JPH08140267A - Active filter device - Google Patents

Active filter device

Info

Publication number
JPH08140267A
JPH08140267A JP6273218A JP27321894A JPH08140267A JP H08140267 A JPH08140267 A JP H08140267A JP 6273218 A JP6273218 A JP 6273218A JP 27321894 A JP27321894 A JP 27321894A JP H08140267 A JPH08140267 A JP H08140267A
Authority
JP
Japan
Prior art keywords
compensation
current
harmonic
compensating
compensation current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6273218A
Other languages
Japanese (ja)
Inventor
Katsuhiro Enomoto
勝広 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6273218A priority Critical patent/JPH08140267A/en
Publication of JPH08140267A publication Critical patent/JPH08140267A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: To perform power factor improvement compensation other than the compensation of harmonic currents of reactive current compensation by computing the compensating current, based on the power factor improvement compensating current corresponding to the surplus compensation capacity judged with a compensation capacity judger, and outputting a control command to an inverter. CONSTITUTION: An inverter 6 controls the power from a DC power unit 7, and supplies a power system with a harmonic compensating current through an output transformer 8. A compensation capacity judger 11 compares the detected voltage of the DC power unit 7 with reference voltage and the lowest voltage, and if it is over the reference voltage, this judges that the compensation capacity is 100%, and for the range from the lowest voltage to reference voltage, this judges that the compensation capacity is 0-100%, and further, for the voltage under the lowest voltage, this judges that the compensation capacity is 0%. The judgment result by this compensation capacity judger 11 is inputted into the multiplier 10a of a power factor improvement compensation current control circuit 10 so as to automatically adjust the quantity of compensating current other than the harmonics. Accordingly, the compensation of the harmonic currents is performed preferentially, and besides the power factor can be improved, according to surplus compensation capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力系統の高調波補償
を優先して行うアクティブフィルタ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active filter device which preferentially compensates harmonics in a power system.

【0002】[0002]

【従来の技術】一般に、アクティブフィルタ装置は、電
力系統に接続された電力負荷に応じて電力系統に対し、
補償電流を供給するものである。例えば、一般産業用の
動力負荷に対しては、電力系統の電圧低下の抑制やフリ
ッカ電圧の低減、あるいは等価逆流を補償するなどの目
的で、電力系統にその補償電流を供給している。
2. Description of the Related Art Generally, an active filter device is provided to a power system according to a power load connected to the power system.
Compensation current is supplied. For example, for a power load for general industry, the compensating current is supplied to the power system for the purpose of suppressing the voltage drop of the power system, reducing the flicker voltage, or compensating for the equivalent reverse current.

【0003】一方、配電受電などの電力系統に使用する
アクティブフィルタ装置の多くは、高調波発生負荷が発
生する高調波を補償するようにしたものである。
On the other hand, most active filter devices used in power systems such as power distribution and reception are designed to compensate harmonics generated by a harmonic generation load.

【0004】図7は、そのような高調波を補償するアク
ティブフィルタ装置を示すもので、通常、静止形電力変
換装置である電圧形インバータを用いて構成される。
FIG. 7 shows an active filter device for compensating for such harmonics, which is usually constructed by using a voltage type inverter which is a static power converter.

【0005】電力系統に接続された高調波発生負荷2a
の負荷電流は、負荷電流検出器2で検出され、高調波補
償電流制御回路1の高調波電流検出器1aに入力され
る。一方、高調波電流検出器1aには、計器用変圧器3
からの系統電圧が入力され、ここで高調波発生負荷2a
の負荷電流に含まれる高調波成分が検出される。高調波
成分は位相反転回路1bを介して加算器1cに入力され
る。一方、加算器1cには補償電流検出器4からの高調
波補償電流も入力され、その差分が補償電流制御回路1
dに入力される。
Harmonic generation load 2a connected to the power system
Load current is detected by the load current detector 2 and input to the harmonic current detector 1a of the harmonic compensation current control circuit 1. On the other hand, the harmonic current detector 1a includes an instrument transformer 3
System voltage is input from here, and harmonic generation load 2a
The harmonic component included in the load current of is detected. The harmonic component is input to the adder 1c via the phase inverting circuit 1b. On the other hand, the harmonic compensating current from the compensating current detector 4 is also input to the adder 1c, and the difference between them is calculated.
It is input to d.

【0006】補償電流制御回路1dからの制御指令は、
電圧型インバータ6(以下、インバータ6という)にゲ
ートパルスを与えるゲートパルス発信器5に入力され
る。インバータ6は、インバータ6の直流側に接続され
た補償電流供給用の直流電源装置7からの電源を制御し
て出力トランス8を介して電力系統に高調波補償電流を
供給する。ここで、直流電源装置7はコンデンサまたは
バッテリーで構成されている。また、9は直流電源装置
7の電圧を検出する電圧検出器である。
The control command from the compensation current control circuit 1d is
It is input to a gate pulse oscillator 5 which gives a gate pulse to a voltage type inverter 6 (hereinafter referred to as an inverter 6). The inverter 6 controls a power supply from a DC power supply device 7 for supplying a compensation current, which is connected to the DC side of the inverter 6, and supplies a harmonic compensation current to a power system via an output transformer 8. Here, the DC power supply device 7 is composed of a capacitor or a battery. Further, 9 is a voltage detector for detecting the voltage of the DC power supply device 7.

【0007】このような高調波補償のアクティブフィル
タ装置は、通常、電力系統から切り離されることがな
く、常に、負荷の状態により変動する高調波を補償して
いる。つまり、高調波発生負荷の発生する高調波電流の
増減によりインバータ6の出力も増減している。
[0007] Such an active filter device for harmonic compensation is normally not disconnected from the power system and always compensates for harmonics that fluctuate depending on the load condition. That is, the output of the inverter 6 also increases or decreases as the harmonic current generated by the harmonic generation load increases or decreases.

【0008】また、インバータ6の定格容量は、高調波
発生負荷2Aの発生する高調波の最大高調波電流量を考
慮して決められており、高調波発生量が少ない場合、つ
まり、インバータの出力電流がそれ自身の定格容量に比
べ少ない場合には、インバータ6としては余剰能力が存
在していることになる。したがって、インバータ6はこ
のインバータ出力の余剰能力分で、高調波以外の補償電
流を発生することが可能である。
The rated capacity of the inverter 6 is determined in consideration of the maximum harmonic current amount of the harmonics generated by the harmonic generation load 2A, and when the harmonic generation amount is small, that is, the output of the inverter. When the current is smaller than the rated capacity of itself, the inverter 6 has surplus capacity. Therefore, the inverter 6 can generate a compensating current other than the harmonic by the surplus capacity of the inverter output.

【0009】[0009]

【発明が解決しようとする課題】しかし、高調波電流の
補償と高調波以外の補償との両方を同時に補償するため
には、インバータ6の定格容量を大きくする必要があ
る。すなわち、インバータ6の定格容量を大きくしない
と、高調波発生量が多いときには容量的にインバータ6
の能力限界を越えてしまう。その場合には、インバータ
6の直流側に持つ直流電源装置7の電圧を著しく低下さ
せ、補償装置としての責務を果たせなくなってしまう。
However, it is necessary to increase the rated capacity of the inverter 6 in order to simultaneously compensate both the harmonic current compensation and the non-harmonic compensation. That is, unless the rated capacity of the inverter 6 is increased, the inverter 6 will be capacitively charged when the amount of generated harmonics is large.
Will exceed the capacity limit of. In that case, the voltage of the DC power supply 7 on the DC side of the inverter 6 is significantly reduced, and the responsibility of the compensator cannot be fulfilled.

【0010】この様に、高調波電流の補償とそれ以外の
補償、例えば力率改善補償や無効電流補償をも責務とし
た場合には、それなりの大きな定格のインバータ6を選
択使用する必要となる。
In this way, when the harmonic current compensation and other compensation, such as power factor correction compensation and reactive current compensation, are also responsible, it is necessary to select and use the inverter 6 having a relatively large rating. .

【0011】本発明の目的は、決められた小容量のイン
バータ定格にて主責務である高調波電流の補償を優先し
て行い、余剰能力があるときは、その範囲で高調波電流
の補償以外の力率改善補償や無効電流補償を行なうよう
にしたアクティブフィルタ装置を提供することである。
The object of the present invention is to give priority to the compensation of harmonic current, which is the main duty at a determined small capacity inverter rating, and when there is surplus capacity, other than compensation of harmonic current within that range. It is an object of the present invention to provide an active filter device adapted to perform power factor correction compensation and reactive current compensation.

【0012】[0012]

【課題を解決するための手段】請求項1のアクティブフ
ィルタ装置は、インバータの直流側に接続された直流電
源装置の電圧に基づいてインバータが発生できる補償電
流の余剰補償能力を判定する補償能力判定器と、この補
償能力判定器で判定された余剰補償能力に見合った力率
改善補償電流を算出する力率改善補償電流制御回路と、
高調波補償電流と力率改善補償電流に基づいて補償電流
を算出しインバータに制御指令を出す補償電流制御回路
とを備えている。
According to a first aspect of the present invention, there is provided an active filter device for compensating ability determination for determining a surplus compensating ability of a compensating current that can be generated by an inverter, based on a voltage of a DC power supply device connected to a DC side of the inverter. And a power factor correction compensation current control circuit for calculating a power factor correction compensation current commensurate with the surplus compensation capability determined by this compensation capability determination device,
A compensation current control circuit for calculating a compensation current based on the harmonic compensation current and the power factor correction compensation current and issuing a control command to the inverter is provided.

【0013】請求項2のアクティブフィルタ装置は、請
求項1に記載の力率改善補償電流制御回路に代えて、補
償能力判定器で判定された余剰補償能力に見合った無効
電流補償電流を算出する無効電流補償電流制御回路とし
たものである。
An active filter device according to a second aspect of the invention replaces the power factor correction compensating current control circuit according to the first aspect of the invention and calculates a reactive current compensating current commensurate with the surplus compensating ability determined by the compensating ability determiner. This is a reactive current compensation current control circuit.

【0014】請求項3のアクティブフィルタ装置は、複
数台のインバータが設置された場合のもので、複数台の
各々のインバータの直流側に接続された直流電源装置の
電圧に基づいて複数台の各々のインバータが発生できる
補償電流の余剰補償能力を判定する補償能力判定器と、
この補償能力判定器で判定された余剰補償能力に見合っ
た力率改善補償電流を算出する力率改善補償電流制御回
路と、高調波補償電流と力率改善補償電流に基づいて補
償電流制御指令を算出する補償電流制御回路と、各々の
インバータの容量比に応じて補償電流制御指令を分配し
各々のインバータ出力する分配器とを備えている。
An active filter device according to a third aspect of the present invention is provided when a plurality of inverters are installed, and each of the plurality of inverters is based on the voltage of the DC power supply device connected to the DC side of each of the plurality of inverters. Compensation capability determiner for determining the surplus compensation capability of the compensation current that can be generated by the inverter of
A power factor correction compensation current control circuit that calculates a power factor correction compensation current that is commensurate with the surplus compensation capability determined by this compensation capability determiner, and a compensation current control command based on the harmonic compensation current and the power factor correction compensation current. A compensation current control circuit for calculating and a distributor for distributing the compensation current control command according to the capacity ratio of each inverter and outputting each inverter are provided.

【0015】請求項4のアクティブフィルタ装置は、請
求項3に記載の力率改善補償電流制御回路に代えて、補
償能力判定器で判定された余剰補償能力に見合った無効
電流補償電流を算出する無効電流補償電流制御回路とし
たものである。
An active filter device according to a fourth aspect of the present invention replaces the power factor correction compensating current control circuit according to the third aspect of the invention and calculates a reactive current compensating current commensurate with the surplus compensating ability determined by the compensation ability determining device. This is a reactive current compensation current control circuit.

【0016】[0016]

【作用】まず、補償能力判定器で、インバータの直流側
に接続された直流電源装置の電圧に基づいてインバータ
で発生可能な補償電流の余剰補償能力を判定する。そし
て、力率改善補償電流制御回路はこの補償能力判定器で
判定された余剰補償能力に見合った力率改善補償電流を
算出し、一方、無効電流補償電流制御回路はその余剰補
償能力に見合った無効電流補償電流を算出する。補償電
流制御回路は、高調波補償電流と力率改善補償電流、あ
るいは高調波補償電流と無効電流補償電流に基づいて、
補償電流を算出しインバータに制御指令を出す。
First, the compensating capacity judging device judges the surplus compensating capacity of the compensating current that can be generated in the inverter, based on the voltage of the DC power supply device connected to the DC side of the inverter. Then, the power factor correction compensation current control circuit calculates a power factor correction compensation current commensurate with the surplus compensation capacity determined by the compensation capacity determiner, while the reactive current compensation current control circuit complies with the surplus compensation capacity. Calculate the reactive current compensation current. Compensation current control circuit, based on harmonic compensation current and power factor correction compensation current, or harmonic compensation current and reactive current compensation current,
Compensation current is calculated and control command is issued to the inverter.

【0017】また、複数台のインバータが設置された場
合は、まず、補償能力判定器は、複数台の各々のインバ
ータの直流側に接続された直流電源装置の電圧に基づい
て複数台の各々のインバータの発生可能な補償電流の余
剰補償能力を判定する。そして、力率改善補償電流制御
回路は補償能力判定器で判定された余剰補償能力に見合
った力率改善補償電流を算出し、一方、無効電流補償電
流制御回路はその余剰補償能力に見合った無効電流補償
電流を算出する。補償電流制御回路は、高調波補償電流
と力率改善補償電流、あるいは高調波補償電流と無効電
流補償電流に基づいて補償電流を算出し、分配器にて、
各々のインバータの容量比に応じて補償電流制御指令を
分配する。
Further, when a plurality of inverters are installed, first, the compensation capacity determining device determines each of the plurality of inverters based on the voltage of the DC power supply device connected to the DC side of each of the plurality of inverters. The surplus compensation capability of the compensation current that can be generated by the inverter is determined. Then, the power factor correction compensation current control circuit calculates the power factor correction compensation current commensurate with the surplus compensation capacity determined by the compensation capacity determiner, while the reactive current compensation current control circuit invalidates the excess compensation capacity commensurate with the surplus compensation capacity. Calculate the current compensation current. The compensation current control circuit calculates the compensation current based on the harmonic compensation current and the power factor correction compensation current, or the harmonic compensation current and the reactive current compensation current, and the distributor
The compensation current control command is distributed according to the capacity ratio of each inverter.

【0018】[0018]

【実施例】以下、本発明の実施例を説明する。図1は本
発明の第1の実施例を示すブロック構成図である。
Embodiments of the present invention will be described below. FIG. 1 is a block diagram showing the first embodiment of the present invention.

【0019】電力系統に接続された高調波発生負荷2a
の負荷電流は、負荷電流検出器2で検出され、高調波補
償電流制御回路1の高調波電流検出器1aに入力され
る。一方、高調波電流検出器1aには、計器用変圧器3
からの系統電圧が入力され、ここで高調波発生負荷2a
の負荷電流に含まれる高調波成分が検出される。高調波
成分は位相反転回路1bを介して加算器1cに入力され
る。一方、加算器1cには補償電流検出器4からの高調
波補償電流、および力率改善補償電流制御回路10の掛
算器10aからの力率改善補償電流も入力される。加算
器1cからは、高調波成分と力率改善補償電流との加算
値から高調波補償電流を減算した値が出力され、補償電
流制御回路1dに入力される。
Harmonic generation load 2a connected to the power system
Load current is detected by the load current detector 2 and input to the harmonic current detector 1a of the harmonic compensation current control circuit 1. On the other hand, the harmonic current detector 1a includes an instrument transformer 3
System voltage is input from here, and harmonic generation load 2a
The harmonic component included in the load current of is detected. The harmonic component is input to the adder 1c via the phase inverting circuit 1b. On the other hand, the harmonic compensating current from the compensating current detector 4 and the power factor improving compensating current from the multiplier 10a of the power factor improving compensating current control circuit 10 are also input to the adder 1c. A value obtained by subtracting the harmonic compensation current from the added value of the harmonic component and the power factor correction compensation current is output from the adder 1c and input to the compensation current control circuit 1d.

【0020】補償電流制御回路1dからの制御指令は、
電圧型インバータ6(以下、インバータ6という)にゲ
ートパルスを与えるゲートパルス発信器5に入力され
る。インバータ6は、インバータ6の直流側に接続され
た補償電流供給用の直流電源装置7からの電源を制御し
て出力トランス8を介して電力系統に高調波補償電流を
供給する。なお、直流電源装置7はコンデンサまたはバ
ッテリーで構成されている。
The control command from the compensation current control circuit 1d is
It is input to a gate pulse oscillator 5 which gives a gate pulse to a voltage type inverter 6 (hereinafter referred to as an inverter 6). The inverter 6 controls a power supply from a DC power supply device 7 for supplying a compensation current, which is connected to the DC side of the inverter 6, and supplies a harmonic compensation current to a power system via an output transformer 8. The DC power supply device 7 is composed of a capacitor or a battery.

【0021】ここで、力率改善補償電流制御回路10
は、負荷電流検出器2の出力から高調波電流を取り除い
た基本波負荷電流を基本波電流検出回路10bで検出
し、系統電圧と共に運転力率検出回路10cで負荷電流
の力率を検出する。さらに、位相差検出回路10dで予
め設定している目標力率と負荷電流力率との力率差(位
相差)を算出し、位相シフト回路10eでその力率差
(位相差)だけ位相シフトした電流を求める。そして、
その移相シフト電流から基本波負荷電流を引いたベクト
ル差分の電流を加算器10fで求め、補償能力判定器1
1からの補償係数を掛算器10aで掛け算する。この電
流が力率改善補償電流となる。
Here, the power factor correction compensation current control circuit 10
Detects the fundamental wave load current obtained by removing the harmonic current from the output of the load current detector 2 by the fundamental wave current detection circuit 10b, and detects the power factor of the load current by the operating power factor detection circuit 10c together with the system voltage. Further, the phase difference detection circuit 10d calculates a power factor difference (phase difference) between the preset target power factor and the load current power factor, and the phase shift circuit 10e shifts the phase by the power factor difference (phase difference). The calculated current is calculated. And
A vector difference current obtained by subtracting the fundamental wave load current from the phase shift shift current is obtained by the adder 10f, and the compensation capacity determination unit 1
The compensation coefficient from 1 is multiplied by the multiplier 10a. This current becomes the power factor correction compensation current.

【0022】次に、直流電源装置7の電圧を検出する電
圧検出器6の電圧検出値は、補償能力判定器11に入力
される。この補償能力判定器11は直流電源装置7の電
圧に基づいてインバータ6が発生できる補償電流の余剰
補償能力を判定するものである。
Next, the voltage detection value of the voltage detector 6 which detects the voltage of the DC power supply device 7 is input to the compensation capacity judging device 11. The compensating capacity judging device 11 judges the surplus compensating capacity of the compensating current which the inverter 6 can generate based on the voltage of the DC power supply 7.

【0023】図2は、補償能力判定器11における直流
電源装置7の電圧に対する補償能力の関係を示す特性図
である。
FIG. 2 is a characteristic diagram showing the relationship of the compensation capability with respect to the voltage of the DC power supply device 7 in the compensation capability determination unit 11.

【0024】インバータ6の直流電源装置7はインバー
タ6の出力電流(補償電流)により、つまり、インバー
タ損失量により消耗する。この直流電源装置7の充電量
に比べ消耗量が大きければ時間経過にともない電圧が降
下する。そこで、本発明では、この直流電源装置7の電
圧を検出し、基準電圧並びに最低電圧と比較し、その比
較結果をインバータの余剰能力として判断するようにし
ている。
The DC power supply 7 of the inverter 6 is consumed by the output current (compensation current) of the inverter 6, that is, the amount of inverter loss. If the consumed amount is larger than the charged amount of the DC power supply device 7, the voltage drops with the passage of time. Therefore, in the present invention, the voltage of the DC power supply device 7 is detected and compared with the reference voltage and the minimum voltage, and the comparison result is judged as the surplus capacity of the inverter.

【0025】インバータ6の直流電源装置7の電圧にお
いて、基準電圧と最低電圧との設定は以下のようにして
定める。すなわち、基準電圧はそれ自身の持つ定格電圧
または定格電圧に対して、数ボルト下の値とし、また、
最低電圧はそれ自身の定格電圧に対し、10〜15%以
下を減じた電圧値とする。これによって、基準電圧から
最低電圧までの電圧範囲内で直流電源装置7の電圧を保
ちながら、かつ、高調波電流の補償とそれ以外の補償を
可能にする。
Regarding the voltage of the DC power supply device 7 of the inverter 6, the reference voltage and the minimum voltage are set as follows. That is, the reference voltage is a value several volts below the rated voltage or rated voltage of itself, and
The minimum voltage is a voltage value obtained by subtracting 10 to 15% or less from the rated voltage of itself. As a result, it is possible to maintain the voltage of the DC power supply device 7 within the voltage range from the reference voltage to the minimum voltage, and to compensate the harmonic current and other compensations.

【0026】補償能力判定器11は、検出された直流電
源装置7の電圧を基準電圧および最低電圧と比較し、基
準電圧を越えていれば補償能力100%とし、最低電圧
から基準電圧までの範囲を補償能力0〜100%とし、
更に、最低電圧以下の電圧は補償能力0%と判定する。
The compensation capacity judging device 11 compares the detected voltage of the DC power supply device 7 with the reference voltage and the minimum voltage, and if the voltage exceeds the reference voltage, the compensation capacity is set to 100% and the range from the minimum voltage to the reference voltage. The compensation capacity is 0 to 100%,
Further, a voltage equal to or lower than the minimum voltage is determined to have a compensation capacity of 0%.

【0027】この補償能力判定器11による判定結果
は、補償係数として力率改善補償電流制御回路10の掛
算器10aに入力され、高調波以外の補償電流量を自動
調整する。つまり、検出された直流電源装置7の電圧が
基準値に達していれば、補償能力100%となり、最大
限に高調波以外の補償を行い、基準値以下であれば、そ
の補償能力0〜100%に比例して削減した電流を補償
し、更に最低電圧以下の場合は高調波電流以外の補償を
しない制御を行う。
The result of judgment by the compensating capacity judging device 11 is inputted as a compensation coefficient to the multiplier 10a of the power factor correction compensating current control circuit 10 to automatically adjust the amount of compensating current other than harmonics. That is, if the detected voltage of the DC power supply device 7 has reached the reference value, the compensation capability is 100%, and compensation other than harmonics is maximally performed. %, The reduced current is compensated, and when the voltage is lower than the minimum voltage, control is performed without compensation other than the harmonic current.

【0028】したがって、インバータ6は出力トランス
8を介し、電力系統に高調波発生負荷2aが発生する高
調波を補償する180度位相が反転した電流(高調波補
償電流)を電力系統に注入する制御を優先して行うこと
になる。
Therefore, the inverter 6 controls the injection of a current (harmonic compensating current) whose phase is reversed by 180 degrees for compensating the harmonics generated by the harmonic generating load 2a into the power system via the output transformer 8. Will be given priority.

【0029】図3は、基本波負荷電流ifと目標力率
(ターゲット)に合わせ位相シフトした電流if´と目
標力率改善補償電流icの関係ベクトル図を示す。
FIG. 3 is a vector diagram showing the relationship between the fundamental wave load current if, the current if 'phase-shifted according to the target power factor (target), and the target power factor improvement compensating current ic.

【0030】上述のように、高調波補償以外の力率改善
を補償する場合は、インバータ6の補償能力の有無を、
補償能力判定器11により、インバータ6の直流電源装
置7の電圧を検出する電圧検出器9の出力する直流電圧
信号を基準電圧と最低電圧とで比較して判定する。
As described above, when compensating for the power factor improvement other than the harmonic compensation, the presence or absence of the compensation capability of the inverter 6 is
The compensation capacity determiner 11 compares the DC voltage signal output from the voltage detector 9 for detecting the voltage of the DC power supply device 7 of the inverter 6 with the reference voltage and the minimum voltage to make a determination.

【0031】力率改善補償電流制御回路10では、目標
力率から求まる目標力率改善補償電流icと補償判定器
11の出力すなわち補償係数0〜100%とが掛算器1
0aにて演算される。この信号は、更に高調波補償電流
制御回路1にて高調波補償電流と加算器1cで加算され
補償電流として補償電流制御回路1dに入力される。
In the power factor correction compensation current control circuit 10, the target power factor correction compensation current ic obtained from the target power factor and the output of the compensation judgment unit 11, that is, the compensation coefficient 0 to 100% are multiplied by the multiplier 1.
It is calculated at 0a. This signal is further added to the harmonic compensation current by the harmonic compensation current control circuit 1 by the adder 1c and input to the compensation current control circuit 1d as a compensation current.

【0032】以上のように、この第1の実施例では、常
時、高調波電流の補償を優先して行い、かつ、余剰補償
能力に応じ力率改善を可能にしている。これにより、高
調波補償に関して補償責務を果たす上に、余剰分の容量
で力率改善することが可能となる。
As described above, in the first embodiment, the harmonic current compensation is always prioritized, and the power factor can be improved according to the surplus compensation capability. As a result, it is possible to fulfill the compensation duty regarding the harmonic compensation and to improve the power factor with the surplus capacity.

【0033】図4は本発明の第2の実施例を示す構成図
である。この第2の実施例は、第1の実施例の力率改善
補償電流制御回路10に代えて、無効電流補償電流制御
回路12を設けたものである。
FIG. 4 is a block diagram showing a second embodiment of the present invention. In the second embodiment, a reactive current compensation current control circuit 12 is provided instead of the power factor correction compensation current control circuit 10 of the first embodiment.

【0034】電力系統に接続された高調波発生負荷2a
の負荷電流は、負荷電流検出器2で検出され、高調波補
償電流制御回路1の高調波電流検出器1aに入力され
る。一方、高調波電流検出器1aには、計器用変圧器3
からの系統電圧が入力され、ここで高調波発生負荷2a
の負荷電流に含まれる高調波成分が検出される。高調波
成分は位相反転回路1bを介して加算器1cに入力され
る。一方、加算器1cには補償電流検出器4からの高調
波補償電流、および無効電流補償電流制御回路12から
の無効電流補償電流も入力される。加算器1cからは、
高調波成分と無効電流補償電流との加算値から高調波補
償電流を減算した値が出力され、補償電流制御回路1d
に入力される。
Harmonic generation load 2a connected to the power system
Load current is detected by the load current detector 2 and input to the harmonic current detector 1a of the harmonic compensation current control circuit 1. On the other hand, the harmonic current detector 1a includes an instrument transformer 3
System voltage is input from here, and harmonic generation load 2a
The harmonic component included in the load current of is detected. The harmonic component is input to the adder 1c via the phase inverting circuit 1b. On the other hand, the harmonic compensation current from the compensation current detector 4 and the reactive current compensation current from the reactive current compensation current control circuit 12 are also input to the adder 1c. From the adder 1c,
A value obtained by subtracting the harmonic compensation current from the addition value of the harmonic component and the reactive current compensation current is output, and the compensation current control circuit 1d is output.
Is input to

【0035】補償電流制御回路1dからの制御指令は、
電圧型インバータ6(以下、インバータ6という)にゲ
ートパルスを与えるゲートパルス発信器5に入力され
る。インバータ6は、インバータ6の直流側に接続され
た補償電流供給用の直流電源装置7からの電源を制御し
て出力トランス8を介して電力系統に高調波補償電流を
供給する。ここで、直流電源装置7はコンデンサまたは
バッテリーで構成されている。
The control command from the compensation current control circuit 1d is
It is input to a gate pulse oscillator 5 which gives a gate pulse to a voltage type inverter 6 (hereinafter referred to as an inverter 6). The inverter 6 controls a power supply from a DC power supply device 7 for supplying a compensation current, which is connected to the DC side of the inverter 6, and supplies a harmonic compensation current to a power system via an output transformer 8. Here, the DC power supply device 7 is composed of a capacitor or a battery.

【0036】ここで、無効電流補償電流制御回路12
は、負荷電流に無関係で予め設定した目標無効電流補償
電流に、補償能力判定器11からの補償係数を掛算する
掛算器12aを有し、この掛算器12aで得られた電流
が無効電流補償電流となる。
Here, the reactive current compensation current control circuit 12
Has a multiplier 12a for multiplying a preset target reactive current compensation current irrespective of the load current by a compensation coefficient from the compensation capacity determiner 11, and the current obtained by the multiplier 12a is a reactive current compensation current. Becomes

【0037】図5は、第2の実施例の無効電流補償電流
idと負荷電流ifの関係を示す電流ベクトル図であ
る。第1の実施例では、力率改善補償電流制御回路10
にて、図3の力率改善補償電流icを負荷の運転力率に
より演算制御していたが、この第2の実施例では、これ
を無効電流補償電流制御回路12にて、負荷電流ifに
無関係であらかじめ設定した無効電流補償電流idだけ
で制御するようにしたものである。
FIG. 5 is a current vector diagram showing the relationship between the reactive current compensation current id and the load current if of the second embodiment. In the first embodiment, the power factor correction compensation current control circuit 10
In the second embodiment, the reactive current compensation current control circuit 12 converts the power factor correction compensation current ic in FIG. 3 into the load current if. It is irrelevant and is controlled only by the preset reactive current compensation current id.

【0038】以上のように、この第2の実施例において
は、常時、高調波電流を優先して補償し、かつ、余剰能
力に応じ一定の無効電流を補償可能にしている。これに
よって、高調波補償に関して補償責務を果し、余剰分の
容量で無効電流を補償することが可能となる。
As described above, in the second embodiment, the harmonic current is always prioritized and compensated, and the constant reactive current can be compensated according to the surplus capacity. As a result, it becomes possible to fulfill the compensation duty regarding the harmonic compensation and compensate the reactive current with the surplus capacity.

【0039】次に、図6に本発明の第3の実施例を示
す。この第3の実施例は、高調波発生負荷2aが増加す
る等の理由で補償電流が増え、従来から使用の1台のイ
ンバータ容量では容量不足になった場合に、その容量不
足を補うために、インバータ6Aを増設した場合のもの
である。
Next, FIG. 6 shows a third embodiment of the present invention. In the third embodiment, when the compensation current increases due to an increase in the harmonic generation load 2a or the like, and the capacity of one inverter that has been conventionally used becomes insufficient, the capacity is compensated for. , The case where the inverter 6A is additionally installed.

【0040】高調波補償電流制御回路1と力率改善補償
電流制御回路10、あるいは無効電流補償電流制御回路
12は、こらら複数のインバータ6、6Aで共用し、高
調波補償電流制御回路1の補償電流制御回路1dからの
補償電流指令を分配器13でインバータの要領に応じて
分配する。すなわち、従来から使用のインバータ6を動
作させるゲートパルス発生器5と、増設したインバータ
6Aを動作させるゲートパルス発信器5Aとに、それぞ
れのインバータ容量比に見合った補償電流指令を分配器
13で分配する。これによって、複数台のインバータ
6、6Aを共通の高調波補償電流制御回路1で制御可能
にしている。つまり、複数台のインバータを一つの高調
波優先補償電流制御回路で制御することが可能となる。
The harmonic compensating current control circuit 1 and the power factor correction compensating current control circuit 10 or the reactive current compensating current control circuit 12 are shared by a plurality of inverters 6 and 6A. The compensating current command from the compensating current control circuit 1d is distributed by the distributor 13 according to the procedure of the inverter. That is, the distributor 13 distributes the compensating current command corresponding to each inverter capacity ratio to the gate pulse generator 5 that operates the conventionally used inverter 6 and the gate pulse oscillator 5A that operates the added inverter 6A. To do. This allows a plurality of inverters 6 and 6A to be controlled by the common harmonic compensation current control circuit 1. That is, it becomes possible to control a plurality of inverters with one harmonic preferential compensation current control circuit.

【0041】[0041]

【発明の効果】以上述べたように本発明によれば、高調
波電流を補償するインバータの直流電源装置の電圧レベ
ルに基づいて高調波電流以外の補償をする余剰能力を判
定し、電圧レベルが高ければ、高調波以外の補償、つま
り、力率改善補償や無効電流補償を行うので、本来の責
務である高調波電流補償を行え、かつインバータを有効
利用することができる。
As described above, according to the present invention, the surplus capacity for compensation other than the harmonic current is judged based on the voltage level of the DC power supply device of the inverter for compensating the harmonic current, and the voltage level is If it is high, compensation other than harmonics, that is, power factor correction compensation and reactive current compensation, is performed, so that harmonic current compensation, which is the original responsibility, can be performed and the inverter can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成図FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の補償能力判定器における直流電源装置
の電圧に対する補償能力の関係を示す特性図
FIG. 2 is a characteristic diagram showing the relationship of the compensation capability with respect to the voltage of the DC power supply device in the compensation capability determination device of the present invention.

【図3】本発明による力率改善補償電流の説明図FIG. 3 is an explanatory diagram of a power factor correction compensation current according to the present invention.

【図4】本発明の第2の実施例を示す構成図FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】本発明による無効電流補償電流の説明図FIG. 5 is an explanatory diagram of a reactive current compensation current according to the present invention.

【図6】本発明の第3の実施例を示す構成図FIG. 6 is a configuration diagram showing a third embodiment of the present invention.

【図7】従来例の構成図FIG. 7 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 高調波補償電流制御回路 1d 補償電流制御回路 2 負荷電流検出器 2a 高調波発生負荷 3 計器用変圧器 4 補償電流検出器 5 ゲートパルス発信器 6 インバータ 7 直流電源装置 8 出力トランス 9 電圧検出器 10 力率改善補償電流制御回路 11 補償能力判定器 12 無効電流補償電流制御回路 13 分配器 1 harmonic compensation current control circuit 1d compensation current control circuit 2 load current detector 2a harmonic generation load 3 instrument transformer 4 compensation current detector 5 gate pulse transmitter 6 inverter 7 DC power supply device 8 output transformer 9 voltage detector 10 Power Factor Improvement Compensation Current Control Circuit 11 Compensation Ability Judgment Device 12 Reactive Current Compensation Current Control Circuit 13 Distributor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に接続された高調波発生負荷か
ら発生する高調波を補償するための高調波補償電流を発
生するインバータと、前記インバータの直流側に接続さ
れた前記補償電流供給用の直流電源装置と、前記高調波
発生負荷の高調波を相殺する高調波補償電流が前記電力
系統に供給されるように前記インバータを制御する高調
波補償電流制御回路とを備えたアクティブフィルタ装置
において、前記直流電源装置の電圧に基づいて前記イン
バータが発生できる補償電流の余剰補償能力を判定する
補償能力判定器と、この補償能力判定器で判定された余
剰補償能力に見合った力率改善補償電流を算出する力率
改善補償電流制御回路と、前記高調波補償電流と前記力
率改善補償電流に基づいて補償電流を算出し前記インバ
ータに制御指令を出す補償電流制御回路とを備えたこと
を特徴とするアクティブフィルタ装置。
1. An inverter for generating a harmonic compensating current for compensating a harmonic generated from a harmonic generating load connected to a power system, and a compensation current supply connected to a direct current side of the inverter. In an active filter device comprising a DC power supply device and a harmonic compensation current control circuit for controlling the inverter so that a harmonic compensation current for canceling the harmonics of the harmonic generation load is supplied to the power system, A compensation capacity determiner that determines the excess compensation capacity of the compensation current that can be generated by the inverter based on the voltage of the DC power supply device, and a power factor correction compensation current that is commensurate with the excess compensation capacity determined by the compensation capacity determiner. A power factor correction compensation current control circuit for calculating, a compensation current is calculated based on the harmonic compensation current and the power factor correction compensation current, and a control command is issued to the inverter. And a compensation current control circuit.
【請求項2】 請求項1に記載の前記力率改善補償電流
制御回路に代えて、前記補償能力判定器で判定された余
剰補償能力に見合った無効電流補償電流を算出する無効
電流補償電流制御回路を設けたことを特徴とするアクテ
ィブフィルタ装置。
2. The reactive current compensating current control for calculating the reactive current compensating current commensurate with the surplus compensating ability judged by the compensating ability judging device in place of the power factor correction compensating current control circuit according to claim 1. An active filter device comprising a circuit.
【請求項3】 電力系統に接続された高調波発生負荷か
ら発生する高調波を補償するための高調波補償電流を発
生する複数台のインバータと、前記複数台の各々のイン
バータの直流側に接続された前記補償電流供給用の直流
電源装置と、前記高調波発生負荷の高調波を相殺する高
調波補償電流が前記電力系統に供給されるように前記イ
ンバータを制御する高調波補償電流制御回路とを備えた
アクティブフィルタ装置において、前記直流電源装置の
電圧に基づいて前記複数台の各々のインバータが発生で
きる補償電流の余剰補償能力を判定する補償能力判定器
と、この補償能力判定器で判定された余剰補償能力に見
合った力率改善補償電流を算出する力率改善補償電流制
御回路と、前記高調波補償電流と前記力率改善補償電流
に基づいて補償電流制御指令を算出する補償電流制御回
路と、前記各々のインバータの容量比に応じて前記補償
電流制御指令を分配し前記各々のインバータ出力する分
配器とを備えたことを特徴とするアクティブフィルタ装
置。
3. A plurality of inverters for generating a harmonic compensation current for compensating harmonics generated from a harmonic generation load connected to a power system, and a DC side of each of the plurality of inverters. A DC power supply device for supplying the compensation current, and a harmonic compensation current control circuit for controlling the inverter so that a harmonic compensation current for canceling the harmonics of the harmonic generation load is supplied to the power system. In the active filter device including, a compensation capacity determination device that determines the excess compensation capacity of the compensation current that can be generated by each of the plurality of inverters based on the voltage of the DC power supply device, and the compensation capacity determination device is determined. Power factor correction compensation current control circuit for calculating a power factor correction compensation current commensurate with the surplus compensation capability, and a compensation current based on the harmonic compensation current and the power factor correction compensation current. An active filter device comprising: a compensation current control circuit for calculating a control command; and a distributor for distributing the compensation current control command according to a capacity ratio of each of the inverters and outputting the inverter.
【請求項4】 請求項3に記載の前記力率改善補償電流
制御回路に代えて、前記補償能力判定器で判定された余
剰補償能力に見合った無効電流補償電流を算出する無効
電流補償電流制御回路を設けたことを特徴とするアクテ
ィブフィルタ装置。
4. The reactive current compensating current control for calculating the reactive current compensating current commensurate with the surplus compensating ability determined by the compensating ability determiner, in place of the power factor correction compensating current control circuit according to claim 3. An active filter device comprising a circuit.
JP6273218A 1994-11-08 1994-11-08 Active filter device Pending JPH08140267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6273218A JPH08140267A (en) 1994-11-08 1994-11-08 Active filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6273218A JPH08140267A (en) 1994-11-08 1994-11-08 Active filter device

Publications (1)

Publication Number Publication Date
JPH08140267A true JPH08140267A (en) 1996-05-31

Family

ID=17524760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6273218A Pending JPH08140267A (en) 1994-11-08 1994-11-08 Active filter device

Country Status (1)

Country Link
JP (1) JPH08140267A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507457A (en) * 2005-09-03 2009-02-19 ボッシュ レックスロート アクチエンゲゼルシャフト Active power supply filter
JP2013165555A (en) * 2012-02-09 2013-08-22 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power converter
CN103956736A (en) * 2014-04-16 2014-07-30 中国石油大学(北京) Multi-ring harmonic control method and system of active electric power filtering device
CN104104092A (en) * 2014-06-27 2014-10-15 南宁市绿沃节能科技有限公司 Single-phase intelligent compensating power saving controller and control method thereof
JP2016046997A (en) * 2014-08-27 2016-04-04 株式会社日立製作所 Distributed power supply system and control method therefor
JPWO2014016918A1 (en) * 2012-07-25 2016-07-07 三菱電機株式会社 Power transmission equipment
JP2016127727A (en) * 2015-01-06 2016-07-11 田淵電機株式会社 Power factor variable control device and control method for power conditioner
JP2018019576A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Power conversion device
JP2018057201A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Active filter device, air-conditioning device, and air-conditioning system
JP2018191373A (en) * 2017-04-28 2018-11-29 ダイキン工業株式会社 Active filter device and air-conditioner using the same
JP2018191375A (en) * 2017-04-28 2018-11-29 ダイキン工業株式会社 Active filter device and air-conditioner using the same
JP2019092286A (en) * 2017-11-14 2019-06-13 三菱重工サーマルシステムズ株式会社 Active filter, control method by active filter, and program
JP2020010571A (en) * 2018-07-12 2020-01-16 富士電機株式会社 Electric power conversion system
CN113708383A (en) * 2021-09-16 2021-11-26 安徽海螺建材设计研究院有限责任公司 Electric energy loss and electric energy quality comprehensive processing method and system
CN114545072A (en) * 2021-12-27 2022-05-27 杭州明特科技有限公司 Reactive power compensation method, electric energy meter and computer readable storage medium
WO2023058533A1 (en) * 2021-10-05 2023-04-13 ダイキン工業株式会社 Air conditioner and control system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507457A (en) * 2005-09-03 2009-02-19 ボッシュ レックスロート アクチエンゲゼルシャフト Active power supply filter
JP2013165555A (en) * 2012-02-09 2013-08-22 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power converter
JPWO2014016918A1 (en) * 2012-07-25 2016-07-07 三菱電機株式会社 Power transmission equipment
CN103956736A (en) * 2014-04-16 2014-07-30 中国石油大学(北京) Multi-ring harmonic control method and system of active electric power filtering device
CN104104092B (en) * 2014-06-27 2016-08-17 南宁市绿沃节能科技有限公司 A kind of single-phase intelligent expansion joint electric controller and control method thereof
CN104104092A (en) * 2014-06-27 2014-10-15 南宁市绿沃节能科技有限公司 Single-phase intelligent compensating power saving controller and control method thereof
JP2016046997A (en) * 2014-08-27 2016-04-04 株式会社日立製作所 Distributed power supply system and control method therefor
JP2016127727A (en) * 2015-01-06 2016-07-11 田淵電機株式会社 Power factor variable control device and control method for power conditioner
JP2018019576A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Power conversion device
WO2018021152A1 (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Power conversion device
JP2018057201A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Active filter device, air-conditioning device, and air-conditioning system
WO2018061403A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Active filter device, air conditioning device, and air conditioning system
CN109643138A (en) * 2016-09-30 2019-04-16 大金工业株式会社 Active filter, air-conditioning device and air-conditioning system
US10797584B2 (en) 2016-09-30 2020-10-06 Daikin Industries, Ltd. Active filter device, air conditioning device, and air conditioning system
JP2018191373A (en) * 2017-04-28 2018-11-29 ダイキン工業株式会社 Active filter device and air-conditioner using the same
JP2018191375A (en) * 2017-04-28 2018-11-29 ダイキン工業株式会社 Active filter device and air-conditioner using the same
JP2019092286A (en) * 2017-11-14 2019-06-13 三菱重工サーマルシステムズ株式会社 Active filter, control method by active filter, and program
JP2020010571A (en) * 2018-07-12 2020-01-16 富士電機株式会社 Electric power conversion system
CN113708383A (en) * 2021-09-16 2021-11-26 安徽海螺建材设计研究院有限责任公司 Electric energy loss and electric energy quality comprehensive processing method and system
CN113708383B (en) * 2021-09-16 2024-05-17 安徽海螺建材设计研究院有限责任公司 Comprehensive processing method and system for electric energy loss and electric energy quality
WO2023058533A1 (en) * 2021-10-05 2023-04-13 ダイキン工業株式会社 Air conditioner and control system
JP2023055186A (en) * 2021-10-05 2023-04-17 ダイキン工業株式会社 Air conditioner and control system
CN114545072A (en) * 2021-12-27 2022-05-27 杭州明特科技有限公司 Reactive power compensation method, electric energy meter and computer readable storage medium
CN114545072B (en) * 2021-12-27 2022-11-08 杭州明特科技有限公司 Reactive power compensation method, electric energy meter and computer readable storage medium

Similar Documents

Publication Publication Date Title
US6295215B1 (en) AC power supply apparatus with economy mode and methods of operation thereof
JPH08140267A (en) Active filter device
US6295216B1 (en) Power supply apparatus with selective rectifier harmonic input current suppression and methods of operation thereof
US5289046A (en) Power converter with controller for switching between primary and battery power sources
US6770984B2 (en) Electronic voltage regulator with switching control device and control method for stabilizing output voltage
US5381328A (en) PWM inverter control system and method
US4903184A (en) Reactive power controller
US6665198B2 (en) Power supply apparatus and method thereof for input harmonic current suppression and output voltage regulation
JP3805835B2 (en) Distribution line voltage and reactive power adjustment device
US5485075A (en) Reactive power compensating apparatus and method for reducing in switching loss in steady state operation thereof
US5162983A (en) Active filter device for suppressing harmonics in a system including a capacitive load
US5586018A (en) Device for suppressing voltage fluctuation and higher harmonics
KR20190099595A (en) Pfc controller and method for controlling the same
JP3642749B2 (en) Reactive power compensator operation control method
WO2014041390A1 (en) A system and method for voltage regulation in a voltage supply
JP2000032665A (en) Power quality-compensating device
JP2001211551A (en) Voltage-compensation device
JPH0965574A (en) Control of self-excited reactive power compensating device
JP2672905B2 (en) Reactive power controller
JP3723967B2 (en) Active filter control device
JP3125354B2 (en) Active filter control device
JP2000152520A (en) Instantaneous voltage drop compensating device
JPH09201071A (en) Control method for self-excited reactive power compensation apparatus
JP2003111426A (en) Ac power source unit
JP3264706B2 (en) Superconducting power controller