JPH0813969B2 - Liquefaction method of coal - Google Patents

Liquefaction method of coal

Info

Publication number
JPH0813969B2
JPH0813969B2 JP62071578A JP7157887A JPH0813969B2 JP H0813969 B2 JPH0813969 B2 JP H0813969B2 JP 62071578 A JP62071578 A JP 62071578A JP 7157887 A JP7157887 A JP 7157887A JP H0813969 B2 JPH0813969 B2 JP H0813969B2
Authority
JP
Japan
Prior art keywords
liquefaction
coal
reactor
reaction
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62071578A
Other languages
Japanese (ja)
Other versions
JPS63238196A (en
Inventor
正 矢尾
勝巳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62071578A priority Critical patent/JPH0813969B2/en
Publication of JPS63238196A publication Critical patent/JPS63238196A/en
Publication of JPH0813969B2 publication Critical patent/JPH0813969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭液化プロセスにおける液化反応器の操
作を簡便化できる石炭の液化方法に関する。
TECHNICAL FIELD The present invention relates to a coal liquefaction method capable of simplifying the operation of a liquefaction reactor in a coal liquefaction process.

(従来技術とその問題点) 石炭の液化プロセスは、石炭の液化を行う液化反応工
程、その液化生成物を液化油等と残渣に蒸留分離する蒸
留工程、および蒸留工程からの液化油に水素を付加して
液化に適した溶剤に改質する溶剤水素化工程から構成さ
れている。
(Conventional technology and its problems) The liquefaction process of coal includes a liquefaction reaction step for liquefying coal, a distillation step for distilling and separating the liquefied product into liquefied oil and the like, and hydrogen for liquefied oil from the distillation step. It is composed of a solvent hydrogenation step of adding and reforming to a solvent suitable for liquefaction.

液化反応工程には、石炭と石炭液化油を主成分とする
溶剤および石炭の液化を促進する触媒が供給され、100
〜300atm程度の水素加圧下で400〜500℃程度の高温に0.
5〜2.0時間程度保持することにより液化が行われる。連
続的に原料が供給される液化反応工程では、完全混合に
よる未反応石炭の流出を防止して反応原料が一様の平均
流速で流れる押し出し流れを得るために、通常複数の反
応器が直列に接続して用いられる。
In the liquefaction reaction step, a solvent containing coal and coal liquefied oil as main components and a catalyst for promoting liquefaction of coal are supplied, and
0 ~ 300atm under hydrogen pressure, 400 ~ 500 ℃ high temperature 0.
Liquefaction is carried out by holding for about 5 to 2.0 hours. In the liquefaction reaction process in which the raw materials are continuously supplied, in order to prevent the outflow of unreacted coal due to complete mixing and to obtain an extruded flow in which the reaction raw materials flow at a uniform average flow rate, usually multiple reactors are connected in series. Used by connecting.

蒸留工程では、ガス、原料水素等が分離された後の液
化生成物の蒸留を行い、軽量油(BP:IBP〜200℃)、中
質油(BP:200〜350℃)、重質油(BP:350〜538℃)が蒸
留塔塔頂から抜き出され、下部から蒸留残渣が抜き出さ
れる。エネルギー効率等を高めるために、軽質油の蒸留
では常圧蒸留が、重質油の蒸留には減圧蒸留が用いられ
る。沸点538℃の重質油を留去する場合には、蒸留塔内
での油分の熱変質を防止するため蒸留塔は通常400℃程
度の温度で10mmHg以下の圧力に保持される。
In the distillation process, the liquefied product is distilled after the gas, the raw material hydrogen, etc. are separated, and the light oil (BP: IBP to 200 ° C), the medium oil (BP: 200 to 350 ° C), the heavy oil ( (BP: 350-538 ° C) is extracted from the top of the distillation column, and the distillation residue is extracted from the lower part. In order to improve energy efficiency and the like, atmospheric distillation is used for distillation of light oil, and vacuum distillation is used for distillation of heavy oil. When distilling off heavy oil having a boiling point of 538 ° C, the distillation column is usually kept at a temperature of about 400 ° C and a pressure of 10 mmHg or less in order to prevent thermal alteration of the oil content in the distillation column.

溶剤水素化工程では、高級触媒(例えばNi−Mo/Al
2O3)を用いて中質油、重質油に水素が付加され、石炭
液化用溶剤に適した性状に改質される。
In the solvent hydrogenation process, a high-grade catalyst (for example, Ni-Mo / Al
2 O 3 ) is used to add hydrogen to medium and heavy oils, and it is reformed to properties suitable for coal liquefaction solvent.

このような石炭の液化プロセスでは、その建設費が高
価なこと、1炭種で大量の原料石炭の確保が困難なこと
等から、あらゆる石炭に対して適用可能であることが望
まれる。
In such a coal liquefaction process, construction cost is high, and it is difficult to secure a large amount of raw material coal with one kind of coal.

また、石炭の液化プロセスでは、蒸留工程での蒸留残
渣の分離を確実に行いプロセスの安定運転をはかること
が、石炭液化工程での液収率の向上を図ることと同様に
重要である。
Further, in the coal liquefaction process, it is as important as surely separating the distillation residue in the distillation step to ensure stable operation of the process, as well as to improve the liquid yield in the coal liquefaction step.

すなわち、蒸留塔のカット温度が538℃の公知のプロ
セスで石炭の液化を行うと、灰分が少なく蒸留残渣の生
成量の多い石炭の液化では蒸留工程は安定に操業される
が、高灰分で蒸留残渣の生成量が少ない石炭の液化で
は、蒸留残渣中に灰分が濃化して蒸留残渣の流動性が低
下し、蒸留塔下部からの抜き出しが困難になり、石炭の
液化プロセスの安定運転に支障をきたすという問題があ
る。
In other words, if coal is liquefied by a known process with a distillation column cut temperature of 538 ° C, the distillation process will operate stably in the liquefaction of coal with a small amount of ash and a large amount of distillation residue, but with a high ash content When coal is liquefied with a small amount of residue produced, ash is concentrated in the distillation residue and the fluidity of the distillation residue is reduced, making it difficult to extract from the bottom of the distillation column, which hinders the stable operation of the coal liquefaction process. There is a problem of coming.

この問題点を解決する方法としては、高灰分で蒸留
残渣の生成量が少ない石炭から、予め灰分を除去する方
法が考えられる。しかし、この方法は以下のような欠点
を有している。
As a method of solving this problem, a method of removing the ash in advance from coal having a high ash content and a small amount of distillation residue produced can be considered. However, this method has the following drawbacks.

(イ)石炭液化プロセスに必要な石炭量以上の処理能力
を有する脱灰設備を必要とするので、その建設費、運転
費が高価になる。
(A) Since the decalcification equipment having a treatment capacity equal to or more than the amount of coal required for the coal liquefaction process is required, the construction cost and operating cost are high.

(ロ)石炭の液化を促進する作用のある灰分を予め除去
することになり、新たな触媒を添加する必要がある。
(B) Ash that has the action of promoting the liquefaction of coal will be removed in advance, and a new catalyst must be added.

また、蒸留工程に先立ち溶剤抽出、遠心分離、アン
チソルベントの添加等の方法で灰分を予め除去する方法
が考えられるが、この方法によると新たな設備を必要と
し、その建設費、運転費が高価となる。
In addition, a method of removing ash in advance by a method such as solvent extraction, centrifugation, or addition of antisolvent prior to the distillation step can be considered, but this method requires new equipment, and its construction cost and operation cost are high. Becomes

複数の反応器からなる液化工程で、主に上流部の液化
反応器内で固形分濃厚層と希薄層に分離してその固形分
濃厚層を常時系外に抜き出す方法(特開昭52−145408号
公報)が提案されている。
In a liquefaction process consisting of a plurality of reactors, a method in which a solid-concentrated layer and a dilute layer are mainly separated in an upstream liquefaction reactor and the solid-concentrated layer is constantly taken out of the system (JP-A-52-145408). Issue).

この方法によるプロセスフロー図を第1図に示す。原
料である石炭、溶剤、触媒そして水素が3基の液化反応
容器に順次下から投入され、各反応器からは固形濃厚層
が抜き出され、脱灰工程に送られる。最終の反応器から
の液化油および脱灰工程からの液化油は、次いで、蒸留
工程に送られ、図示例のように軽質油、中質油、重質油
そして残渣に蒸留分離される。
A process flow chart of this method is shown in FIG. Raw materials such as coal, a solvent, a catalyst and hydrogen are sequentially charged into three liquefaction reaction vessels from below, and a solid concentrated layer is extracted from each reactor and sent to a deashing process. The liquefied oil from the final reactor and the liquefied oil from the deashing step are then sent to a distillation step where they are separated by distillation into light oil, medium oil, heavy oil and a residue as shown.

この方法によると、反応器内に固形分濃厚層を生成
して、濃厚層で水素化分解反応の進行が促進される、
蒸留塔と比べて高温、高圧の反応器から固形分濃厚層を
抜き出すために、その分離が容易になる、等の長所を有
している。
According to this method, a solid content concentrated layer is generated in the reactor, and the progress of the hydrocracking reaction is promoted in the concentrated layer,
Compared with a distillation column, it has an advantage that the solid concentrated layer is extracted from the reactor at high temperature and high pressure, so that the solid layer can be easily separated.

しかし、この方法にも以下に示す欠点を有している。 However, this method also has the following drawbacks.

(イ)第2図に示すように、反応器1の下部の供給口2
から原料である石炭、溶剤、触媒、水素ガスから成る原
料スラリ+ガスを反応器内に供給されるので、反応器内
部に反応器下部から供給されたガス成分で充分に撹拌さ
れた状態にあり、完全混合流れが形成しやすい。固形分
濃厚層と希薄層の平衡状態を維持するためには供給する
石炭、溶剤、水素ガスの流量に微妙な制御を必要とす
る。
(A) As shown in FIG. 2, the supply port 2 at the bottom of the reactor 1
Since the raw material slurry + gas consisting of coal, solvent, catalyst and hydrogen gas as raw materials is supplied from inside the reactor, it is in a state where it is sufficiently stirred with the gas components supplied from the lower part of the reactor inside the reactor. It is easy to form a complete mixed flow. In order to maintain the equilibrium state between the solid-rich layer and the lean layer, it is necessary to delicately control the flow rates of coal, solvent, and hydrogen gas to be supplied.

(ロ)複数の反応器で構成される液化工程の上流部で
は、完全混合流れのために未反応石炭が固形分濃厚層に
含まれて排出されやすい。その結果、石炭液化プロセス
も目的としている液化油収率が低下しがちである。
(B) In the upstream part of the liquefaction process composed of a plurality of reactors, unreacted coal is easily contained in the solid-rich layer due to the complete mixed flow. As a result, the liquefied oil yield, which is also intended for the coal liquefaction process, tends to decrease.

(ハ)反応器外に抜き出される固形分には溶剤、液化油
を含まないことが望ましいが、この方法では反応器内を
撹拌しているために固形分と液化油、溶剤の分離は不十
分であり、固形分濃厚層中でこれらを損失する割合が大
きい。
(C) It is desirable that the solid content extracted outside the reactor does not contain solvent and liquefied oil, but in this method, the solid content and liquefied oil and solvent are not separated because the inside of the reactor is agitated. Sufficient and a large percentage of these are lost in the solids rich layer.

(ニ)反応器外に連続的に固形分濃厚層を抜き出すため
に、液化プロセスに必要な溶剤、液化油を確保するため
には固形分濃厚層の固液分離操作が必要であり、新たな
固形分離装置を必要とする。
(D) In order to continuously extract the concentrated solid layer outside the reactor, it is necessary to perform a solid-liquid separation operation for the concentrated solid layer in order to secure the solvent and liquefied oil necessary for the liquefaction process. Requires a solid separation device.

(ホ)新たな固形分離装置に蒸留装置を採用した場合に
は灰分が濃化されているので、蒸留塔下部からの固形分
を含む蒸留残渣の抜き出しが困難になる。
(E) When a distillation device is adopted as a new solid separation device, the ash is concentrated, so that it is difficult to extract the distillation residue containing the solid from the lower part of the distillation column.

このように、従来の運転方法では、高灰分で蒸留残渣
の少ない石炭の液化は困難であった。
As described above, it has been difficult to liquefy coal having a high ash content and a small amount of distillation residue by the conventional operation method.

(発明が解決しようとする課題) 本発明は、使用炭種にかかわらず、石炭液化プロセ
ス、特に蒸留工程の安定運転を図ることのできる石炭の
液化方法を提供することを目的としている。
(Problem to be Solved by the Invention) An object of the present invention is to provide a coal liquefaction method capable of achieving stable operation of a coal liquefaction process, particularly a distillation step, regardless of the type of coal used.

(課題を解決するための手段) 本発明者らは従来沈澱物が生じないように設計されて
いた液化反応器よりも、むしろ沈澱物を生成するように
設計した方が、高灰分で蒸留残渣の生成量の少ない石炭
の液化に好ましく、ひいてはあらゆる石炭の液化に対し
ても好ましい石炭液化反応装置となることを見い出し
た。
(Means for Solving the Problems) The present inventors prefer to produce a precipitate rather than a liquefaction reactor which has been conventionally designed not to produce a precipitate, because the distillation residue has a high ash content. It has been found that the coal liquefaction reactor is suitable for the liquefaction of coal with a small amount of liquefied coal, and by extension is suitable for the liquefaction of any coal.

また、発明者らは石炭液化法の定量化を試み、反応後
期には触媒による液化反応促進の効果が小さいことを明
らかにした。
In addition, the inventors tried to quantify the coal liquefaction method, and found that the catalyst has a small effect of promoting the liquefaction reaction in the latter stage of the reaction.

ここに、本発明の骨子は、2以上の液化反応器から成
り石炭、溶剤、触媒、水素ガスからなる原料を液化して
反応生成物を得る液化反応工程、得られた液化反応生成
物を蒸留分離する蒸留工程、該蒸留工程からの液化油を
水素化して液化反応工程へ溶剤として供給する溶剤水素
化工程からなる連続的に石炭を液化する方法であって、
液化反応後期における少なくとも最下流の液化反応器の
中段に設けた供給口からその上流部の液化反応器からの
液化反応生成物を供給し、該液化反応器内において、単
に固液の重力差を用いて沈澱の生成を促進し、このよう
にして生じた沈澱物を該液化反応器内部の圧力差を用い
て該液化反応器の下部に設けた排出口より必要時に該液
化反応器外へ排出して後続の蒸流工程における固液の分
離を容易にすることを特徴とする石炭の液化方法であ
る。
Here, the essence of the present invention is a liquefaction reaction step of liquefying a raw material consisting of coal, a solvent, a catalyst and hydrogen gas to obtain a reaction product, which is composed of two or more liquefaction reactors, and the liquefaction reaction product obtained is distilled. A method for continuously liquefying coal comprising a distillation step of separating, a hydrogenation process of liquefied oil from the distillation step and supplying the liquefaction reaction step as a solvent to a liquefaction reaction step,
In the latter stage of the liquefaction reaction, the liquefaction reaction product from the liquefaction reactor upstream of the liquefaction reactor is provided from the supply port provided in the middle stage of at least the most downstream liquefaction reactor. To accelerate the formation of a precipitate, and the precipitate thus formed is discharged to the outside of the liquefaction reactor through a discharge port provided at the bottom of the liquefaction reactor by using the pressure difference inside the liquefaction reactor. And a method for liquefying coal, which facilitates solid-liquid separation in the subsequent steaming step.

本発明における液化プロセスにおける反応温度、反応
時間、水素圧、液化用触媒等は公知の方法のそれをその
まま利用できる。好ましい条件は、反応温度430〜470
℃、反応時間0.5〜2.0時間、水素圧100〜200atm程度で
ある。液化用触媒としては、安価な鉄系触媒を、助触媒
(硫黄化合物)と併用することが好ましい。
Regarding the reaction temperature, reaction time, hydrogen pressure, liquefaction catalyst and the like in the liquefaction process in the present invention, those of known methods can be used as they are. Preferred conditions are reaction temperature 430-470
C, reaction time 0.5 to 2.0 hours, hydrogen pressure 100 to 200 atm. As the liquefaction catalyst, it is preferable to use an inexpensive iron-based catalyst in combination with the co-catalyst (sulfur compound).

公知の石炭液化工程での反応装置は、完全混合槽の反
応器を直列に接続したものである。本発明においてもそ
れを利用すればよい。完全混合槽の反応器が好ましいの
は、反応器内での固形分の蓄積を防ぐと同時に触媒の拡
散を良好にして液化反応の進行を促進するからである。
A known reactor in a coal liquefaction process is a reactor of a complete mixing tank connected in series. It may be used in the present invention. The reactor of the complete mixing tank is preferable because it prevents the accumulation of solids in the reactor and at the same time promotes the diffusion of the catalyst to promote the progress of the liquefaction reaction.

このように本発明によれば、液化反応後期に反応器内
で積極的に沈殿物の生成を促進し、液化反応工程以降の
蒸留工程における操作が容易になる。
As described above, according to the present invention, the production of the precipitate is actively promoted in the reactor in the latter stage of the liquefaction reaction, and the operation in the distillation step after the liquefaction reaction step is facilitated.

(作用) 次に、添付図面によって本発明をその作用とともにさ
らに詳述する。
(Operation) Next, the present invention will be described in more detail together with its operation with reference to the accompanying drawings.

第3図は、本発明にかかる石炭の液化方法のフローチ
ャートを示すもので、図1の場合と同様に石炭、溶剤、
触媒、水素ガスからなる原料を3基の液化反応器で液化
処理して得られた液化油を次の蒸留工程に送って各留分
に蒸留分離している。しかし、本発明の場合、特に図示
例では液化反応後期に当たる最下流の液化反応器におい
て上流の液化反応器からの反応生成物はすべて中段に設
けた供給口から反応器内に投入されており、この最下流
の反応器で灰分が沈降して沈澱物として分離される。残
りの液化油は塔頂より抜き出して蒸留工程に送る。
FIG. 3 shows a flow chart of the method for liquefying coal according to the present invention. As in the case of FIG. 1, coal, solvent,
A liquefied oil obtained by liquefying a raw material composed of a catalyst and hydrogen gas in three liquefaction reactors is sent to the next distillation step to be separated into respective fractions by distillation. However, in the case of the present invention, particularly in the illustrated example, all the reaction products from the upstream liquefaction reactor in the most downstream liquefaction reactor corresponding to the latter stage of the liquefaction reaction are charged into the reactor through the supply port provided in the middle stage, In the downstreammost reactor, the ash settles and is separated as a precipitate. The remaining liquefied oil is extracted from the top of the column and sent to the distillation step.

第4図は、沈殿物の生成を促進する好ましい反応器の
形状の一例を示す図面である。
FIG. 4 is a drawing showing an example of a preferable reactor shape for promoting the formation of a precipitate.

この反応器3の形状を第4面により説明すれば、石
炭、溶剤、触媒、水素ガスを原料とする液化生成物のス
ラリーは反応器3の中段に設けた原料供給口4より反応
器3内へ供給される。この反応器内は所定の反応条件を
満足するように保持されている。
Explaining the shape of the reactor 3 in terms of the fourth surface, the slurry of the liquefied product using coal, solvent, catalyst and hydrogen gas as raw materials is fed into the reactor 3 through the raw material supply port 4 provided in the middle stage of the reactor 3. Is supplied to. The inside of this reactor is maintained so as to satisfy predetermined reaction conditions.

第4図に示したように、原料供給口4よりも上部では
供給されたガス状生成物により充分に撹拌されて完全混
合流れが形成され、液化反応が促進される。反応終了後
のスラリーは定常的にスラリー排出口5より反応器外へ
排出される。一方、原料供給口4よりも下部の反応器内
のガスの供給がないために撹拌は不十分であり、固体状
と液状の生成物が主に存在する。固体状の生成物は液状
の生成物との比重差により、順次沈澱物を形成する。沈
澱物の蓄積量が一定のレベルに到達すると、高温、高圧
バルブ6を開放して、沈澱物排出口5より反応器外へ反
応器内外の圧力差を用いて排出される。排出が終了する
と再び高温、高圧バルブ6は閉じられ、反応器下部から
沈澱物が再び蓄積される。定常的に固形分濃厚層を排出
するときと比べて、沈澱物が一定のレベルに到達するま
で高圧バルブ6は閉じられるので、その間は溶剤あるい
は製品の液化油が沈澱物排出口から排出するのを防止で
きる。
As shown in FIG. 4, above the raw material supply port 4, the gaseous product supplied is sufficiently agitated to form a complete mixed flow, thereby promoting the liquefaction reaction. After the completion of the reaction, the slurry is constantly discharged from the reactor through the slurry discharge port 5. On the other hand, stirring is insufficient because there is no gas supply in the reactor below the raw material supply port 4, and solid and liquid products are mainly present. The solid product sequentially forms a precipitate due to the difference in specific gravity from the liquid product. When the accumulated amount of the precipitate reaches a certain level, the high temperature and high pressure valve 6 is opened and the precipitate is discharged to the outside of the reactor using the pressure difference between the inside and outside of the reactor. When the discharge is completed, the high temperature and high pressure valve 6 is closed again, and the precipitate is accumulated again from the lower part of the reactor. The high-pressure valve 6 is closed until the precipitate reaches a certain level, as compared with the case where the concentrated solid layer is constantly discharged, and during that time, the solvent or the liquefied oil of the product is discharged from the precipitate discharge port. Can be prevented.

沈澱物を抜き出す機会は、石炭種、反応条件等により
異なるのは言うまでもないことである。
Needless to say, the opportunity to extract the precipitate depends on the type of coal, reaction conditions, and the like.

この例からも明らかなように、積極的に沈澱物の生成
を促進する反応器3の形状としては、石炭、溶剤、触
媒、水素ガス等の原料供給用開口部、つまり供給口4を
反応器中段部に有する構造とする。
As is clear from this example, as the shape of the reactor 3 that positively promotes the formation of precipitates, the raw material supply opening for coal, solvent, catalyst, hydrogen gas, etc., that is, the supply port 4 is used as the reactor. The structure is provided in the middle section.

また、生成した沈澱物を外部に除去する方法として
は、物理的な方法で必要時に行うことが望ましい。
As a method for removing the generated precipitate to the outside, it is desirable to use a physical method when necessary.

このような形状を有する液化反応器の設置場所として
は、複数の反応器を有する石炭液化工程では、その最終
の反応器に設置することが好ましい。
As the installation place of the liquefaction reactor having such a shape, in the coal liquefaction process having a plurality of reactors, it is preferable to install it in the final reactor.

原料石炭が供給される上流部の反応器に設置した場合
には、未反応の石炭が沈澱しやすく、石炭液化プロセス
の目的である液化油収率の確保が困難になるからであ
る。
This is because when the raw material coal is installed in the upstream reactor, unreacted coal easily precipitates, and it becomes difficult to secure the liquefied oil yield, which is the purpose of the coal liquefaction process.

一方、最終の反応器では、未反応石炭が流入する割合
が減少していると同時に石炭の液化反応は概ね終了して
いるので、石炭液化プロセスの目的である液化油収率の
確保を容易に行うことができる。
On the other hand, in the final reactor, the rate of unreacted coal flowing in is decreasing and the coal liquefaction reaction is almost complete, so it is easy to secure the liquefied oil yield, which is the purpose of the coal liquefaction process. It can be carried out.

さらに、蒸留塔で蒸留残渣を分離する時と比べて、液
化反応器で分離する場合には高温、高圧の条件で分離す
ることができる。高温の溶剤の作用により、高分子量の
液化生成物は溶剤中に溶解することができるので、沈澱
物の生成量は蒸留塔で行うときと比べて少ない。また、
減圧蒸留塔では重力の作用だけで蒸留残渣が排出される
が、反応器で行う場合には、反応圧の作用も加わるの
で、より容易に沈澱物が分離できる。
Further, compared with the case of separating the distillation residue in the distillation column, the separation in the liquefaction reactor can be carried out under the conditions of high temperature and high pressure. Due to the action of the solvent at a high temperature, the liquefied product having a high molecular weight can be dissolved in the solvent, so that the amount of the precipitate produced is smaller than that in the distillation column. Also,
In the vacuum distillation column, the distillation residue is discharged only by the action of gravity, but when it is carried out in the reactor, the action of the reaction pressure is also added, so that the precipitate can be separated more easily.

次いで、この液化反応器の生成物は蒸留工程に供さ
れ、軽質油、中質油、重質油が蒸留塔の塔頂部より抜き
出され、蒸留塔下部から蒸留残渣が抜き出される。
Next, the product of this liquefaction reactor is subjected to a distillation step, light oil, medium oil, and heavy oil are extracted from the top of the distillation column, and a distillation residue is extracted from the lower part of the distillation column.

この蒸留塔の運転条件は、好ましくは、生成物の熱変
質を防止するために400℃以下の温度で行われる。この
蒸留塔の温度の上限から、蒸留塔下部からの蒸留残渣の
抜き出し性が制限される。蒸留残渣の軟化点、流動点が
低いほど蒸留残渣の抜き出し性が向上することは自明で
ある。
The operating conditions of this distillation column are preferably carried out at a temperature of 400 ° C. or lower in order to prevent thermal deterioration of the product. The upper limit of the temperature of the distillation column limits the ability to extract the distillation residue from the lower part of the distillation column. It is self-evident that the lower the softening point and pour point of the distillation residue, the better the extractability of the distillation residue.

発明者らは、蒸留残渣のトルエン可溶分量と抜き出し
性の関係を鋭意検討し、トルエン可溶分量が20%以下で
は蒸留塔下部からの抜き出し性が低下して、しばしばそ
の配管が閉塞することを見い出した。さらに、トルエン
可溶分量が小さな場合には配管は閉塞する。一方、30%
を越えると配管は閉塞することなく、順調に蒸留残渣を
抜き出すことができる。
The inventors diligently studied the relationship between the amount of toluene-soluble matter in the distillation residue and the withdrawal property, and when the amount of the toluene-soluble matter was 20% or less, the withdrawal property from the lower part of the distillation column was lowered and the pipe was often clogged. Found out. Further, when the amount of toluene-soluble matter is small, the pipe is blocked. On the other hand, 30%
When it exceeds, the distillation residue can be smoothly extracted without blocking the pipe.

ここに、塔頂から抜き出された軽質油と中質油の一部
は製品として取り出され、残部の中質油と重質油は水素
化工程を経た後、石炭液化工程の溶剤として循環使用さ
れる。本発明における水素化工程はその処理条件を含め
て特に制限はなく、従来法のそれをそのまま利用して行
なえばいよい。
Here, some of the light oil and medium oil withdrawn from the top of the tower are taken out as products, and the rest of the medium oil and heavy oil are circulated and used as solvents in the coal liquefaction process after undergoing a hydrogenation process. To be done. The hydrogenation step in the present invention is not particularly limited, including the treatment conditions, and the conventional method may be used as it is.

(実施例) 次に、本発明を実施例によってさらに具体的に説明す
る。
(Examples) Next, the present invention will be described more specifically by way of examples.

反応容積を1.25リットルに調整した完全混合槽の反応
器4器を直列に接続した液化設備と蒸留設備で構成され
る石炭液化プロセスを用いた。
A coal liquefaction process composed of a liquefaction facility and a distillation facility in which four reactors of a complete mixing tank whose reaction volume was adjusted to 1.25 liters were connected in series was used.

第1表に示す分析値を有するバトルリバー炭を第2表
に示す操業条件で5l/hの流速で上記石炭液化プロセスに
供給した。反応容積と操業条件から、石炭液化工程での
平均滞留時間は1時間である。その物質収支と得られた
蒸留残渣の性状を調べた。結果を第3表に比較例として
示す。
Battle River coal having the analytical values shown in Table 1 was supplied to the above coal liquefaction process at a flow rate of 5 l / h under the operating conditions shown in Table 2. From the reaction volume and the operating conditions, the average residence time in the coal liquefaction process is 1 hour. The material balance and the properties of the obtained distillation residue were investigated. The results are shown in Table 3 as a comparative example.

第3表から、この石炭液化設備では2000gの石炭から
約360g/hで石炭液化油が生成する。蒸留残渣の生成量は
約770g/hであるが、この蒸留残渣中のトルエン可溶分量
は20%と少なく、軟化点、流動点が高いために、しばし
ば蒸留残渣の抜き出し配管が閉塞した。その度毎に、石
炭液化工程への石炭の供給を停止して、溶剤による運転
を行いながら、蒸留残渣の抜き出し配管の閉塞物の除去
を行った。その結果、初期の目標である360g/hの石炭液
化油の生成を確保することはできなかった。
From Table 3, this coal liquefaction facility produces about 360 g / h of coal liquefied oil from 2000 g of coal. The amount of the distillation residue produced was about 770 g / h, but the toluene-soluble content in this distillation residue was as small as 20%, and due to its high softening point and pour point, the extraction pipe for the distillation residue was often blocked. Every time, the supply of coal to the coal liquefaction process was stopped, and the operation of the solvent was performed while removing the blockage of the distillation residue withdrawing pipe. As a result, the initial target of producing 360g / h of coal liquefied oil could not be secured.

次に実施例として、比較的に用いた直列液化反応器の
最下流部の反応器を石炭液化反応器中段部に原料スラリ
ー供給口を設け、反応器内を固液の重力差を用いて沈澱
の生成を促進し、該沈澱物を反応器内外の圧力差を用い
て除去することができる反応器に交換した。この反応器
供給口における原料スラリーの液化反応工程での平均滞
留時間は約45分であった。その他の反応条件は比較例と
同様の条件であった。
Next, as an example, a reactor at the most downstream part of the series liquefaction reactor used relatively was provided with a raw material slurry supply port in the middle stage of the coal liquefaction reactor, and the inside of the reactor was precipitated using the solid-liquid gravity difference. Was exchanged with a reactor capable of promoting the formation of the above and removing the precipitate using a pressure difference between the inside and the outside of the reactor. The average residence time in the liquefaction reaction step of the raw material slurry at this reactor supply port was about 45 minutes. The other reaction conditions were the same as those of the comparative example.

石炭の供給を開始して1時間毎に、高温高圧バルブを
開放して、反応器内に蓄積した沈澱物約520gを除去した
後、高温高圧バルブを閉じた。この沈澱物中の分析を行
ったところ、灰分が約40%まで含まれていた他、生成物
である石炭液化油が約50g含まれていた。一方、蒸留塔
下部からの蒸留残渣は300g/hで生成した。その分析値を
第4表に示す。トルエン可溶分が30%含まれており、軟
化点、流動点は比較例と比べて低温であり、蒸留塔にお
ける残渣の抜き出し性は良好であった。さらに、配管の
閉塞トラブルにより石炭液化工程への石炭供給は停止し
なかった。この石炭液化プロセスの物質収支を第4表に
示した。
Every hour after starting the supply of coal, the high temperature and high pressure valve was opened to remove about 520 g of the deposit accumulated in the reactor, and then the high temperature and high pressure valve was closed. Analysis of this precipitate revealed that the ash content was up to about 40% and that the product, coal liquefied oil, was included at about 50 g. On the other hand, the distillation residue from the bottom of the distillation column was produced at 300 g / h. The analytical values are shown in Table 4. It contained 30% of toluene-soluble content, had a softening point and a pour point at a lower temperature than the comparative examples, and had good residue extraction properties in the distillation column. Furthermore, the coal supply to the coal liquefaction process was not stopped due to a pipe clogging trouble. The material balance of this coal liquefaction process is shown in Table 4.

石炭液化油の生成量は約310g/hであり、比較例と比べ
てその生成量は少ないけれども、安定に石炭液化プロセ
スを稼働させることができ、初期の目標を達成すること
ができた。
The amount of coal liquefied oil produced was about 310 g / h, and although the amount produced was smaller than in the comparative example, the coal liquefaction process could be operated stably and the initial target could be achieved.

従来例では、新たな脱灰工程を設置してプロセスの運
転に必要な溶剤と製品を確保する必要があるが、この実
施例に示したようにプロセスの溶剤と製品の確保は蒸留
塔で回収することができる。なお、反応器下部から抜き
出した沈澱物中の液化油は濾過等の操作により一部回収
可能であるが、そのためには新たな分離設備を設置する
必要がある。その場合には、この新たな分離設備から回
収された液化油が製品として追加される。
In the conventional example, it is necessary to install a new deashing step to secure the solvent and product necessary for the operation of the process, but as shown in this example, the solvent and product of the process are secured by the distillation column. can do. The liquefied oil in the precipitate extracted from the lower part of the reactor can be partially recovered by an operation such as filtration, but for that purpose, it is necessary to install new separation equipment. In that case, the liquefied oil recovered from this new separation facility is added as a product.

(発明の効果) 本発明によれば以下のような効果が生ずる。 (Effect of the Invention) According to the present invention, the following effects occur.

(イ)液収率、石炭液化用溶剤が確保されると同時に液
化プラントの安定運転が図れる。
(B) The liquid yield and the solvent for coal liquefaction are secured, and at the same time, stable operation of the liquefaction plant can be achieved.

(ロ)石炭液化を促進する作用のある灰分を液化工程に
供給できるので、触媒使用量の減少に有効である。
(B) Since ash having the action of promoting coal liquefaction can be supplied to the liquefaction process, it is effective in reducing the amount of catalyst used.

(ハ)原料石炭の全量を液化工程に供給できる。(C) The entire amount of raw material coal can be supplied to the liquefaction process.

(ニ)連続的に出す場合には、溶剤製品の確保のために
固形分離操作が必要であるが、本発明はバッチ式のた
め、これらの抜き出し量が少なく、新たな固形分離操作
を必要としない。
(D) In the case of continuous discharge, solid separation operation is necessary to secure the solvent product, but since the present invention is a batch type, the amount of these extracted is small and a new solid separation operation is required. do not do.

(ホ)予め液化工程で灰分の大部分を除去できるので、
蒸留工程を安定に運転することができる。
(E) Since most of the ash can be removed in advance in the liquefaction process,
The distillation process can be operated stably.

【図面の簡単な説明】[Brief description of drawings]

第1図は、従来例によるプロセスフロー図; 第2図は、従来例による反応器の形状の模式的説明図; 第3図は、本発明によるプロセスフロー図;および 第4図は、本発明による反応器の形状の模式的説明図で
ある。
FIG. 1 is a process flow diagram according to a conventional example; FIG. 2 is a schematic explanatory diagram of a shape of a reactor according to a conventional example; FIG. 3 is a process flow diagram according to the present invention; and FIG. FIG. 3 is a schematic explanatory view of the shape of the reactor according to FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2以上の液化反応器から成り石炭、溶剤、
触媒、水素ガスからなる原料を液化して反応生成物を得
る液化反応工程、得られた液化反応生成物を蒸留分離す
る蒸留工程、該蒸留工程からの液化油を水素化して液化
反応工程へ溶剤として供給する溶剤水素化工程からなる
連続的に石炭を液化する方法であって、液化反応後期に
おける少なくとも最下流の液化反応器の中段に設けた供
給口からその上流部の液化反応器からの液化反応生成物
を供給し、該液化反応器内において、単に固液の重力差
を用いて沈澱の生成を促進し、このようにして生じた沈
澱物を該液化反応器内部の圧力差を用いて該液化反応器
の下部に設けた排出口より必要時に該液化反応器外へ排
出して後続の蒸留工程における固液の分離を容易にする
ことを特徴とする石炭の液化方法。
1. Coal, solvent, comprising two or more liquefaction reactors,
A liquefaction reaction step of liquefying a raw material consisting of a catalyst and hydrogen gas to obtain a reaction product, a distillation step of distilling and separating the obtained liquefaction reaction product, and a solvent for the liquefaction reaction step by hydrogenating the liquefied oil from the distillation step. A method for continuously liquefying coal consisting of a solvent hydrogenation process, which is supplied as a liquefaction from a liquefaction reactor upstream from a supply port provided at the middle stage of at least the most downstream liquefaction reactor in the latter stage of the liquefaction reaction. The reaction product is supplied, and in the liquefaction reactor, the formation of the precipitate is promoted simply by using the gravity difference between the solid and the liquid, and the precipitate thus produced is separated by using the pressure difference inside the liquefaction reactor. A coal liquefaction method, characterized in that the liquefaction reactor is discharged to the outside of the liquefaction reactor when necessary through a discharge port provided at the bottom of the liquefaction reactor to facilitate solid-liquid separation in the subsequent distillation step.
JP62071578A 1987-03-27 1987-03-27 Liquefaction method of coal Expired - Fee Related JPH0813969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071578A JPH0813969B2 (en) 1987-03-27 1987-03-27 Liquefaction method of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071578A JPH0813969B2 (en) 1987-03-27 1987-03-27 Liquefaction method of coal

Publications (2)

Publication Number Publication Date
JPS63238196A JPS63238196A (en) 1988-10-04
JPH0813969B2 true JPH0813969B2 (en) 1996-02-14

Family

ID=13464717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071578A Expired - Fee Related JPH0813969B2 (en) 1987-03-27 1987-03-27 Liquefaction method of coal

Country Status (1)

Country Link
JP (1) JPH0813969B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931556B2 (en) * 1976-05-28 1984-08-02 株式会社神戸製鋼所 Coal liquefaction method
JPS58154794A (en) * 1982-02-22 1983-09-14 Kobe Steel Ltd Coal liquefaction

Also Published As

Publication number Publication date
JPS63238196A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
JP5651281B2 (en) Method and apparatus for conversion of heavy petroleum fraction in ebullated bed with production of middle distillate with very low sulfur content
US3956414A (en) Method for melting and cracking amorphous polyolefin
CN101508903B (en) Process for continuously removing quinoline insoluble substances in coal tar pitch
JP4813933B2 (en) Hydrocracking method of heavy petroleum oil
US20090152171A1 (en) process for direct coal liquefaction
US4548711A (en) Solvent extraction
CA2536557C (en) Process of hydrocracking petroleum heavy oil
CN86102643A (en) The treating processes of heavy oil residue
JPS5820994B2 (en) Tankasisoyuno Setsushiyokutekishiyori no Tameno Renzokutekishiyorihouhou Oyobi Souchi
US4219403A (en) Coal liquefaction process and apparatus therefor
CA1155783A (en) Controlled short residence time coal liquefaction process
JPH0813969B2 (en) Liquefaction method of coal
JPS5843433B2 (en) coal liquefaction method
JP6715709B2 (en) Method for producing hydrocracked oil and apparatus for producing hydrocracked oil
US4435276A (en) Method of treating heavy oil
US2060447A (en) Working-up of carbonaceous materials
CN115572615B (en) Separation process and separation system for directly liquefying asphaltene from coal
CN213570323U (en) Vacuum tower top condensed oil processing device
CN209778379U (en) Oil-water separating device
CN213172211U (en) Processing system of ft sediment wax
JPH0146554B2 (en)
JPS63238195A (en) Liquefaction of coal
JPS61118494A (en) Method for liquefying coal
CN1169456A (en) Continuous production device for preparing fuel-oil cracking waste plastics
JPS60106885A (en) Thermal reforming of heavy oil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees