JPH08139076A - Detection of end point of etching using ellipsometry method - Google Patents

Detection of end point of etching using ellipsometry method

Info

Publication number
JPH08139076A
JPH08139076A JP6278914A JP27891494A JPH08139076A JP H08139076 A JPH08139076 A JP H08139076A JP 6278914 A JP6278914 A JP 6278914A JP 27891494 A JP27891494 A JP 27891494A JP H08139076 A JPH08139076 A JP H08139076A
Authority
JP
Japan
Prior art keywords
film
etching
end point
amount
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6278914A
Other languages
Japanese (ja)
Other versions
JP2601227B2 (en
Inventor
Norisuke Matsukura
徳丞 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6278914A priority Critical patent/JP2601227B2/en
Publication of JPH08139076A publication Critical patent/JPH08139076A/en
Application granted granted Critical
Publication of JP2601227B2 publication Critical patent/JP2601227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: To obtain a method of detecting the end of an etching which does not generate etching residues and an overetching in a processing of an oxide superconducting integrated circuit provided with a multilayer film. CONSTITUTION: An ellipsometer is incorporated in an ion beam etching chamber 1 and at the time of an etching, an azimuth, which is formed by a polarizer 5 with an analyzer 6, is set so that the angle of incidence of light into a sample mounted on a sample holder 3 is set at 65 to 75 deg. from a film normal and a point of time when quantity of light equantity received reaches a constant value or higher or a constant value or lower is regarded as the end of the etching.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超伝導集積回路
の製造におけるエッチングの終点検出に適用される偏光
解析法によるエッチング終点検出法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting an etching end point by ellipsometry applied to the detection of an etching end point in the manufacture of an oxide superconducting integrated circuit.

【0002】[0002]

【従来の技術】多層膜を有する酸化物超伝導集積回路の
エッチングプロセスには、一般にイオンビームエッチン
グ法が利用される。イオンビームエッチング法は、試料
を物理的にエッチングするため、材料によるエッチング
速度比を大きくとることができないので、フォトレジス
ト,下地などに対する選択比がとり難く、多層膜でのエ
ッチング終点判定を困難なものにしている。このため、
多層膜に対するエッチング終点の検出は、目視または前
もって求めたエッチングレートから算出した時間で行っ
ていた。このような終点検出法は、エッチング残りやエ
ッチングオーバーが生じやすく、確実なエッチング終点
検出法が必要となっている。
2. Description of the Related Art Generally, an ion beam etching method is used for an etching process of an oxide superconducting integrated circuit having a multilayer film. Since the ion beam etching method physically etches the sample, it is difficult to obtain a high etching rate ratio depending on the material. Therefore, it is difficult to obtain a selective ratio with respect to the photoresist, the underlayer, etc., and it is difficult to determine the etching end point in the multilayer film. I am making it. For this reason,
The detection of the etching end point of the multilayer film was performed visually or at a time calculated from an etching rate obtained in advance. Such an end point detection method is liable to cause etching residue or etching over, and thus requires a reliable etching end point detection method.

【0003】半導体多層膜のエッチングプロセスにおい
ては、以下に示すような偏光解析法を用いた終点検出が
実用化されている。半導体材料に用いられている偏光解
析法には大きく分けて測光法と消光法との二種類があ
る。測光法は、検光子または偏光子を回転させ、エッチ
ング過程において光量変化を解析することにより、試料
表面で反射した光の偏光状態を受光側で測定する。この
方法は、測定パラメータΨとΔとから膜厚を求める方式
で、測定の基本条件としてエッチング過程で光学定数が
変動しないことが要求される。
In the process of etching a semiconductor multilayer film, end point detection using an ellipsometry described below has been put to practical use. Ellipsometry used for semiconductor materials is roughly classified into two types, a photometry method and an extinction method. In the photometric method, the polarization state of light reflected on the sample surface is measured on the light receiving side by rotating an analyzer or a polarizer and analyzing a change in light amount during an etching process. This method is a method of obtaining a film thickness from measurement parameters Ψ and Δ, and it is required that the optical constant does not change during the etching process as a basic condition for measurement.

【0004】一方の消光法は、測定パラメータΨとΔと
には注目せず、受光器に入る光量変化を測定パラメータ
とする。この方法は、例えば表面の薄膜が透明な場合に
は、エッチング終点時に受光器に入る光が消光状態にな
るようにあらかじめ偏光子と検光子との方位角を設定し
ておき、光量変化を追跡する。表面の薄膜が不透明な場
合には、エッチングのはじめに受光器に入る光が消光状
態になるようにあらかじめ偏光子と検光子との方位角を
設定しておいて、光量変化を追跡する。半導体多層膜の
エッチングプロセスにおいては、測光法および消光法い
ずれの方法においても、半導体多層膜の界面において、
明瞭な光量変化が観測されるため、エッチングの終点を
確実に検出することができる。
On the other hand, the extinction method does not pay attention to the measurement parameters Ψ and Δ, and uses the change in the amount of light entering the light receiver as the measurement parameter. In this method, for example, when the thin film on the surface is transparent, the azimuth between the polarizer and the analyzer is set in advance so that the light entering the photodetector at the end of etching is in an extinction state, and the change in the light amount is tracked. I do. When the thin film on the surface is opaque, the azimuth angle between the polarizer and the analyzer is set in advance so that the light entering the light receiver at the beginning of the etching is in an extinction state, and the change in the light amount is tracked. In the etching process of the semiconductor multilayer film, in both the photometric method and the quenching method, at the interface of the semiconductor multilayer film,
Since a clear change in the amount of light is observed, the end point of the etching can be reliably detected.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、半導体
デバイスの分野で用いられてきた前述した偏光解析法を
用いた終点検出は、酸化物超伝導材料に対してはそのま
ま適用できないことが、本発明者の実験から明らかとな
った。すなわち、酸化物超伝導材料に対しては、光学定
数が変動するために測光法によるエッチングの終点検出
が行えない。さらに酸化物超伝導材料では、消光状態が
存在しないために消光法によるエッチング終点検出も適
用できない。しかし、本発明者は、半導体材料とは違っ
た酸化物超伝導材料に対する特徴的な偏光解析結果を利
用することで、偏光解析法による終点検出が可能である
ことを見いだした。
However, the inventor of the present invention has found that the end point detection using the above-mentioned ellipsometry, which has been used in the field of semiconductor devices, cannot be directly applied to oxide superconducting materials. It became clear from the experiment. That is, with respect to the oxide superconducting material, the end point of the etching cannot be detected by photometry because the optical constant fluctuates. Further, in the case of an oxide superconducting material, since the quenching state does not exist, etching end point detection by the quenching method cannot be applied. However, the present inventor has found that an end point can be detected by an ellipsometry by using a characteristic ellipsometry result for an oxide superconducting material different from a semiconductor material.

【0006】具体的には、多層膜構造を持つ酸化物超伝
導体集積回路のイオンビームを用いたエッチングプロセ
スにおいて、目視または前もって調べておいたエッチン
グレートによる終点検出では、エッチング時の状況を精
確に捉えることができないため、エッチング残りやエッ
チングオーバーを生じやすく、エッチングプロセスの信
頼性が乏しかった。また、従来、半導体エッチングプロ
セスに用いられていた偏光解析法によるエッチング終点
検出は、そのままでは酸化物超伝導体のエッチングプロ
セスの終点検出には適用できないという問題があった。
Specifically, in an etching process using an ion beam of an oxide superconductor integrated circuit having a multilayer film structure, end point detection based on an etching rate visually or in advance has been performed to accurately determine the state of etching. Therefore, etching residue or overetching is likely to occur, and the reliability of the etching process is poor. Further, there has been a problem that the detection of the etching end point by the ellipsometry used in the conventional semiconductor etching process cannot be applied to the detection of the end point of the etching process of the oxide superconductor as it is.

【0007】したがって本発明は、前述した従来の課題
を解決するためになされたものであり、その目的は、多
層膜を有する酸化物超伝導集積回路の加工において、酸
化物超伝導体に適した偏光解析により、エッチング残り
やエッチングオーバーの生じない終点検出を行えるよう
にした偏光解析法によるエッチング終点検出法を提供す
ることにある。
Therefore, the present invention has been made in order to solve the above-mentioned conventional problems, and an object thereof is suitable for an oxide superconductor in processing an oxide superconducting integrated circuit having a multilayer film. An object of the present invention is to provide an etching end point detection method by ellipsometry, which can detect an end point without etching residue or etching over by ellipsometry.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るために本発明による偏光解析法によるエッチング終点
検出法は、エッチング過程において偏光解析装置の受光
強度の変化を追跡して行う方法であり、下層が酸化物超
伝導膜および上層が絶縁膜からなる積層膜のエッチング
プロセスにおいて、偏光解析を行う偏光子,検光子の方
位角を膜法線に対して65゜〜75゜の範囲に設定し、
受光量が増加した後、一定値となった時点をエッチング
終点とするようにしたものである。
In order to achieve the above object, an etching end point detection method using an ellipsometry according to the present invention is a method for tracking a change in received light intensity of an ellipsometer during an etching process. In the etching process of the laminated film in which the lower layer is composed of the oxide superconducting film and the upper layer is composed of the insulating film, the azimuth of the polarizer and analyzer for performing the polarization analysis is set in the range of 65 to 75 degrees with respect to the film normal. And
After the amount of received light increases, a point in time at which a constant value is reached is set as an etching end point.

【0009】また、他の発明による偏光解析法によるエ
ッチング終点検出法は、受光量の変化率がピークをとっ
たことを確認してエッチング終点とするようにしたもの
である。また、他の発明による偏光解析法によるエッチ
ング終点検出法は、受光量が減少した後、一定値となっ
た時点をエッチング終点とするようにしたものである。
また、他の発明による偏光解析法によるエッチング終点
検出法は、受光量の変化率が谷をとったことを確認して
エッチング終点とするようにしたものである。
Further, in the etching end point detection method by ellipsometry according to another invention, it is confirmed that the rate of change in the amount of received light has reached a peak and the etching end point is determined. In addition, in the etching end point detection method based on the ellipsometry according to another invention, the point in time at which the amount of received light decreases to a constant value is set as the etching end point.
In the etching end point detection method by ellipsometry according to another invention, the etching end point is determined after confirming that the rate of change in the amount of received light has reached a valley.

【0010】[0010]

【作用】本発明においては、酸化物超伝導体集積回路に
用いられるYB2 Cu37-x膜およびSrTiO3
は、半導体集積回路で用いられるSiおよびSiO2
ような平坦な表面ではなく、その表面には少なくとも数
10nm程度の凹凸が存在することが知られている。こ
のように平坦でない表面を持っているために酸化物超伝
導体材料に対して偏光解析を適用すると、エッチングの
進展に伴って表面の凹凸が大きくなったりするために見
かけの光学定数が変化してしまい、精確な膜厚測定がで
きないばかりか、偏光の入射条件をかなり広い範囲で割
り当てても消光状態を得ることができないものと考えら
れる。
In the present invention, the YB 2 Cu 3 O 7-x film and the SrTiO 3 film used for the oxide superconductor integrated circuit are formed on a flat surface such as Si and SiO 2 used for the semiconductor integrated circuit. It is known that the surface has irregularities of at least several tens nm. When the ellipsometry is applied to an oxide superconductor material because of its uneven surface, the apparent optical constant changes because the surface irregularities increase with the progress of etching. It is thought that not only cannot accurate film thickness measurement be performed, but also it is not possible to obtain an extinction state even if the incident conditions of polarized light are assigned in a considerably wide range.

【0011】しかしながら、偏光した入射光を試料に対
して65゜〜75゜の範囲に設定することによって試料
表面の凹凸が良好に平均化され、酸化物超伝導系材料よ
り構成される多層構造のエッチング過程において、材料
の違いに応じた受光量変化が見かけ上、生ずるものと考
えられる。したがって、受光量の強度をモニターするこ
とによってエッチングの終点を検出できる。また、受光
量の強度が見かけ上、材料の違いによって異なる値をと
るために受光量の変化率をエッチング深さに対して測定
すれば、界面位置において、受光量強度の変化率はピー
クまたは谷となり、これを用いてもエッチングの終点を
検出できる。
However, when the polarized incident light is set in the range of 65 ° to 75 ° with respect to the sample, the unevenness of the sample surface is favorably averaged, and the multilayer structure of the oxide superconducting material is used. In the etching process, it is considered that a change in the amount of received light according to the difference in the material is apparently caused. Therefore, the end point of the etching can be detected by monitoring the intensity of the received light amount. Also, if the change in the received light intensity is measured with respect to the etching depth in order to apparently take a different value depending on the material, the change in the received light intensity will be a peak or a valley at the interface position. The end point of the etching can be detected by using this.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を用いて
説明する。図1は、本発明による偏光解析法によるエッ
チング終点検出法に用いるイオンビームエッチング装置
の構成を示す概略図である。図1において、イオンビー
ムエッチング装置は、エッチングチャンバー1と、アル
ゴンイオンガン2と、被加工物である試料を支持する試
料ホルダー3と、図示しない真空排気系とから構成さ
れ、エッチングチャンバー1には、イオンビームエッチ
ングを行いながら偏光解析ができるように波長632.
8nmのヘリウム・ネオンレーザー光源4と、偏光子5
と、検光子6と、受光器7とから構成される偏光解析装
置が組み込まれている。偏光した入射光を60°から8
0°の入射角(試料の膜表面の法線からの角度を入射角
と定義する)で被加工物である酸化物超伝導材料の積層
された試料に入射し、この試料から反射された反射光を
検出できるようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of an ion beam etching apparatus used for an etching end point detection method by ellipsometry according to the present invention. In FIG. 1, the ion beam etching apparatus includes an etching chamber 1, an argon ion gun 2, a sample holder 3 for supporting a sample to be processed, and a vacuum exhaust system (not shown). The wavelength 632.m so that polarization analysis can be performed while performing ion beam etching.
8 nm helium / neon laser light source 4 and polarizer 5
, An ellipsometer 6 and a photodetector 7. Polarized incident light from 60 ° to 8
At an incident angle of 0 ° (the angle from the normal to the film surface of the sample is defined as the angle of incidence), the light is incident on the sample, which is the work piece, on which the oxide superconducting material is laminated, and is reflected from this sample. Light can be detected.

【0013】(実施例1)まず、被加工物としてMgO
(001)基板上に厚さ400nmのYBa2 Cu3
7-x膜と厚さ200nmのSrTiO3 膜とを積層して
作製したYBCO/SrTiO3積層膜(以下、YBa2
Cu37-xをYBCOと略記する)を用いた実施例につ
いて説明する。ここで、YBCO/SrTiO3 積層膜
とは、基板側から順にYBCO膜、SrTiO3 膜が積
層された膜であることを表す。試料への光入射角を65
゜から80゜の範囲で変え、それぞれの入射角における
イオンビームエッチング中の受光量を測定した。図2
(a),(b),(c),(d),(e)は、YBCO
/SrTiO3 積層膜の各ビーム入射角60゜,65
゜,70゜,75゜,80゜における受光量のエッチン
グ深さ依存性を示したものであり、YBCO膜とSrT
iO3 膜との界面を基準点0とし、SrTiO3 膜の領
域を負の符号で表し、YBCO膜の領域を正の符号で表
してある。
(Embodiment 1) First, MgO was used as a workpiece.
400 nm thick YBa 2 Cu 3 O on (001) substrate
A YBCO / SrTiO 3 laminated film (hereinafter referred to as YBa 2) prepared by laminating a 7-x film and a SrTiO 3 film having a thickness of 200 nm.
An example using Cu 3 O 7-x as YBCO) will be described. Here, the YBCO / SrTiO 3 laminated film indicates that the YBCO film and the SrTiO 3 film are laminated in this order from the substrate side. The incident angle of light to the sample is 65
The light reception amount during the ion beam etching at each incident angle was measured while changing the angle from ゜ to 80 °. Figure 2
(A), (b), (c), (d) and (e) are YBCO
/ SrTiO 3 laminated film each beam incident angle 60 °, 65
This graph shows the dependence of the amount of received light on the etching depth at {, 70}, 75 °, and 80 °.
The interface with the iO 3 film is defined as a reference point 0, the region of the SrTiO 3 film is represented by a negative sign, and the region of the YBCO film is represented by a positive sign.

【0014】図2(b)〜(d)に示すように入射光の
ビーム入射角が65°〜75°の範囲においては、YB
CO膜およびSrTiO3 膜のそれぞれの領域において
受光量はほぼ一定の値を示すとともにYBCO/SrT
iO3 積層膜の界面で大きく変化することから、YBC
O/SrTiO3 積層膜の界面を特定することができ
る。一方、図2(a)および(e)に示すように入射光
のビーム入射角が60°および80°の場合は、YBC
O膜またはSrTiO3 膜のそれぞれの領域において受
光量が振動的に変動し、受光量からはYBCO/SrT
iO3 積層膜の界面位置を特定することは困難である。
したがって本実施例によるYBCO/SrTiO3 積層
膜においては、図2(b)〜(d)に示すように入射光
のビーム入射角を65°〜75°の範囲に設定すること
によって受光量の変化からエッチングの終点検出を行う
ことが可能であり、エッチングの終点の判定は受光量が
減少し、一定になった時点とすればよい。
As shown in FIGS. 2B to 2D, when the beam incident angle of incident light is in the range of 65 ° to 75 °, YB
In each of the regions of the CO film and the SrTiO 3 film, the amount of received light shows a substantially constant value, and the YBCO / SrT
YBC has a large change at the interface of the iO 3 laminated film.
The interface of the O / SrTiO 3 laminated film can be specified. On the other hand, when the beam incident angles of the incident light are 60 ° and 80 ° as shown in FIGS.
The amount of received light fluctuates oscillatingly in each region of the O film or the SrTiO 3 film, and the amount of received light indicates YBCO / SrT.
It is difficult to specify the interface position of the iO 3 laminated film.
Therefore, in the YBCO / SrTiO 3 laminated film according to the present embodiment, the amount of received light is changed by setting the beam incident angle of the incident light in the range of 65 ° to 75 ° as shown in FIGS. It is possible to detect the end point of the etching from the above, and the end point of the etching can be determined at the time when the amount of received light becomes constant and becomes constant.

【0015】(実施例2)前述した実施例1では、受光
量の強度をエッチング深さに対して測定したが、実施例
1と同じ積層構造を持つYBCO/SrTiO3 積層膜
について、試料への光入射角を65゜から80゜の範囲
で変え、それぞれの入射角におけるイオンビームエッチ
ング中の受光量の変化率を測定した。図3(a),
(b),(c),(d),(e)は、YBCO/SrT
iO3 積層膜の各ビーム入射角60゜,65゜,70
゜,75゜,80゜における受光量の変化率のエッチン
グ深さ依存性を示したものであり、YBCO膜とSrT
iO3 膜との界面を基準点0とし、SrTiO3 膜の領
域を負の符号、YBCO膜の領域を正の符号で表してあ
る。
(Embodiment 2) In Embodiment 1 described above, the intensity of the amount of received light was measured with respect to the etching depth. However, a YBCO / SrTiO 3 laminated film having the same laminated structure as in Embodiment 1 was applied to a sample. The light incident angle was changed in the range of 65 ° to 80 °, and the rate of change of the amount of light received during ion beam etching at each incident angle was measured. Figure 3 (a),
(B), (c), (d) and (e) are YBCO / SrT
Beam incident angles 60 °, 65 °, 70 of the iO 3 laminated film
The etching depth dependency of the rate of change of the amount of received light at °, 75 °, and 80 ° is shown.
The interface with the iO 3 film is used as a reference point 0, the region of the SrTiO 3 film is represented by a negative sign, and the region of the YBCO film is represented by a positive sign.

【0016】図3(b)〜(d)に示すようにビーム入
射光の入射角が65°〜75°の範囲においては、YB
CO膜およびSrTiO3 膜のそれぞれの領域において
受光量変化率はほぼ0に近い値を示すとともに、YBC
O/SrTiO3 積層膜の界面で急峻なピークを持つこ
とから、YBCO/SrTiO3 積層膜の界面を特定す
ることができる。一方、図3(a)および(e)に示す
ように入射光のビーム入射角が60°および80°の場
合は、YBCO膜またはSrTiO3 膜のそれぞれの領
域において受光量の変化率が振動的に変動し、受光量の
変化率からはYBCO/SrTiO3 積層膜の界面位置
を特定することは困難である。したがって本実施例のY
BCO/SrTiO3 積層膜においては、図3(b)〜
(d)に示すように入射光の入射角を65°〜75°の
範囲に設定することによって受光量の変化からエッチン
グの終点検出を行うことが可能であり、エッチングの終
点の判定は、受光量の変化率が急激に増加し、ピークを
取った時点とすればよい。
As shown in FIGS. 3B to 3D, when the incident angle of the beam incident light is in the range of 65 ° to 75 °, YB
In each area of the CO film and the SrTiO 3 film, the rate of change in the amount of received light is close to 0, and the YBC
Since the interface of the O / SrTiO 3 laminated film has a steep peak, the interface of the YBCO / SrTiO 3 laminated film can be specified. On the other hand, as shown in FIGS. 3A and 3E, when the beam incident angles of the incident light are 60 ° and 80 °, the change rate of the received light amount in the respective regions of the YBCO film or the SrTiO 3 film is oscillatory. It is difficult to specify the interface position of the YBCO / SrTiO 3 laminated film from the rate of change of the amount of received light. Therefore, in this embodiment, Y
In the BCO / SrTiO 3 laminated film, FIG.
By setting the incident angle of the incident light in the range of 65 ° to 75 ° as shown in (d), the end point of the etching can be detected from the change in the amount of received light. What is necessary is just to take the time when the rate of change of the amount sharply increases and peaks.

【0017】(実施例3)被加工物としてMgO(00
1)基板上に厚さ200nmのSrTiO3 膜と厚さ5
00nmのYBCO膜とを積層して作製したSrTiO
3 /YBCO積層膜を用いた実施例について説明する。
ここで、SrTiO3 /YBCO積層膜とは、基板側か
ら順にSrTiO3 膜、YBCO膜が積層された膜であ
ることを表す。試料への光入射角を65゜から80゜の
範囲で変え、それぞれのビーム入射角におけるイオンビ
ームエッチング中の受光量を測定した。図4(a),
(b),(c),(d),(e)は、SrTiO3 /Y
BCO積層膜の各ビーム入射角60゜,65゜,70
゜,75゜,80゜における受光量のエッチング深さ依
存性を示したものであり、SrTiO3 /YBCO積層
膜の界面を基準点0とし、YBCO膜の領域を負の符
号、SrTiO3 膜の領域を正の符号で表してある。
(Embodiment 3) MgO (00)
1) A 200 nm thick SrTiO 3 film and a thickness of 5 on the substrate
SrTiO fabricated by laminating a 00 nm YBCO film
An embodiment using a 3 / YBCO laminated film will be described.
Here, the SrTiO 3 / YBCO laminated film means a film in which an SrTiO 3 film and a YBCO film are laminated in order from the substrate side. The light incident angle on the sample was changed in the range of 65 ° to 80 °, and the amount of light received during ion beam etching at each beam incident angle was measured. 4 (a),
(B), (c), (d) and (e) are SrTiO 3 / Y
Beam incident angles 60 °, 65 °, 70 of the BCO laminated film
°, 75 °, which shows the etching depth dependence of the amount of light received at 80 °, the SrTiO 3 / YBCO laminated film interface as a reference point 0, the negative areas of the YBCO film code, the SrTiO 3 film The area is represented by a positive sign.

【0018】図4(b)〜(d)に示すように入射光の
ビーム入射角が65°〜75°の範囲においては、Sr
TiO3 膜およびYBCO膜のそれぞれの領域において
受光量は、ほぼ一定の値を示すとともに、SrTiO3
/YBCO積層膜の界面で大きく変化をすることから、
SrTiO3 /YBCO積層膜の界面を特定することが
できる。一方、図4(a)および(e)に示すように入
射光のビーム入射角が60°および80°の場合は、S
rTiO3 膜またはYBCO膜のそれぞれの領域におい
て、受光量が振動的に変動し、受光量からはSrTiO
3 /YBCO積層膜の界面位置を特定することは困難で
ある。したがって、本実施例のSrTiO3 /YBCO
積層膜においては、図4(b)〜(d)に示すように入
射光のビーム入射角を65°〜75°の範囲に設定する
ことによって受光量の変化からエッチングの終点検出を
行うことが可能であり、エッチングの終点の判定は、受
光量が増加し、一定になった時点とすればよい。
As shown in FIGS. 4B to 4D, when the beam incident angle of the incident light is in the range of 65 ° to 75 °, Sr
The light receiving amount in each of the TiO 3 film and the YBCO film shows a substantially constant value, and the SrTiO 3
/ YBCO layer greatly changes at the interface,
The interface of the SrTiO 3 / YBCO laminated film can be specified. On the other hand, when the beam incident angle of the incident light is 60 ° and 80 ° as shown in FIGS.
In each region of the rTiO 3 film or the YBCO film, the amount of received light fluctuates in a vibrating manner.
It is difficult to specify the interface position of the 3 / YBCO laminated film. Therefore, the SrTiO 3 / YBCO of this embodiment
In the laminated film, as shown in FIGS. 4B to 4D, by setting the beam incident angle of the incident light to a range of 65 ° to 75 °, the end point of the etching can be detected from the change in the amount of received light. It is possible, and the end point of the etching may be determined when the amount of received light increases and becomes constant.

【0019】(実施例4)前述した実施例3では、受光
量をエッチング深さに対し測定したが、実施例3と同じ
積層構造を持つSrTiO3 /YBCO積層膜につい
て、試料への光入射角を65゜から80゜の範囲で変
え、それぞれの入射角におけるイオンビームエッチング
中の受光量の変化率を測定した。図5(a),(b),
(c),(d),(e)は、SrTiO3 /YBCO積
層膜の各ビーム入射角60゜,65゜,70゜,75
゜,80゜における受光量の変化率のエッチング深さ依
存性を示したものであり、SrTiO3 膜とYBCO膜
との界面を基準点0とし、YBCO膜の領域を負の符
号、SrTiO3 膜の領域を正の符号で表してある。
(Embodiment 4) In the above-described embodiment 3, the amount of received light was measured with respect to the etching depth. However, for the SrTiO 3 / YBCO laminated film having the same laminated structure as in the embodiment 3, the light incident angle on the sample was measured. Was changed in the range of 65 ° to 80 °, and the change rate of the amount of received light during the ion beam etching at each incident angle was measured. 5 (a), (b),
(C), (d), and (e) are the incident angles of each beam of the SrTiO 3 / YBCO laminated film 60 °, 65 °, 70 °, 75.
This figure shows the etching depth dependency of the rate of change in the amount of received light at 80 ° and 80 °, where the interface between the SrTiO 3 film and the YBCO film is the reference point 0, and the YBCO film region has a negative sign, and the SrTiO 3 film has a negative sign. Area is represented by a positive sign.

【0020】図5(b)〜(d)に示すように入射光の
ビーム入射角が65°〜75°の範囲においては、Sr
TiO3 膜およびYBCO膜のそれぞれの領域において
受光量の変化率はほぼ0に近い値を示すとともに、Sr
TiO3 /YBCO積層膜の界面で深い谷を持つことか
ら、SrTiO3 /YBCO積層膜の界面を特定するこ
とができる。一方、図5(a)および(e)に示すよう
に入射光のビーム入射角が60°および80°の場合
は、SrTiO3 膜またはYBCO膜のそれぞれの領域
において、受光量の変化率が振動的に変動し、受光量の
変化率からはSrTiO3 /YBCO積層膜の界面位置
を特定することは困難である。したがって本実施例のS
rTiO3 /YBCO積層膜においては、図5(b)〜
(d)に示すように入射光のビーム入射角を65°〜7
5°の範囲に設定することによって受光量の変化からエ
ッチングの終点検出を行うことが可能であり、エッチン
グの終点の判定は、受光量の変化率が急激に減少し、谷
になった時点とすればよい。
As shown in FIGS. 5B to 5D, when the beam incident angle of the incident light is in the range of 65 ° to 75 °, Sr
In each region of the TiO 3 film and the YBCO film, the rate of change in the amount of received light is close to 0, and the Sr
Since there is a deep valley at the interface of the TiO 3 / YBCO laminated film, the interface of the SrTiO 3 / YBCO laminated film can be specified. On the other hand, if the beam incidence angle of the incident light as shown in FIG. 5 (a) and (e) is 60 ° and 80 °, in each area of the SrTiO 3 film or YBCO film, the light-receiving rate of change vibration It is difficult to specify the interface position of the SrTiO 3 / YBCO laminated film from the rate of change in the amount of received light. Therefore, S in the present embodiment
In the case of the rTiO 3 / YBCO laminated film, FIG.
As shown in (d), the beam incident angle of the incident light is 65 ° to 7 °.
It is possible to detect the end point of the etching from the change in the amount of received light by setting the range to 5 °. do it.

【0021】(実施例5)なお、前述した実施例1〜実
施例4においては、絶縁膜としてSrTiO3 膜と、酸
化物超伝導膜としてYBCO膜とからなる多層膜のイオ
ンビームエッチング過程の偏光解析について説明した
が、絶縁膜がLaAlO3 膜またはMgO膜からなり、
酸化物超伝導膜がBi2Sr2CaCu2x(以下BSC
COと略記する)膜からなる多層膜においても、図2〜
図5の場合とほぼ同等の結果が得られた。すなわち、下
層膜が酸化物超伝導体膜で上層膜が絶縁体膜からなる多
層膜(YBCO/LaAlO3 ,YBCO/MgO,B
SCCO/SrTiO3 ,BSCCO/LaAlO3
BSCCO/MgO)においては、入射光のビーム入射
角が65°〜75°の範囲に設定すれば、酸化物超伝導
体膜および絶縁体膜のそれぞれの領域において受光量
は、ほぼ一定の値を示すとともに、酸化物超伝導体膜/
絶縁体膜の界面で大きく変化することから、超伝導体膜
/絶縁体膜の界面を特定することができる。
(Embodiment 5) In the above-mentioned Embodiments 1 to 4, the polarization in the ion beam etching process of the multilayer film composed of the SrTiO 3 film as the insulating film and the YBCO film as the oxide superconducting film was used. The analysis was explained, but the insulating film is made of LaAlO 3 film or MgO film,
The oxide superconducting film is made of Bi 2 Sr 2 CaCu 2 O x (hereinafter referred to as BSC
2 to a multilayer film composed of a film (abbreviated as CO).
Almost the same results as in FIG. 5 were obtained. That is, a multilayer film (YBCO / LaAlO 3 , YBCO / MgO, B) in which the lower film is an oxide superconductor film and the upper film is an insulator film
SCCO / SrTiO 3 , BSCCO / LaAlO 3 ,
In BSCCO / MgO), if the beam incident angle of the incident light is set in the range of 65 ° to 75 °, the light reception amount in each region of the oxide superconductor film and the insulator film has a substantially constant value. And the oxide superconductor film /
Since it greatly changes at the interface of the insulator film, the interface between the superconductor film and the insulator film can be specified.

【0022】また、入射光のビーム入射角が65°〜7
5°の範囲においては、酸化物超伝導体膜および絶縁体
膜のそれぞれの領域において受光量の変化率は、ほぼ0
に近い値を示すとともに、酸化物超伝導体膜/絶縁体膜
の界面で急峻なピークを持つことから、酸化物超伝導体
膜/絶縁体膜の界面を特定することができる。受光量ま
たは受光量の変化率からエッチングの終点検出ができ
る。酸化物超伝導体膜/絶縁体膜の多層構造の場合、エ
ッチングの終点の判定は、受光量が減少し、一定になっ
た時点または受光量の変化率が急激に増加し、ピークを
取った時点とすればよい。
The beam incident angle of the incident light is 65 ° to 7 °.
In the range of 5 °, the rate of change in the amount of received light in each region of the oxide superconductor film and the insulator film is almost zero.
And a sharp peak at the interface between the oxide superconductor film and the insulator film, so that the interface between the oxide superconductor film and the insulator film can be specified. The end point of etching can be detected from the received light amount or the change rate of the received light amount. In the case of the multilayer structure of the oxide superconductor film / insulator film, the end point of the etching was judged to have a peak when the amount of received light decreased and became constant or the rate of change in the amount of received light increased sharply. It may be a point in time.

【0023】一方、下層膜が絶縁体膜で上層膜が酸化物
超伝導体膜からなる多層膜(LaAlO3 /YBCO,
MgO/YBCO,SrTiO3 /BSCCO,LaA
lO3 /BSCCO,MgO/BSCCO)において
は、入射光のビーム入射角が65°〜75°の範囲に設
定すれば、絶縁体膜および酸化物超伝導体膜のそれぞれ
の領域において受光量は、ほぼ一定の値を示すととも
に、絶縁体膜/酸化物超伝導体膜の界面で大きく変化す
ることから、絶縁体膜/酸化物超伝導体膜の界面を特定
することができる。また、入射光のビーム入射角が65
°〜75°の範囲においては、絶縁体膜および酸化物超
伝導体膜のそれぞれの領域において受光量の変化率はほ
ぼ0に近い値を示すとともに、酸化物超伝導体膜/絶縁
体膜の界面で急峻なピークを持つことから、酸化物超伝
導体膜/絶縁体膜の界面を特定することができる。受光
量または受光量の変化率からエッチングの終点検出がで
きる。絶縁体膜/酸化物超伝導体膜の多層構造の場合、
エッチングの終点の判定は、受光量が増加し一定になっ
た時点または受光量の変化率が急激に減少し、谷になっ
た時点とすればよい。
On the other hand, a multilayer film (LaAlO 3 / YBCO, laminar) in which the lower film is an insulator film and the upper film is an oxide superconductor film.
MgO / YBCO, SrTiO 3 / BSCCO, LaA
In the case of (IO 3 / BSCCO, MgO / BSCCO), if the beam incident angle of the incident light is set in the range of 65 ° to 75 °, the amount of received light in each region of the insulator film and the oxide superconductor film becomes Since it shows a substantially constant value and changes greatly at the interface between the insulator film and the oxide superconductor film, the interface between the insulator film and the oxide superconductor film can be specified. The beam incident angle of the incident light is 65
In the range of ° to 75 °, the rate of change of the amount of received light in each region of the insulator film and the oxide superconductor film shows a value close to 0, and the ratio of the oxide superconductor film / insulator film Since the interface has a steep peak, the interface between the oxide superconductor film and the insulator film can be specified. The end point of etching can be detected from the received light amount or the change rate of the received light amount. In the case of a multilayer structure of an insulator film / oxide superconductor film,
The end point of the etching may be determined when the amount of received light increases and becomes constant or when the rate of change in the amount of received light rapidly decreases and reaches a valley.

【0024】[0024]

【発明の効果】以上、説明したように本発明によれば、
酸化物超伝導集積回路プロセスにおいて、従来困難であ
ったエッチング終点検出を容易に行うことができるの
で、プロセスの信頼性を大幅に向上させることができる
という極めて優れた効果が得られる。
As described above, according to the present invention,
In the oxide superconducting integrated circuit process, the etching end point, which has been difficult in the past, can be easily detected, so that an extremely excellent effect that the reliability of the process can be greatly improved can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による偏光解析法によるエッチング終
点検出法を説明するための偏光解析装置を組み込んだイ
オンビームエッチング装置の構成を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of an ion beam etching apparatus incorporating a polarization analyzer for explaining an etching end point detection method by a polarization analyzer according to the present invention.

【図2】 MgO基板上に作製したYBCO膜/SrT
iO3 膜のイオンビームエッチングにおける受光量のエ
ッチング深さ依存性を示す図である。
FIG. 2 YBCO film / SrT fabricated on MgO substrate
FIG. 9 is a diagram showing the dependence of the amount of light received on the etching depth in the ion beam etching of the iO 3 film.

【図3】 MgO基板上に作製したYBCO膜/SrT
iO3 膜のイオンビームエッチングにおける受光量変化
率のエッチング深さ依存性を示す図である。
FIG. 3 YBCO film / SrT fabricated on MgO substrate
FIG. 9 is a diagram showing the dependence of the rate of change of the amount of received light on the etching depth in the ion beam etching of the iO 3 film.

【図4】 MgO基板上に作製したSrTiO3 膜/Y
BCO膜のイオンビームエッチングにおける受光量のエ
ッチング深さ依存性を示す図である。
FIG. 4 SrTiO 3 film / Y formed on MgO substrate
It is a figure which shows the etching depth dependence of the light-receiving amount in ion beam etching of a BCO film.

【図5】 MgO基板基板上に作製したSrTiO3
/YBCO膜のイオンビームエッチングにおける受光量
変化率のエッチング深さ依存性を示す図である。
FIG. 5 is a diagram showing the etching depth dependence of the rate of change in the amount of received light in ion beam etching of a SrTiO 3 film / YBCO film formed on a MgO substrate.

【符号の説明】[Explanation of symbols]

1…エッチングチャンバー、2…アルゴンイオンガン、
3…試料ホルダー、4…ヘリウム・ネオンレーザー光
源、5…偏光子、6…検光子、7…受光器。
1. Etching chamber, 2. Argon ion gun,
3 ... sample holder, 4 ... helium / neon laser light source, 5 ... polarizer, 6 ... analyzer, 7 ... light receiver.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下層が酸化物超伝導膜および上層が絶縁
膜からなる積層膜のエッチングプロセスにおいて、偏光
解析を行う偏光子,検光子の方位角を膜法線に対して6
5度〜75度の範囲に設定し、受光量が増大した後、一
定になった時点をエッチング終点とすることを特徴とし
た偏光解析法によるエッチング終点検出法。
1. An azimuthal angle of a polarizer and an analyzer for performing polarization analysis in an etching process of a laminated film in which a lower layer is an oxide superconducting film and an upper layer is an insulating film.
An etching end point detection method by ellipsometry, characterized in that the etching end point is set to be within a range of 5 degrees to 75 degrees, and after the amount of received light is increased, the point becomes constant.
【請求項2】 下層が酸化物超伝導膜および上層が絶縁
膜からなる積層膜のエッチングプロセスにおいて、偏光
解析を行う偏光子,検光子の方位角を膜法線に対して6
5度〜75度の範囲に設定し、受光量の変化率がピーク
をとったことを確認してエッチング終点とすることを特
徴とした偏光解析法によるエッチング終点検出法。
2. An azimuth angle of a polarizer and an analyzer for polarization analysis is 6 relative to a film normal in an etching process of a laminated film having a lower layer made of an oxide superconducting film and an upper layer made of an insulating film.
An etching end point detection method by ellipsometry, which is set in the range of 5 degrees to 75 degrees, and is confirmed as the etching end point after confirming that the rate of change in the amount of received light has reached a peak.
【請求項3】 下層が絶縁膜および上層が酸化物超伝導
膜からなる積層膜のエッチングプロセスにおいて、偏光
解析を行う偏光子,検光子の方位角を膜法線に対して6
5度〜75度の範囲に設定し、受光量が減少した後、一
定になった時点をエッチング終点とすることを特徴とし
た偏光解析法によるエッチング終点検出法。
3. An azimuthal angle of a polarizer and an analyzer for performing polarization analysis in an etching process of a laminated film in which a lower layer is an insulating film and an upper layer is an oxide superconducting film is 6 degrees with respect to a film normal.
An etching end point detection method by ellipsometry, wherein the etching end point is set in a range of 5 degrees to 75 degrees and a point in time when the amount of received light decreases and becomes constant becomes an etching end point.
【請求項4】 下層が絶縁膜および上層が酸化物超伝導
膜からなる積層膜のエッチングプロセスにおいて、偏光
解析を行う偏光子,検光子の方位角を膜法線に対して6
5度〜75度の範囲に設定し、受光量の変化率が谷にな
ったことを確認してエッチング終点とすることを特徴と
した偏光解析法によるエッチング終点検出法。
4. An azimuth angle of a polarizer and an analyzer for polarization analysis is 6 with respect to a film normal in an etching process of a laminated film having a lower layer made of an insulating film and an upper layer made of an oxide superconducting film.
An etching end point detection method based on ellipsometry, which is set in the range of 5 degrees to 75 degrees, and confirms that the rate of change in the amount of received light has reached a valley and sets the etching end point.
JP6278914A 1994-11-14 1994-11-14 Ellipsometric end point detection method by ellipsometry Expired - Lifetime JP2601227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6278914A JP2601227B2 (en) 1994-11-14 1994-11-14 Ellipsometric end point detection method by ellipsometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6278914A JP2601227B2 (en) 1994-11-14 1994-11-14 Ellipsometric end point detection method by ellipsometry

Publications (2)

Publication Number Publication Date
JPH08139076A true JPH08139076A (en) 1996-05-31
JP2601227B2 JP2601227B2 (en) 1997-04-16

Family

ID=17603853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6278914A Expired - Lifetime JP2601227B2 (en) 1994-11-14 1994-11-14 Ellipsometric end point detection method by ellipsometry

Country Status (1)

Country Link
JP (1) JP2601227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805924A1 (en) * 2000-03-06 2001-09-07 France Telecom Polycrystalline silicon layer etching process used in production of emitter self-aligned with extrinsic base of bipolar transistor involves stopping plasma-etching on or in germanium or silicon-germanium intermediate layer, to form grooves
WO2020028105A1 (en) * 2018-07-31 2020-02-06 Tokyo Electron Limited Normal-incidence in-situ process monitor sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805924A1 (en) * 2000-03-06 2001-09-07 France Telecom Polycrystalline silicon layer etching process used in production of emitter self-aligned with extrinsic base of bipolar transistor involves stopping plasma-etching on or in germanium or silicon-germanium intermediate layer, to form grooves
WO2020028105A1 (en) * 2018-07-31 2020-02-06 Tokyo Electron Limited Normal-incidence in-situ process monitor sensor
US10978278B2 (en) 2018-07-31 2021-04-13 Tokyo Electron Limited Normal-incident in-situ process monitor sensor
US11961721B2 (en) 2018-07-31 2024-04-16 Tokyo Electron Limited Normal-incidence in-situ process monitor sensor

Also Published As

Publication number Publication date
JP2601227B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US4618262A (en) Laser interferometer system and method for monitoring and controlling IC processing
US6695947B2 (en) Device for manufacturing semiconductor device and method of manufacturing the same
EP0566218B1 (en) Method for finding a preferred spot for a laser beam of a laser beam interferometer and laser interferometer apparatus
US5835221A (en) Process for fabricating a device using polarized light to determine film thickness
US5151584A (en) Method and apparatus for endpoint detection in a semiconductor wafer etching system
EP0653621B1 (en) A process for fabricating a device using an ellipsometric technique
CN107393874B (en) Device and method for removing bubbles from flexible substrate
US6605225B1 (en) Method and apparatus for fabricating three dimensional element from anisotropic material
JP2601227B2 (en) Ellipsometric end point detection method by ellipsometry
Habermeier et al. The growth of (110) Y Ba Cu O thin films and their characterization by optical methods
US6731386B2 (en) Measurement technique for ultra-thin oxides
US5077464A (en) Method and apparatus for endpoint detection in a semiconductor wafer etching system
Nakashima et al. Characterization of ion implanted and laser annealed polycrystalline Si by a Raman microprobe
JP2006108555A (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
Hu et al. Electron cyclotron resonance plasma oxidation studies of InP
Weegels et al. In situ monitoring of electron cyclotron resonance plasma processing of GaAs surfaces by optical reflection spectroscopy
JP2682483B2 (en) Secondary ion mass spectrometry
JP2798288B2 (en) Method and apparatus for non-destructively measuring fine defects in a material
KR200207691Y1 (en) Wafer inspection system
Reinhardt et al. Use of beam profile reflectometry to determine depth of silicon etch damage and contamination
JP2005354098A (en) Method of manufacturing semiconductor device, and the semiconductor device
Motooka et al. Optical measurement of carrier profiles in silicon
JP2856562B2 (en) Insulation film inspection method
TW202331228A (en) Method for inspecting silicon carbide wafer
Sun et al. Characterizing antireflection coatings on textured monocrystalline silicon with spectroscopic ellipsometry