JPH08141559A - Ultraviolet radiation apparatus - Google Patents

Ultraviolet radiation apparatus

Info

Publication number
JPH08141559A
JPH08141559A JP28491394A JP28491394A JPH08141559A JP H08141559 A JPH08141559 A JP H08141559A JP 28491394 A JP28491394 A JP 28491394A JP 28491394 A JP28491394 A JP 28491394A JP H08141559 A JPH08141559 A JP H08141559A
Authority
JP
Japan
Prior art keywords
gas
ultraviolet
quartz glass
glass tube
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28491394A
Other languages
Japanese (ja)
Inventor
Tatsuo Hara
龍雄 原
Kenichi Ushigoe
健一 牛越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP28491394A priority Critical patent/JPH08141559A/en
Publication of JPH08141559A publication Critical patent/JPH08141559A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a long life ultraviolet radiation apparatus which is simple in structure and has high ultraviolet conversion efficiency and power efficiency. CONSTITUTION: Ultraviolet ray with a single wavelength is radiated by generating silent discharge or corona discharge between electrodes 1, 1 of metal rods 3 with glass lining 2 applied which are arranged in a quartz glass tube 4 transmitting ultraviolet rays in which a rare gas or a mixed gas of a rare gas and a halogen gas is sealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線を用いて超純水
装置や排水処理回収装置や原子力発電所一次冷却水等の
中の有機物質(TOC)を分解するのに好適な紫外線照
射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet irradiation device suitable for decomposing organic substances (TOC) in ultrapure water devices, wastewater treatment and recovery devices, nuclear power plant primary cooling water, etc. using ultraviolet rays. Regarding

【0002】[0002]

【従来の技術および発明が解決しようとする課題】気体
を封入した密閉容器内の電極間で放電を行わせる場合、
絶縁性のガラス材料に金属材料を接合する組み合わせが
一般的であり、従来の接合法としては、ガラス材料上に
導電性塗料を塗布するか、金属をメッキするか、金属を
蒸着するか、金属を溶射するか、導電性両面テープを貼
着するか、金属箔を巻くか、または金網を巻く方法が知
られている。しかし、これらの方法はいずれもガラス材
料と金属材料との密着性が不十分で、両者間に隙間が生
じることがある。このような隙間があると無駄な放電が
生じるため、電力効率が低下する。
2. Description of the Related Art When a discharge is performed between electrodes in a gas-tight sealed container,
Generally, a combination of bonding a metal material to an insulating glass material is used.The conventional bonding method is to apply a conductive paint on the glass material, plate the metal, deposit the metal, or deposit the metal. There are known methods of thermal spraying, applying a conductive double-sided tape, winding a metal foil, or winding a wire mesh. However, in all of these methods, the adhesion between the glass material and the metal material is insufficient, and a gap may occur between them. If there is such a gap, useless discharge occurs, so that power efficiency decreases.

【0003】また、ガラスと金属との接合強度は低いの
で、衝撃を受けて破損することがあり、また高温多湿な
使用環境に置かれたり、金属材料内に冷却水を通入した
場合に、金属材料が剥離することがある。その結果、不
均質な放電現象が見られたり、場合によっては、完全に
発光が停止することがある。そのため、従来の放電装置
の寿命は一般に短い。
Further, since the bonding strength between glass and metal is low, it may be damaged by impact, and when it is placed in a hot and humid environment, or when cooling water is passed through the metal material, Metal material may peel off. As a result, an inhomogeneous discharge phenomenon may be observed, and in some cases, the light emission may be completely stopped. Therefore, the life of the conventional discharge device is generally short.

【0004】また、特定の気体を封入した密閉容器内の
電極間で放電を行わせることにより、特定波長の紫外線
を取り出し、この紫外線を被処理液に照射して化学変化
を起こそうとする場合、紫外線を取り出す側の電極が被
処理液に曝されると、腐食、劣化、漏電などの問題が発
生することがあり、被処理液の純度が要求される場合に
は、このような問題は好ましくない。
In the case where an ultraviolet ray having a specific wavelength is taken out by causing an electric discharge between electrodes in a hermetically sealed container in which a specific gas is sealed and a liquid to be treated is irradiated with this ultraviolet ray to cause a chemical change. However, when the electrode for extracting the ultraviolet rays is exposed to the liquid to be treated, problems such as corrosion, deterioration, and electric leakage may occur. If the purity of the liquid to be treated is required, such a problem may occur. Not preferable.

【0005】そこで、図3に示すように、内側の石英ガ
ラス管21に金属メッキ22(または金属蒸着もしくは
金属溶射)を施し、その外側の石英ガラス管23に金網
24を巻きつけ、この金網24を水槽25内の被処理水
26から隔離するために、さらにその外側に石英ガラス
管27が配され、石英ガラス管21、23で形成される
密閉空間31内には希ガスが封入され、電源28により
金属メッキ22と金網24との間に一定電圧を印加し、
もって放電を行わしめる構造のものが知られている。し
かし、このように金網保護用の石英ガラス管27を設置
すると、石英ガラス管27および密閉空間29に紫外線
が吸収されるため、紫外線変換効率が低下する。特に、
密閉空間29内は高真空にするか、またはN2 ガスを封
入しないと紫外線が透過しない。
Therefore, as shown in FIG. 3, metal plating 22 (or metal vapor deposition or metal spraying) is applied to the inner quartz glass tube 21, and a wire net 24 is wound around the outer quartz glass tube 23. In order to isolate the water from the water to be treated 26 in the water tank 25, a quartz glass tube 27 is further arranged on the outer side of the water, and a rare gas is enclosed in a closed space 31 formed by the quartz glass tubes 21 and 23. 28 applies a constant voltage between the metal plating 22 and the wire net 24,
It is known to have a structure capable of discharging. However, when the quartz glass tube 27 for protecting the wire mesh is installed in this way, ultraviolet rays are absorbed in the quartz glass tube 27 and the closed space 29, so that the ultraviolet conversion efficiency decreases. In particular,
Ultraviolet rays do not penetrate unless the inside of the closed space 29 is set to a high vacuum or N 2 gas is filled.

【0006】また、金網24と石英ガラス管23との間
の僅かな間隙で無駄な放電が発生することがあり、それ
を防止するためのガスをバルブ30を開放して密閉空間
29内に封入する必要がある。その結果、装置が非常に
複雑・高価なものとなる。
[0006] In addition, unnecessary discharge may occur in a slight gap between the wire netting 24 and the quartz glass tube 23, and a gas for preventing such discharge is enclosed in the closed space 29 by opening the valve 30. There is a need to. As a result, the device becomes very complex and expensive.

【0007】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、簡単
な構造で、紫外線変換効率および電力効率が高く、且つ
長寿命の紫外線照射装置を提供することにある。
The present invention has been made in view of the above problems of the prior art, and its purpose is to irradiate ultraviolet rays having a simple structure, high ultraviolet ray conversion efficiency and power efficiency, and long life. To provide a device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、紫外線を透過する密閉容器内に希ガスまた
は希ガスとハロゲンガスとの混合ガスを封入し、該密閉
容器内に配置した少なくとも1対の電極間に無声放電ま
たはコロナ放電現象を起こすことにより単一波長の紫外
線を照射する装置において、上記電極にグラスライニン
グ金属材料を用いることを特徴とする紫外線照射装置を
第一の発明とし、上記第一の発明において、電極が内面
側を金属材料とし、外面側をグラスライニングとする管
状構造であって、内面側の金属材料を貫通する冷媒流通
経路を形成したことを特徴とする紫外線照射装置を第二
の発明とする。
In order to achieve the above-mentioned object, the present invention encloses a rare gas or a mixed gas of a rare gas and a halogen gas in a closed container which transmits ultraviolet rays, and arranges the sealed container in the closed container. In a device for irradiating a single wavelength of ultraviolet light by causing a silent discharge or a corona discharge phenomenon between at least one pair of electrodes, an ultraviolet irradiation device characterized by using a glass lining metal material for the above-mentioned electrodes is provided. As an invention, in the first invention, the electrode is a tubular structure having a metal material on the inner surface side and a glass lining on the outer surface side, wherein a refrigerant flow path penetrating the metal material on the inner surface side is formed. A second aspect of the present invention is an ultraviolet irradiation device.

【0009】紫外線を透過する密閉容器材料としては、
例えば、石英ガラスを使用することができる。希ガスと
しては、たとえばHe、Ne、Ar、Kr、Xe等を使
用することができ、希ガスと混合するハロゲンガスとし
ては、F2 、Cl2 、Br2 、HCl、SF6 等を使用
することができる。
As a closed container material which transmits ultraviolet rays,
For example, quartz glass can be used. He, Ne, Ar, Kr, Xe or the like can be used as the rare gas, and F 2 , Cl 2 , Br 2 , HCl, SF 6 or the like can be used as the halogen gas mixed with the rare gas. be able to.

【0010】[0010]

【作用】希ガスまたは希ガスとハロゲンガスとの混合ガ
スを封入した密閉容器内に少なくとも1対の電極を配置
し、対になった電極間に電圧を印加すると、無声放電ま
たはコロナ放電が生じる。そのエネルギーにより封入ガ
スが励起されて2量体(いわゆる「エキシマ」)が生成
し、そのエキシマが分解するとき、単一波長の紫外線が
発生する。その紫外線は、紫外線透過材料を透過して外
部へ照射される。
[Operation] When at least one pair of electrodes is placed in a hermetically sealed container containing a rare gas or a mixed gas of a rare gas and a halogen gas and a voltage is applied between the paired electrodes, silent discharge or corona discharge occurs. . The energy excites the enclosed gas to form a dimer (so-called "excimer"), and when the excimer decomposes, a single wavelength of ultraviolet light is generated. The ultraviolet rays pass through the ultraviolet transmitting material and are irradiated to the outside.

【0011】そして、紫外線透過材料を水が取り巻いて
いる場合、水中にある有機物が分解される。
When water surrounds the ultraviolet transmitting material, organic substances in the water are decomposed.

【0012】この電極がグラスライニング金属材料であ
れば、グラスライニングは密着性がよく、剥離しにくい
ので、長寿命となる。また、金属材料との間に不必要な
隙間が存在しないから無駄な放電現象がなく、電力効率
が高い。さらに、保護容器をを必要としないので、紫外
線変換効率が高い。
If this electrode is made of a glass lining metal material, the glass lining has a good adhesiveness and does not easily peel off, so that it has a long life. In addition, since there is no unnecessary gap with the metal material, there is no useless discharge phenomenon and the power efficiency is high. Furthermore, since a protective container is not required, the efficiency of converting ultraviolet rays is high.

【0013】電極内に冷媒を通入することにより、電極
温度が一定以下に保持され、スムーズに放電現象が進行
する。
By passing the refrigerant into the electrode, the electrode temperature is kept below a certain level, and the discharge phenomenon proceeds smoothly.

【0014】[0014]

【実施例】以下に本発明の実施例を説明する。図1は本
発明の紫外線照射装置の縦断面図である。図1におい
て、1はグラスライニング2を施した金属棒3からなる
電極で、1対の電極1、1が石英ガラス管4の中に挿入
され、石英ガラス管4の端部は密閉されている。この石
英ガラス管4内には、管路5を経て、例えばXeガスが
封入される。管路6は封入ガスを排出するためのもので
ある。電極1、1間には電源7により一定電圧が印加さ
れ、放電現象が起こる。この場合、Xeガスが封入され
ているので、172nmの単一波長の紫外線が石英ガラ
ス管4を透過して水槽8内へ照射される。その紫外線に
より、管路9から水槽8内に流入した原水中に存在する
有機物が分解されて炭酸ガスなどに変化し、かくして浄
化された水は管路10から排出される。図1は、水槽内
に紫外線照射装置を1ユニット配置した場合の例を示す
ものであるが、原水量が多い場合は、複数の紫外線照射
装置を水槽内に配置することもできる。また、石英ガラ
ス管内に複数対の電極を配置することもできる。このよ
うにすることで、紫外線照射量を増加することができ、
原水中に含まれる多量の有機物を分解できる。
Embodiments of the present invention will be described below. FIG. 1 is a vertical sectional view of an ultraviolet irradiation device of the present invention. In FIG. 1, reference numeral 1 denotes an electrode composed of a metal rod 3 provided with a glass lining 2, and a pair of electrodes 1 and 1 are inserted into a quartz glass tube 4 and an end portion of the quartz glass tube 4 is sealed. . The quartz glass tube 4 is filled with, for example, Xe gas through a conduit 5. The pipe line 6 is for discharging the enclosed gas. A constant voltage is applied between the electrodes 1 and 1 by the power supply 7, and a discharge phenomenon occurs. In this case, since the Xe gas is sealed, the ultraviolet ray having a single wavelength of 172 nm passes through the quartz glass tube 4 and is irradiated into the water tank 8. Due to the ultraviolet rays, organic substances existing in the raw water flowing into the water tank 8 from the pipe 9 are decomposed and converted into carbon dioxide gas, and the water thus purified is discharged from the pipe 10. Although FIG. 1 shows an example in which one unit of the ultraviolet irradiation device is arranged in the water tank, a plurality of ultraviolet irradiation devices can be arranged in the water tank when the amount of raw water is large. It is also possible to arrange a plurality of pairs of electrodes in the quartz glass tube. By doing this, it is possible to increase the ultraviolet irradiation amount,
A large amount of organic substances contained in raw water can be decomposed.

【0015】図2は図1の紫外線照射装置において、金
属棒からなる電極1の代わりに、金属管11にグラスラ
イニング12を施し、金属管11内に冷媒(例えば、
水)を通入するための冷媒流通経路13を形成した電極
14を用いた点が異なり、この場合、電極14および石
英ガラス管15は水槽8を貫通している。
FIG. 2 shows a glass tube lining 12 provided on a metal tube 11 instead of the electrode 1 made of a metal rod in the ultraviolet irradiation apparatus shown in FIG.
The difference is that an electrode 14 having a coolant flow path 13 for passing water is used. In this case, the electrode 14 and the quartz glass tube 15 penetrate the water tank 8.

【0016】次に、図2に示す構造の紫外線照射装置を
用いて、紫外線照射実験を行ったので、以下に説明す
る。
Next, an ultraviolet irradiation experiment was conducted using the ultraviolet irradiation device having the structure shown in FIG. 2, which will be described below.

【0017】SUS304製の外径10mm、厚み1mm、
長さ1500mmの2本の金属管11に冷媒流通経路13
を形成し、金属管11外面に厚さ1mmのグラスライニン
グ12を施したものを、外径30mm、厚さ2mm、長さ1
000mmの合成石英ガラス管15内に挿入し、SUS3
04製の直径40mm、厚さ5mmのプレート16で石英ガ
ラス管15の両端面を閉じてエポキシ樹脂17でシール
した。この場合、グラスライニングを施した金属管11
の間隔は5mmとした。このような構成の紫外線照射装置
を図2のような構造のSUS304製の水槽8に挿入
し、バルブ18を開放して石英ガラス管15内にXeガ
スを封入した。また、水槽8には管路9から約200p
pb濃度の有機物を含有する原水を通入した。そして、
経路13内に冷却水を通入しつつ、電源7により、電極
14、14間に5kV、20kHzの電圧を印加したと
ころ、172nmの単一波長の紫外線が発生し、管路1
0から取り出した水の中の有機物濃度を調べると、約1
0ppbとなっていた。この状態で、原水、冷却水およ
びXeガスの通入を1000時間連続したが、設備には
何ら異常は認められなかった。
SUS304 outer diameter 10 mm, thickness 1 mm,
Refrigerant flow path 13 in two metal tubes 11 of 1500 mm in length
And a metal tube 11 having a glass lining 12 having a thickness of 1 mm on the outer surface, an outer diameter of 30 mm, a thickness of 2 mm and a length of 1
Inserted in a synthetic quartz glass tube 15 of 000 mm, SUS3
Both ends of the quartz glass tube 15 were closed by a plate 16 made of 04 having a diameter of 40 mm and a thickness of 5 mm and sealed with an epoxy resin 17. In this case, the glass tube lined metal tube 11
The interval was 5 mm. The ultraviolet irradiation device having such a configuration was inserted into the water tank 8 made of SUS304 having the structure as shown in FIG. 2, the valve 18 was opened, and the quartz glass tube 15 was filled with Xe gas. In addition, the water tank 8 is about 200p from the pipe line 9.
Raw water containing organic matter in pb concentration was passed through. And
When a voltage of 5 kV and 20 kHz was applied between the electrodes 14 and 14 by the power supply 7 while the cooling water was being introduced into the passage 13, ultraviolet rays having a single wavelength of 172 nm were generated and the conduit 1
When the organic matter concentration in the water taken out from 0 was examined, it was about 1
It was 0 ppb. In this state, raw water, cooling water, and Xe gas were continuously supplied for 1000 hours, but no abnormality was found in the equipment.

【0018】なお、比較のために、上記実験において、
グラスライニング製の2本の金属管11のうちの1本
を、外径10mm、厚さ2mm、長さ1500mmの合成石英
ガラス製の管とし、この石英ガラス管の内側面にアルミ
蒸着を施したものを使用した以外は上記と同じ条件で紫
外線照射実験を行った。その結果、500時間後にアル
ミ蒸着膜が一部剥離し、放電現象が不均質になり、異常
な発光が認められるようになった。
For comparison, in the above experiment,
One of the two glass tubes 11 made of glass lining was made of synthetic quartz glass having an outer diameter of 10 mm, a thickness of 2 mm, and a length of 1,500 mm, and aluminum vapor deposition was performed on the inner surface of the quartz glass tube. The ultraviolet irradiation experiment was performed under the same conditions as above except that the one used was used. As a result, after 500 hours, the aluminum vapor deposition film was partly peeled off, the discharge phenomenon became non-uniform, and abnormal light emission was observed.

【0019】[0019]

【発明の効果】本発明によれば、簡単な構造で、紫外線
変換効率および電力効率が高く、且つ長寿命の紫外線照
射装置を提供することができる。
According to the present invention, it is possible to provide an ultraviolet irradiation device having a simple structure, high ultraviolet conversion efficiency and high power efficiency, and a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の紫外線照射装置の縦断面図である。FIG. 1 is a vertical cross-sectional view of an ultraviolet irradiation device of the present invention.

【図2】本発明の紫外線照射装置の別の実施例の縦断面
図である。
FIG. 2 is a vertical cross-sectional view of another embodiment of the ultraviolet irradiation device of the present invention.

【図3】従来の紫外線照射装置の縦断面図である。FIG. 3 is a vertical cross-sectional view of a conventional ultraviolet irradiation device.

【符号の説明】[Explanation of symbols]

1…電極 2…グラスライニング 3…金属棒 4…石英ガラス管 11…金属管 12…グラスライニング 13…冷媒流通経路 14…電極 15…石英ガラス管 DESCRIPTION OF SYMBOLS 1 ... Electrode 2 ... Glass lining 3 ... Metal rod 4 ... Quartz glass tube 11 ... Metal tube 12 ... Glass lining 13 ... Refrigerant distribution path 14 ... Electrode 15 ... Quartz glass tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 紫外線を透過する密閉容器内に希ガスま
たは希ガスとハロゲンガスとの混合ガスを封入し、該密
閉容器内に配置した少なくとも1対の電極間に無声放電
またはコロナ放電現象を起こすことにより単一波長の紫
外線を照射する装置において、上記電極にグラスライニ
ング金属材料を用いることを特徴とする紫外線照射装
置。
1. A rare gas or a mixed gas of a rare gas and a halogen gas is sealed in a hermetic container that transmits ultraviolet rays, and a silent discharge or a corona discharge phenomenon occurs between at least one pair of electrodes arranged in the hermetic container. An apparatus for irradiating a single-wavelength ultraviolet ray by raising the ultraviolet ray irradiation apparatus, wherein a glass lining metal material is used for the electrode.
【請求項2】 電極が内面側を金属材料とし、外面側を
グラスライニングとする管状構造であって、内面側の金
属材料を貫通する冷媒流通経路を形成したことを特徴と
する請求項1記載の紫外線照射装置。
2. The electrode has a tubular structure in which the inner surface side is made of a metal material and the outer surface side is made of a glass lining, and a coolant flow path that penetrates the inner surface side metal material is formed. UV irradiation device.
JP28491394A 1994-11-18 1994-11-18 Ultraviolet radiation apparatus Pending JPH08141559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28491394A JPH08141559A (en) 1994-11-18 1994-11-18 Ultraviolet radiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28491394A JPH08141559A (en) 1994-11-18 1994-11-18 Ultraviolet radiation apparatus

Publications (1)

Publication Number Publication Date
JPH08141559A true JPH08141559A (en) 1996-06-04

Family

ID=17684681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28491394A Pending JPH08141559A (en) 1994-11-18 1994-11-18 Ultraviolet radiation apparatus

Country Status (1)

Country Link
JP (1) JPH08141559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106507A (en) * 1996-09-27 1998-04-24 Toshiba Lighting & Technol Corp Ultraviolet ray lamp and its lighting device
JP2008142594A (en) * 2006-12-07 2008-06-26 Toshiba Corp Ultraviolet disinfection apparatus
JP2009095724A (en) * 2007-10-15 2009-05-07 Toshiba Corp Ultraviolet sterilization device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106507A (en) * 1996-09-27 1998-04-24 Toshiba Lighting & Technol Corp Ultraviolet ray lamp and its lighting device
JP2008142594A (en) * 2006-12-07 2008-06-26 Toshiba Corp Ultraviolet disinfection apparatus
JP2009095724A (en) * 2007-10-15 2009-05-07 Toshiba Corp Ultraviolet sterilization device

Similar Documents

Publication Publication Date Title
EP2046687B1 (en) Fluid treatment system comprising radiation source module and cooling means
CN101177315B (en) The water disinfection apparatus
BR9612101A (en) Plasma thermal reactor and method for wastewater treatment
CA2219578C (en) Non-electrode discharge lamp apparatus and liquid treatment apparatus using such lamp apparatus
KR102106293B1 (en) Excimer light source
US4261805A (en) Method for regenerating activated carbon
JPH08141559A (en) Ultraviolet radiation apparatus
JPH08299951A (en) Ultraviolet ray irradiating device
CN101857283A (en) Device for treating waste water with microwave electrodeless excimer lamp and gas distributing system for lamp
JPS6146290A (en) Fluid treating apparatus
US6432279B1 (en) Method and apparatus for ozone generation and contaminant decomposition
JPH08266889A (en) Electric discharge chemical reactor
JP5424616B2 (en) Excimer irradiation equipment
JP5180460B2 (en) Ozone generator
JPH08248199A (en) Ultraviolet irradiation device
TWI234180B (en) Ultraviolet-ray liquid treating apparatus
JP2003144912A (en) Ultraviolet irradiation device and operation method therefor
Oppenländer Photochemical Treatment of Water: Comparison of Incoherent Excimer Lamps with a Medium‐Pressure Mercuy Lamp
JP2000193799A (en) Ultraviolet-ray irradiation device
AU636896B2 (en) Ozone generator
JPH09199033A (en) Manufacture of dielectric barrier discharge lamp
JP3509817B2 (en) Electrodeless discharge lamp
JP2000231904A (en) Device for radiating vacuum ultraviolet light
RU2034777C1 (en) Method of production of ozone and device for its realization
JPH10134778A (en) Electrodeless discharge lamp unit and liquid treatment equipment