状粉砕媒体が取り付けられており、この粉砕媒体
としてのリングの大きさは装置形式によって異なるが、
その外径は25〜45mmで、厚みは数mm程度のもの
である。上記副軸と外径リング状粉砕媒体の内径との間
には数mmのギャップを設けてあり、リングは個々に自
由な働きができる。この粉砕媒体としての働きを持つリ
ングは主軸の回転に伴い、発生する遠心力によってギャ
ップ分だけ半径方向に移動し、ケーシング内壁に押しつ
けられながらケーシング内を周回するが、この時リング
は壁面との摩擦等により、それ自身も副軸を中心にして
回転する。即ち、リングは公転と自転を繰り返しながら
ケーシング内を運動していることになり、澱粉粒子はこ
の回転しているリングと壁面の間に挟まれ、リングの遠
心力による圧縮力とリング自身の回転による摩砕力(圧
縮と剪断)等の作用を受け、粉砕及び分散が行われる。
このリングはそれぞれ独立して自由に回転運転できるた
め、原料中に澱粉粒径の大きいものや小さいものが含ま
れていても、それぞれのリングは自由に澱粉粒子に対し
て粉砕作用を与えることができる。ベッセル全容積1
0.7リットルのマイクロスMC−5を用いて改質処理
を実施した。該ベッセルに分散媒としてエタノール24
00gと平均粒径17.0マイクロメートル(μm)の
市販トウモロコシ澱粉(水分11.9%)600gを加
えて密閉して、回転数975rpmで60分間処理した
後、続けて回転数1200rpmで20時間まで処理を
行ってトウモロコシ澱粉を改質した。この時ベッセルの
ジャケット部分には冷却水(10℃)を循環して装置内
の温度上昇をコントロールした。改質処理をした澱粉を
乾燥後、SEM(走査型電子顕微鏡)で粒子を観察した
が、60分間処理では扁平状に変形した澱粉となり、2
0時間処理では扁平状に変形した澱粉が引きちぎられて
破断し微粒状に変形した澱粉となった。この結果、澱粉
粒子の比表面積が著しく増大し、後記表1に示すその他
の物性も著しく変化した改質トウモロコシ澱粉が得られ
た。その測定結果を表1に示す。 [実施例2]改質馬鈴薯澱粉の調製 粒子状材料処理装置はベッセル全容量3.8リットルの
マイクロスMIC−2(株式会社奈良機械製作所製)を
用いて冷却水で温度上昇をコントロールしながら馬鈴薯
澱粉の改質処理を実施した。該ベツセルに分散媒として
エタノール1500gと平均粒径30.5マイクロメー
トル(μm)の市販馬鈴薯澱粉(水分16.2%)30
0gを加えて密閉した。処理された澱粉を乾燥後、SE
Mで粒子を観察したが、回転数1000rpmで30分
間処理では扁平状に変形した澱粉となり、回転数145
0rpmで6時間処理では扁平状に変形した澱粉が引き
ちぎられて破断し微粒状に変形した澱粉となった。この
結果、澱粉粒子の比表面積が著しく増大し、後記表1に
示すその他の物性も著しく変化した改質馬鈴薯澱粉が得
られた。その測定結果を表1に示す。 [実施例3]改質タピオカ澱粉の調製 実施例2と同じ粒子状材料処理装置を用いてタピオカ澱
粉を改質処理した。分散媒はエタノールとし同量使用し
た。平均粒径15.1マイクロメートル(μm)の市販
タピオカ澱粉(水分11.8%)300gを加えて処理
を行った。処理された澱粉を乾燥後、SEMで粒子を観
察したが、回転数1450rpmで30分間処理では扁
平状に変形した澱粉となり、回転数1450rpmで8
時間処理では扁平状に変形した澱粉が引きちぎられて破
断し微粒状に変形した澱粉となった。この結果、澱粉粒
子の比表面積が著しく増大し、後記表1に示すその他の
物性も著しく変化した改質タピオカ澱粉が得られた。そ
の測定結果を表1に示す。
EXAMPLES Examples of the present invention will be described in detail below. However, the present invention is not limited to this embodiment. [Example 1] Preparation of modified corn starch The corn starch was modified by using an ultrafine pulverizer Micros (manufactured by Nara Machinery Co., Ltd.) for the purpose of pulverization as the particulate material treatment device. This processing device is composed of a casing, a main shaft that rotates in the casing, and several sub shafts that revolve in conjunction with the rotation of the main shaft, and a large number of ring-shaped grinding media are attached to each sub shaft. The size of the ring as the grinding medium depends on the device type,
The outer diameter is 25 to 45 mm and the thickness is about several mm. A gap of several mm is provided between the counter shaft and the inner diameter of the outer ring-shaped grinding medium, and the rings can individually function freely. With the rotation of the main shaft, the ring that functions as this grinding medium moves in the radial direction by the gap due to the centrifugal force generated, and circulates inside the casing while being pressed against the inner wall of the casing. Due to friction or the like, it itself rotates around the auxiliary shaft. That is, the ring is moving in the casing while repeating its revolution and rotation, and the starch particles are sandwiched between this rotating ring and the wall surface, and the compression force due to the centrifugal force of the ring and the rotation of the ring itself. Grinding and dispersion are performed by the action of the grinding force (compression and shearing) by the.
Since each ring can rotate independently and freely, even if the raw material contains large or small starch particles, each ring can freely give a crushing action to the starch particles. it can. Vessel total volume 1
The modification treatment was carried out using 0.7 liter of Micros MC-5. Ethanol 24 as a dispersion medium in the vessel
00 g and 600 g of commercially available corn starch (water content 11.9%) having an average particle size of 17.0 micrometers (μm) were added, sealed, and treated at a rotation speed of 975 rpm for 60 minutes, and subsequently at a rotation speed of 1200 rpm for 20 hours. To modify the corn starch. At this time, cooling water (10 ° C.) was circulated in the jacket portion of the vessel to control the temperature rise in the apparatus. After the modified starch was dried, the particles were observed with a SEM (scanning electron microscope). The starch was deformed into a flat shape after 60 minutes of treatment.
In the treatment for 0 hour, the starch deformed into a flat shape was torn off and ruptured to become a finely deformed starch. As a result, modified corn starch was obtained in which the specific surface area of the starch particles was remarkably increased and other physical properties shown in Table 1 below were remarkably changed. The measurement results are shown in Table 1. [Example 2] Preparation of Modified Potato Starch As the particulate material treatment device, Micros MIC-2 (manufactured by Nara Machinery Co., Ltd.) having a vessel total volume of 3.8 liters was used while controlling the temperature rise with cooling water. The potato starch was modified. Commercially available potato starch (water content: 16.2%) 30 having 1500 g of ethanol as a dispersion medium and an average particle size of 30.5 micrometers (μm) in the beth cell
0 g was added and sealed. After drying the treated starch, SE
The particles were observed with M, but when processed at a rotation speed of 1000 rpm for 30 minutes, starch was deformed into a flat shape, and the rotation speed was 145
When treated at 0 rpm for 6 hours, the starch deformed in a flat shape was torn off and ruptured to become a starch deformed into fine particles. As a result, modified potato starch was obtained in which the specific surface area of the starch particles was remarkably increased and the other physical properties shown in Table 1 below were remarkably changed. The measurement results are shown in Table 1. [Example 3] Preparation of modified tapioca starch The tapioca starch was modified using the same particulate material processing apparatus as in Example 2. The dispersion medium was ethanol and the same amount was used. The treatment was performed by adding 300 g of commercially available tapioca starch (water content 11.8%) having an average particle size of 15.1 micrometers (μm). After the treated starch was dried, the particles were observed by SEM. When treated at a rotation speed of 1450 rpm for 30 minutes, the starch became deformed into a flat shape, and the rotation speed was 1450 rpm.
During the time treatment, the starch that had deformed to a flat shape was torn off and ruptured to become a starch that had deformed into fine particles. As a result, a modified tapioca starch was obtained in which the specific surface area of the starch particles was remarkably increased and the other physical properties shown in Table 1 below were remarkably changed. The measurement results are shown in Table 1.

【表1】 表1中、平均粒径はレザー光回折散乱法により測定し、
X線回折図形は自記式デイフラクトメーターを用いた。
また、澱粉粒子の比表面積は窒素とヘリウムの混合ガス
を用いたBET法により測定した。表1中、未処理澱粉
のX線回折図形におけるA形、B形、C形はデンプンハ
ンドブック(朝倉書店、5版、1965年)190頁の
解説に基づく。実施例1乃至3によれば、表1に示すよ
うに、トウモロコシ澱粉、馬鈴薯澱粉、タピオカ澱粉は
植物種に関係なく、本発明で用いたある特定の機械的エ
ネルギーを与える粒子状材料処理装置により澱粉粒子が
扁平状に変形するか、該扁平状に変形した澱粉粒子が引
きちぎられて破断し微粒状に変形した。そして、平均粒
径の変化及びX線回折図形の消失とともに、澱粉粒子の
比表面積は未処理澱粉の2.5倍以上に増大し、本発明
の目的である改質澱粉が得られた。 [比較例1]ラボ用遊星ボールミル(容量0.5リット
ル)に実施例1と同じトウモロコシ澱粉20gを入れ、
メノウボールを30%充填して密閉し、回転数360r
pmで1時間処理を行った。結果は、SEMの観察では
トウモロコシ澱粉粒子表面にかなりヒビ割れが生じてい
たが、微粒化は認められなかった。X線回折はA形図形
が消失し、澱粉粒子の比表面積は変わらなかった。この
ことから、圧縮力、摩擦力を与えても、ラボ用遊星ボー
ルミル処理では、結晶構造は変化するがトウモロコシ澱
粉粒子の新生表面の形成化は生じず、本発明のような改
質澱粉を得ることは難しいことがわかる。その測定結果
を前記実施例1の測定結果とともに表2に示す。 [比較例2]高速回転式衝撃粉砕機(株式会社奈良機械
製作所製、HYB−O型)を装置として使用した。実施
例1と同じトウモロコシ澱粉60gを回転数16200
rpmで1時間処理した。結果は、SEMの観察ではト
ウモロコシ澱粉粒子状態の変化はみられなかったが、平
均粒径はやや小さくなった。X線回折ならびに澱粉粒子
の比表面積は変化なかった。このことから、衝撃力によ
る高速回転衝撃粉砕機処理では、本発明のような改質澱
粉を得ることは難しいことがわかる。その測定結果を前
記実施例1の測定結果とともに表2に示す。 [比較例3]カウンタージェットミル(ホソカワミクロ
ン株式会社製、200AFG型)を装置として使用し
た。実施例1と同じトウモロコシ澱粉を回転数11,1
50rpm、供給能力5Kg/hrsで処理した。結果
は、SEMの観察ではトウモロコシ澱粉はかなり小さく
なった。X線回折は変化なかった。澱粉粒子の比表面積
はやや大きくなった。このことから、カウンタージェッ
トミルの衝撃力はトウモロコシ澱粉の表面の活性化を図
れる可能性があるが、本発明の如く改質澱粉を得ること
ができる要件を満たすまでには至らず、本発明のような
改質澱粉を得ることは難しいことがわかる。その測定結
果を前記実施例1の測定結果とともに表2に示す。
[Table 1] In Table 1, the average particle size is measured by the laser light diffraction scattering method,
For the X-ray diffraction pattern, a self-recording diffractometer was used.
The specific surface area of the starch particles was measured by the BET method using a mixed gas of nitrogen and helium. In Table 1, Form A, Form B, and Form C in the X-ray diffraction pattern of untreated starch are based on the explanation in page 190 of Starch Handbook (Asakura Shoten, 5th edition, 1965). According to Examples 1 to 3, as shown in Table 1, corn starch, potato starch, and tapioca starch were treated by the particulate material processing apparatus for imparting a certain mechanical energy used in the present invention, regardless of plant species. The starch particles were deformed into a flat shape, or the starch particles deformed into a flat shape were torn off and ruptured and deformed into fine particles. The specific surface area of the starch particles increased to 2.5 times or more that of the untreated starch along with the change of the average particle size and the disappearance of the X-ray diffraction pattern, and the modified starch which was the object of the present invention was obtained. [Comparative Example 1] 20 g of the same corn starch as in Example 1 was placed in a laboratory planetary ball mill (capacity 0.5 liter),
Filled with agate ball 30% and sealed, rotation speed 360r
It was treated with pm for 1 hour. As a result, SEM observation showed that the surface of the corn starch particles was considerably cracked, but no atomization was observed. In X-ray diffraction, the A pattern disappeared and the specific surface area of the starch particles did not change. From this, even if a compressive force and a frictional force are applied, the crystal structure is changed by the planetary ball mill treatment for a lab, but the formation of a new surface of corn starch particles does not occur, and the modified starch as in the present invention is obtained. It turns out to be difficult. The measurement results are shown in Table 2 together with the measurement results of Example 1 above. [Comparative Example 2] A high-speed rotary impact crusher (HYB-O type manufactured by Nara Machinery Co., Ltd.) was used as a device. The same corn starch as in Example 1 (60 g) was rotated at a speed of 16200.
Processed at rpm for 1 hour. As a result, the SEM observation did not show any change in the corn starch particle state, but the average particle size was slightly smaller. The X-ray diffraction and the specific surface area of the starch particles did not change. From this, it is understood that it is difficult to obtain the modified starch as in the present invention by the high-speed rotary impact pulverizer treatment by impact force. The measurement results are shown in Table 2 together with the measurement results of Example 1 above. [Comparative Example 3] A counter jet mill (200AFG type, manufactured by Hosokawa Micron Corporation) was used as an apparatus. The same corn starch as in Example 1 was rotated at a rotational speed of 11,1.
It was processed at 50 rpm and a supply capacity of 5 kg / hrs. The result was that corn starch was considerably smaller by SEM observation. X-ray diffraction was unchanged. The specific surface area of the starch particles was slightly larger. From this, it is possible that the impact force of the counter jet mill can activate the surface of the corn starch, but it does not reach the requirement that a modified starch can be obtained as in the present invention. It can be seen that it is difficult to obtain such modified starch. The measurement results are shown in Table 2 together with the measurement results of Example 1 above.

【表2】 測定方法等は前記表1の場合と同じ条件である。表2で
明らかなように、実施例1又は実施例2、3により得ら
れた澱粉粒子の比表面積に比較して、比較例1〜3にお
いて得られた澱粉粒子の比表面積は,平均粒径の大きさ
に律格されることなく澱粉粒子の比表面積が変化しにく
いことがわかる。
[Table 2] The measuring method and the like are the same as those in Table 1 above. As is clear from Table 2, as compared with the specific surface area of the starch particles obtained in Example 1 or Examples 2 and 3, the specific surface area of the starch particles obtained in Comparative Examples 1 to 3 is the average particle size. It can be seen that the specific surface area of the starch particles is unlikely to change regardless of the size of.

【発明の効果】以上詳述した本発明によれば、澱粉を圧
縮力、衝撃力、摩砕力、剪断力の内のいずれか1種若し
くは2種以上の機械的エネルギーにより澱粉粒子を破断
することなく扁平状に変形するか、又は該扁平状に変形
した澱粉粒子を圧縮力、衝撃力、摩砕力、剪断力の内の
いずれか1種若しくは2種以上の機械的エネルギーによ
り破断して微粒状に変形することにより、特に澱粉粒子
の比表面積を著しく変化せしめた改質澱粉及びその製造
方法を提供できる。本発明で得られた改質澱粉は、粒子
表面に新生表面が形成されるため、澱粉粒子の比表面積
が著しく大きいものであることから、従来の化工澱粉と
は物理化学的性質の異なった新規な工業用途が期待でき
る。
INDUSTRIAL APPLICABILITY According to the present invention described in detail above, starch particles are ruptured by mechanical energy of any one or two of compression force, impact force, grinding force and shearing force. Without deforming into a flat shape, or the starch particles deformed into a flat shape are broken by mechanical energy of any one or more of compression force, impact force, attrition force, and shearing force. It is possible to provide a modified starch in which the specific surface area of the starch particles is remarkably changed and a method for producing the modified starch, by transforming into fine particles. Since the modified starch obtained in the present invention has a newly formed surface on the surface of the particles, the specific surface area of the starch particles is remarkably large. Therefore, the modified starch has a new physicochemical property different from that of the conventional modified starch. Various industrial applications can be expected.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】澱粉を圧縮力、衝撃力、摩砕力、剪断力の
内のいずれか1種若しくは2種以上の機械的エネルギー
により粒子を破断することなく扁平状に変形するか又は
該扁平状に変形した澱粉粒子を圧縮力、衝撃力、摩砕
力、剪断力の内のいずれか1種若しくは2種以上の機械
的エネルギーにより破断して微粒状に変形することによ
り得られ、澱粉粒子の比表面積が未処理澱粉に対して
2.5倍以上であることを特徴とする改質澱粉。
1. The starch is deformed into a flat shape without breaking the particles by mechanical energy of one or more of compression force, impact force, grinding force and shearing force, or the starch is flattened. The starch particles that have been deformed into a shape are ruptured by the mechanical energy of any one or two or more of compression force, impact force, grinding force, and shearing force to be transformed into fine particles. Modified starch having a specific surface area of 2.5 times or more that of untreated starch.
【請求項2】澱粉を圧縮力、衝撃力、摩砕力、剪断力の
内のいずれか1種若しくは2種以上の機械的エネルギー
により粒子を破断することなく扁平状に変形するか又は
該扁平状に変形した澱粉粒子を圧縮力、衝撃力、摩砕
力、剪断力の内のいずれか1種若しくは2種以上の機械
的エネルギーにより破断して微粒状に変形することによ
り得られ、澱粉粒子の比表面積が未処理澱粉に対して
2.5倍以上であることを特徴とし、且つ、澱粉固有の
X線回折図形(澱粉粒子内に点在する微結晶の規則性)
が消失することを特徴とする改質澱粉。
2. The starch is deformed into a flat shape without breaking the particles by the mechanical energy of one or more of compression force, impact force, grinding force and shearing force, or the starch is flattened. The starch particles that have been deformed into a shape are ruptured by the mechanical energy of any one or two or more of compression force, impact force, grinding force, and shearing force to be transformed into fine particles. Has a specific surface area of 2.5 times or more that of untreated starch, and an X-ray diffraction pattern peculiar to starch (regularity of fine crystals scattered in starch particles)
A modified starch characterized in that the starch disappears.
【請求項3】前記扁平状に変形した澱粉粒子の平均粒径
は未処理澱粉の平均粒径よりも大きいか又は小さいもの
である請求項1又は2記載の改質澱粉。
3. The modified starch according to claim 1, wherein the starch particles deformed into a flat shape have an average particle size larger or smaller than an average particle size of untreated starch.
【請求項4】前記微粒状に変形した澱粉粒子の平均粒径
は未処理澱粉の平均粒径の2分の1以下のものである請
求項1又は2記載の改質澱粉。
4. The modified starch according to claim 1 or 2, wherein the average particle size of the finely modified starch particles is not more than half the average particle size of the untreated starch.
【請求項5】前記澱粉はトウモロコシ澱粉、ハイアミロ
ース種トウモロコシ澱粉、ワキシー種トウモロコシ澱
粉、モロコシ澱粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱
粉、サゴ澱粉、豆澱粉、小麦澱粉、大麦澱粉、米澱粉、
葛澱粉、片栗澱粉、カンナ澱粉、アロールート澱粉又は
架橋処理澱粉、湿熱処理澱粉の内から選ばれる1種若し
くは2種以上のものである請求項1又は2記載の改質澱
粉。
5. The starch is corn starch, high-amylose corn starch, waxy corn starch, sorghum starch, potato starch, sweet potato starch, tapioca starch, sago starch, bean starch, wheat starch, barley starch, rice starch,
The modified starch according to claim 1 or 2, which is one or more selected from the group consisting of kudzu starch, starch starch, canna starch, arrowroot starch, cross-linked starch and heat-moisture treated starch.
【請求項6】澱粉を圧縮力、衝撃力、摩砕力、剪断力の
内のいずれか1種若しくは2種以上の機械的エネルギー
により粒子を破断することなく扁平状に変形するか又は
該扁平状に変形した澱粉粒子を圧縮力、衝撃力、摩砕
力、剪断力の内のいずれか1種若しくは2種以上の機械
的エネルギーにより破断して微粒状に変形することによ
り、澱粉粒子の比表面積が未処理澱粉に対して2.5倍
以上であることを特徴とする改質澱粉を得る製造方法。
6. The starch is deformed into a flat shape without breaking the particles by mechanical energy of any one kind or two kinds or more of compressive force, impact force, grinding force and shearing force, or the flattened state. Ratio of starch particles by breaking the deformed starch particles by mechanical energy of one or more of compression force, impact force, grinding force, and shearing force and transforming them into fine particles. A method for producing a modified starch, characterized in that the surface area is 2.5 times or more that of untreated starch.
【請求項7】澱粉を圧縮力、衝撃力、摩砕力、剪断力の
内のいずれか1種若しくは2種以上の機械的エネルギー
により粒子を破断することなく扁平状に変形するか又は
該扁平状に変形した澱粉粒子を圧縮力、衝撃力、摩砕
力、剪断力の内のいずれか1種若しくは2種以上の機械
的エネルギーにより破断して微粒状に変形することによ
り、澱粉粒子の比表面積が未処理澱粉に対して2.5倍
以上であることを特徴とし、且つ、澱粉固有のX線回折
図形が消失することを特徴とする改質澱粉を得る製造方
法。
7. The starch is deformed into a flat shape without breaking the particles by mechanical energy of one or more of compression force, impact force, grinding force and shearing force, or the starch is flattened. Ratio of starch particles by breaking the deformed starch particles by mechanical energy of one or more of compression force, impact force, grinding force, and shearing force and transforming them into fine particles. A method for producing a modified starch, characterized in that the surface area is 2.5 times or more that of untreated starch, and the X-ray diffraction pattern peculiar to starch disappears.
【請求項8】前記扁平状に変形した澱粉粒子の平均粒径
は未処理澱粉の平均粒径よりも大きくなるか又は小さく
なるものである請求項6又は7記載の改質澱粉を得る製
造方法。
8. The method for producing a modified starch according to claim 6, wherein the average particle size of the flatly deformed starch particles is larger or smaller than the average particle size of untreated starch. .
【請求項9】前記微粒状に変形した澱粉粒子の平均粒径
は未処理澱粉の平均粒径の2分の1以下である請求項6
又は7記載の改質澱粉を得る製造方法。
9. The average particle size of the starch particles which have been transformed into fine particles is not more than half the average particle size of the untreated starch.
Or a method for producing the modified starch according to item 7.
【請求項10】前記澱粉はトウモロコシ澱粉、ハイアミ
ロース種トウモロコシ澱粉、ワキシー種トウモロコシ澱
粉、モロコシ澱粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱
粉、サゴ澱粉、豆澱粉、小麦澱粉、大麦澱粉、米澱粉、
葛澱粉、片栗澱粉、カンナ澱粉、アロールート澱粉又は
架橋処理澱粉、湿熱処理澱粉の内から選ばれる1種若し
くは2種以上のものである請求項6又は7記載の改質澱
粉を得る製造方法。
10. The starch is corn starch, high amylose corn starch, waxy corn starch, sorghum starch, potato starch, sweet potato starch, tapioca starch, sago starch, bean starch, wheat starch, barley starch, rice starch,
The method for producing a modified starch according to claim 6 or 7, which is one or more selected from among kudzu starch, starch starch, canna starch, arrowroot starch, cross-linked starch and heat-moisture treated starch.
JP31404194A 1994-11-24 1994-11-24 Modified starch and its production Pending JPH08143601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31404194A JPH08143601A (en) 1994-11-24 1994-11-24 Modified starch and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31404194A JPH08143601A (en) 1994-11-24 1994-11-24 Modified starch and its production

Publications (1)

Publication Number Publication Date
JPH08143601A true JPH08143601A (en) 1996-06-04

Family

ID=18048507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31404194A Pending JPH08143601A (en) 1994-11-24 1994-11-24 Modified starch and its production

Country Status (1)

Country Link
JP (1) JPH08143601A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176254A1 (en) * 2000-07-24 2002-01-30 The Dow Chemical Company Use of dispersions of crosslinked cationic starch in papermaking
EP1176255A1 (en) * 2000-07-24 2002-01-30 The Dow Chemical Company Use of starch dispersions as binder in coating compositions and process for preparing the starch dispersions
US20120152476A1 (en) * 2009-08-12 2012-06-21 Nanopaper, Llc High strength paper
JP2013538238A (en) * 2010-06-07 2013-10-10 ダウ グローバル テクノロジーズ エルエルシー Method for preparing a stable dispersion of starch particles
US9587353B2 (en) 2012-06-15 2017-03-07 Nanopaper, Llc Additives for papermaking
JP2021522066A (en) * 2018-04-19 2021-08-30 ファイトプション・エルエルシー Emulsifier and its use

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251484A1 (en) * 2000-07-24 2010-11-17 Ecosynthetix Inc. Use of starch dispersions as binder in coating compositions and process for preparing the starch dispersions
EP1176255A1 (en) * 2000-07-24 2002-01-30 The Dow Chemical Company Use of starch dispersions as binder in coating compositions and process for preparing the starch dispersions
WO2002008517A1 (en) * 2000-07-24 2002-01-31 Ecosynthetix Inc. Use of starch dispersions as binder in coating compositions and process for preparing the starch dispersions
WO2002008516A1 (en) * 2000-07-24 2002-01-31 Ecosynthetix Inc. Use of dispersions of crosslinked cationic starch in papermaking
US7160420B2 (en) 2000-07-24 2007-01-09 Ecosynthetix Inc. Use of dispersions of crosslinked cationic starch in papermaking
US7285586B2 (en) 2000-07-24 2007-10-23 Ecosynthetix Inc. Use of starch dispersions as binder in coating compositions and process for preparing the starch dispersions
EP1176254A1 (en) * 2000-07-24 2002-01-30 The Dow Chemical Company Use of dispersions of crosslinked cationic starch in papermaking
EP2273008A3 (en) * 2000-07-24 2012-01-25 Ecosynthetix Inc. Use of dispersions of crosslinked cationic starch in papermaking
US20120152476A1 (en) * 2009-08-12 2012-06-21 Nanopaper, Llc High strength paper
US8980059B2 (en) * 2009-08-12 2015-03-17 Nanopaper, Llc High strength paper
JP2013538238A (en) * 2010-06-07 2013-10-10 ダウ グローバル テクノロジーズ エルエルシー Method for preparing a stable dispersion of starch particles
US9587353B2 (en) 2012-06-15 2017-03-07 Nanopaper, Llc Additives for papermaking
JP2021522066A (en) * 2018-04-19 2021-08-30 ファイトプション・エルエルシー Emulsifier and its use

Similar Documents

Publication Publication Date Title
Ahmad et al. Influence of ball milling on the production of starch nanoparticles and its effect on structural, thermal and functional properties
Lu et al. Pickering emulsions stabilized by media-milled starch particles
Hu et al. Structure and functional properties of octenyl succinic anhydride modified starch prepared by a non‐conventional technology
Bangar et al. Ball-milling: A sustainable and green approach for starch modification
Velásquez-Castillo et al. Quinoa starch nanocrystals production by acid hydrolysis: Kinetics and properties
Le Corre et al. Preparation and application of starch nanoparticles for nanocomposites: A review
Chen et al. Physico-chemical characteristics of media-milled corn starch
Jiang et al. Preparation of a starch-based carrier for oral delivery of Vitamin E to the small intestine
Shen et al. Preparing potato starch nanocrystals assisted by dielectric barrier discharge plasma and its multiscale structure, physicochemical and rheological properties
Liu et al. Effect of heat-moisture treatment on the structure and physicochemical properties of ball mill damaged starches from different botanical sources
JPS6019921B2 (en) Method for producing microfibrous cellulose
García-Gurrola et al. Synthesis and succinylation of starch nanoparticles by means of a single step using sonochemical energy
Mohammad Amini et al. Ultrasound‐assisted acid‐thinning of corn starch: Morphological, physicochemical, and rheological properties
Chacon et al. Physicochemical properties of potato starch nanoparticles produced by anti‐solvent precipitation
Sandhu et al. Starch nanoparticles: Their preparation and applications
JPH08143601A (en) Modified starch and its production
JP2008545440A (en) Mineral-binding starch composition and method for producing the same
dos Santos Alves et al. Impact of the Acidified Hydroethanolic Solution on the Physicochemical Properties of Starch Nanoparticles Produced by Anti‐Solvent Precipitation
Ding et al. Characterization of nanoscale retrograded starch prepared by a sonochemical method
Yang et al. Effect of Extrusion Treatment with Different Emulsifiers on the Thermal Stability and Structure of Corn Starch.
Zhou et al. Facile solid-phase synthesis of starch-fatty acid complexes via mechanical activation for stabilizing curcumin-loaded Pickering emulsions
Tang et al. Synthesis of hydroxypropylated debranched pea starch with high substitution degree in an ionic liquid, and its characterization and properties
JP2008206404A (en) Method for producing quick-soluble konjak mannan
Wei et al. Nano-sized starch: Preparations and applications
CN116333178A (en) Preparation method of octenyl succinic anhydride modified nano starch

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040412

Free format text: JAPANESE INTERMEDIATE CODE: A02