JPH0813874B2 - New copolymer - Google Patents

New copolymer

Info

Publication number
JPH0813874B2
JPH0813874B2 JP61239762A JP23976286A JPH0813874B2 JP H0813874 B2 JPH0813874 B2 JP H0813874B2 JP 61239762 A JP61239762 A JP 61239762A JP 23976286 A JP23976286 A JP 23976286A JP H0813874 B2 JPH0813874 B2 JP H0813874B2
Authority
JP
Japan
Prior art keywords
copolymer
malic acid
benzyl
ester
malide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61239762A
Other languages
Japanese (ja)
Other versions
JPS6392641A (en
Inventor
辰郎 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP61239762A priority Critical patent/JPH0813874B2/en
Publication of JPS6392641A publication Critical patent/JPS6392641A/en
Publication of JPH0813874B2 publication Critical patent/JPH0813874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体内分解吸収性高分子として、医薬及び
医療の分野での用途が大いに期待できる新規な共重合体
とその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a novel copolymer which can be greatly expected to be used in the fields of medicine and medicine as a biodegradable and absorbable polymer and a method for producing the same.

〔発明の背景〕[Background of the Invention]

ドラグ デリバリー システムの高分子キャリアーと
して生体内分解吸収性高分子が近年脚光を浴びている。
その代表的なものとしてポリグリコール酸、ポリ乳酸、
ポリ−β−ヒドロキシブチレート等が挙げられるが、こ
れらのポリエステルはいずれも修飾可能な官能基を有し
ていないために、共有結合により新たな機能を付与する
ことはできず、利用範囲が限られている。
In recent years, biodegradable and absorbable polymers have been spotlighted as polymer carriers for drag delivery systems.
Typical examples are polyglycolic acid, polylactic acid,
Poly-β-hydroxybutyrate and the like can be mentioned, but since none of these polyesters has a modifiable functional group, a new function cannot be imparted by a covalent bond and the range of use is limited. Has been.

一方、プロテアーゼ・インヒビターとして青かび中よ
り発見されたポリ−α−リンゴ酸(分子量約5,000)は
側鎖にカルボキシル基をもつポリラクチド類であるの
で、ポリグリコール酸やポリ乳酸の誘導体に相当し、医
薬及び医療分野で広範囲な利用が期待できる、化学修飾
可能なポリラクチド型生体内分解吸収性ポリエステルと
見ることができる。即ち、リンゴ酸ポリマーは側鎖カル
ボキシル基を化学修飾することにより新たな機能を付与
することができる生体内吸収性ポリマーとして注目すべ
き高分子材料と言える。
On the other hand, poly-α-malic acid (molecular weight of about 5,000), which was discovered as a protease inhibitor in blue mold, is a polylactide having a carboxyl group in its side chain, and thus corresponds to a derivative of polyglycolic acid or polylactic acid. It can be seen as a chemically modifiable polylactide-type biodegradable and absorbable polyester, which can be expected to be widely used in the medical field. That is, it can be said that the malic acid polymer is a polymer material that should be noted as a bioabsorbable polymer that can impart a new function by chemically modifying a side chain carboxyl group.

そこで、このリンゴ酸ポリマーの合成法についての研
究が、Lenz及びVert〔A.C.S.Polymer Preprints,20(1),
608(1979);米国特許第4,265,247号明細書(198
1)〕,中島及び本発明者ら〔Reports of The Faculty
Engineering Tottori University,8,124(1977)〕及び
本発明者〔高分子加工,34,382(1985)〕等によってな
されているが、これまでに得られたリンゴ酸ポリマーは
その分子量が小さくいずれも103のオーダーであり、分
子量の点で必ずしも満足すべき結果が得られていない。
Therefore, research on the synthesis method of this malic acid polymer was conducted by Lenz and Vert [ACS Polymer Preprints, 20 (1) ,
608 (1979); U.S. Pat. No. 4,265,247 (198
1)], Nakajima and the present inventors [Reports of The Faculty
Engineering Tottori University, 8 , 124 (1977)] and the present inventor [polymer processing, 34 , 382 (1985)], etc., but the malic acid polymers obtained so far have small molecular weights. 10 is a third order, not necessarily satisfactory results in terms of molecular weight is not obtained.

〔発明の目的〕[Object of the Invention]

本発明は上記した如き状況に鑑みなされたもので、分
子内に化学修飾可能なカルボキシル基を有し、且つ高分
子量の生体内分解吸収性高分子を提供することを目的と
する。
The present invention has been made in view of the above situation, and an object thereof is to provide a biodegradable and absorbable polymer having a high molecular weight and having a carboxyl group capable of being chemically modified in the molecule.

〔発明の構成〕[Structure of Invention]

本発明は、(1)一般式[I] (式中、m及びnは夫々独立して2以上の整数を表
す。) で示され、分子量が11,000〜37,000である、α−リンゴ
酸と乳酸との共重合体、及び(2)マライドジベンジル
エステルとL−ラクチドとを開環共重合させ、然る後、
脱ベンジル保護することにより製造することを特徴とす
る、一般式[I] (式中、m及びnは前記に同じ。) で示され、分子量が11,000〜37,000である、α−リンゴ
酸と乳酸との共重合体の製造法、の発明である。
The present invention provides (1) general formula [I] (In the formula, m and n each independently represent an integer of 2 or more.) And a copolymer of α-malic acid and lactic acid having a molecular weight of 11,000 to 37,000, and (2) malide diester. Ring-opening copolymerization of benzyl ester and L-lactide, after which
A compound of the general formula [I], which is characterized by being prepared by debenzylation protection. (In the formula, m and n are the same as the above.), And the invention is a method for producing a copolymer of α-malic acid and lactic acid having a molecular weight of 11,000 to 37,000.

本発明の共重合体は、例えば、β−ベンジル−L−リ
ンゴ酸の環状二量体であるマライドジベンジルエステル と、L−乳酸の環状二量体であるL−ラクチド とを開環共重合させ、得られたβ−ベンジルマレート・
乳酸共重合体を、接触還元して脱ベンジル保護すること
により容易に得ることができる。
The copolymer of the present invention is, for example, malide dibenzyl ester which is a cyclic dimer of β-benzyl-L-malic acid. And L-lactide, which is a cyclic dimer of L-lactic acid Ring-opening copolymerization of and β-benzylmaleate
The lactic acid copolymer can be easily obtained by catalytic reduction and debenzylation protection.

マライドジベンジルエステルとL−ラクチドとの開環
共重合は、通常、有機錫系触媒の存在下で行われる。有
機錫系触媒としては、例えばオクチル酸錫、ジラウリル
酸ジ−n−ブチル錫、テトラフェニル錫等が挙げられる
が、これらに限定されるものではない。重合温度は特に
限定されるものではないが通常150〜300℃であり、重合
時間は重合温度その他の反応条件や目的とする共重合体
の物性等を考慮して適宜定められる。重合の方法自体は
自体公知の重合方法に準じてこれを行えば足りる。反応
後は反応混合物を要すればこれを溶解し得る適当な溶媒
に溶解し、通常、無水酢酸で処理して重合体末端を保護
した後、常法によりこれを例えば目的物を溶解しない溶
媒中に注入するなどして結晶化させ、単離すればよい。
得られた共重合体中のβ−ベンジルマレートのモル分率
は重合温度、重合時間及び原料として用いるマライドジ
ベンジルエステルのモル分率等によって異なるが、用い
るマライドジベンジルエステルのモル分率が0.3〜0.5程
度、重合温度180〜200℃程度、重合時間24〜48時間程度
の場合、得られた共重合体中のβ−ベンジルマレートの
モル分率は、通常5〜25%(0.05〜0.25)程度である。
マライドジベンジルエステルの使用割合を増やせば、一
般に、得られる共重合体中のβ−ベンジルマレートのモ
ル分率も増大するが、それに伴い共重合体の分子量も低
下する傾向があるので、マライドジベンジルエステルの
使用割合をどの程度にするかは、目的により自ら異な
り、特に限定されない。
Ring-opening copolymerization of malide dibenzyl ester and L-lactide is usually carried out in the presence of an organotin catalyst. Examples of the organotin catalyst include, but are not limited to, tin octylate, di-n-butyltin dilaurate, and tetraphenyltin. The polymerization temperature is not particularly limited, but is usually 150 to 300 ° C., and the polymerization time is appropriately determined in consideration of the polymerization temperature and other reaction conditions, the physical properties of the intended copolymer, and the like. The polymerization method itself may be carried out according to a known polymerization method. After the reaction, the reaction mixture is dissolved in a suitable solvent capable of dissolving it if necessary, and usually, after treating with acetic anhydride to protect the polymer end, this is subjected to a conventional method, for example, in a solvent which does not dissolve the target substance. It may be crystallized by injecting into
The mole fraction of β-benzylmalate in the obtained copolymer is different depending on the polymerization temperature, the polymerization time, the mole fraction of malide dibenzyl ester used as a raw material, etc., but the mole fraction of the malide dibenzyl ester used is When the polymerization temperature is about 0.3 to 0.5, the polymerization temperature is about 180 to 200 ° C., and the polymerization time is about 24 to 48 hours, the molar fraction of β-benzylmalate in the obtained copolymer is usually 5 to 25% (0.05 to 0.25).
When the proportion of malide dibenzyl ester used is increased, the molar fraction of β-benzylmalate in the resulting copolymer generally increases, but the molecular weight of the copolymer tends to decrease accordingly. The proportion of dodibenzyl ester used depends on the purpose and is not particularly limited.

β−ベンジルマレート・乳酸共重合体の脱ベンジル保
護は、通常、パラジウム・カーボン、白金黒、ラネーニ
ッケル等を触媒とした接触還元により行われる。反応温
度は通常室温であり、溶媒としては通常酢酸エチルが用
いられるが特にこれに限定されない。反応後は常法によ
り触媒を除き、溶媒を留去して、目的とするα−リンゴ
酸・乳酸共重合体を得る。得られた共重合体中のα−リ
ンゴ酸のモル分率(n/m+n)は、脱ベンジル保護処理
前のβ−ベンジルマレートのモル分率が通常5〜25%
(0.05〜0.25)程度であることから、必然的に5〜25%
(0.05〜0.25)程度となる。
Debenzylation protection of β-benzyl maleate / lactic acid copolymer is usually carried out by catalytic reduction using palladium / carbon, platinum black, Raney nickel or the like as a catalyst. The reaction temperature is usually room temperature, and ethyl acetate is usually used as the solvent, but the solvent is not particularly limited thereto. After the reaction, the catalyst is removed by a conventional method and the solvent is distilled off to obtain the desired α-malic acid / lactic acid copolymer. The molar fraction (n / m + n) of α-malic acid in the obtained copolymer is usually 5 to 25% of that of β-benzylmalate before debenzylation protection.
(0.05 to 0.25), so inevitably 5 to 25%
(0.05 to 0.25).

本発明の製造法に於て用いられるマライドジベンジル
エステルは、β−ベンジルマレートを酸化亜鉛、酸化ア
ンチモン等の触媒の存在下、減圧加熱(例えば、10〜30
mmHg、100〜200℃)して脱水縮合させることにより容易
に得られる。生成物の単離は、反応混合物を高温、高真
空(例えば、180〜220℃、0.1〜1mmHg)にすることによ
り、昇華法で分取してもよいし、また、常法により触媒
を除去した後、反応液を液体クロマトグラフィーにかけ
ることによって分取してもよい。
The malide dibenzyl ester used in the production method of the present invention is obtained by heating β-benzylmalate under reduced pressure (for example, 10 to 30) in the presence of a catalyst such as zinc oxide or antimony oxide.
mmHg, 100-200 ° C) and dehydration condensation is performed to easily obtain. The product may be isolated by sublimation by subjecting the reaction mixture to high temperature and high vacuum (for example, 180 to 220 ° C, 0.1 to 1 mmHg), or the catalyst may be removed by a conventional method. After that, the reaction solution may be separated by subjecting it to liquid chromatography.

β−ベンジルマレートは、L−リンゴ酸又はL−アス
パラギン酸を出発物質として、通常、下記又はの合
成経路に従い合成される。
β-Benzylmalate is usually synthesized from L-malic acid or L-aspartic acid as a starting material according to the following synthetic route or.

本発明の製造法に於て用いられるマライドジベンジル
エステルは上記いずれの合成経路により合成されたβ−
ベンジルマレートから得られたマライドジベンジルエス
テルでも、また、上記,以外の方法により合成した
β−ベンジルマレートから得られたマライドジベンジル
エステルでも、いずれにてもよいことは言うまでもな
い。
The malide dibenzyl ester used in the production method of the present invention is β-synthesized by any of the above synthetic routes.
It goes without saying that either a malide dibenzyl ester obtained from benzyl malate or a malide dibenzyl ester obtained from β-benzyl maleate synthesized by a method other than the above may be used.

本発明の製造法によれば、通常、分子量10,000以上の
本発明共重合体が容易に且つ、効果的に得られる。
According to the production method of the present invention, the copolymer of the present invention having a molecular weight of 10,000 or more is usually easily and effectively obtained.

以下に、実施例及び参考例を示すが、本発明はこれら
実施例、参考例により何ら制約を受けるものではない。
Examples and Reference Examples are shown below, but the present invention is not limited to these Examples and Reference Examples.

〔実施例〕〔Example〕

参考例1.β−ベンジル−L−マレートの合成 (1)L−リンゴ酸クロラリドの合成 L−リンゴ酸13.4g(0.1モル)と抱水クロラール16.5
g(0.1モル)を混合し、これに濃硫酸25mlを攪拌下徐々
に加えた。混合溶液は均一溶液となった後、ただちに固
化した。一夜放置後、氷水中に投入し別、水洗、乾燥
して粗晶を得た。これをトルエンから2度再結晶してL
−リンゴ酸クロラリドの無色針状結晶を得た。
Reference Example 1. Synthesis of β-benzyl-L-malate (1) Synthesis of L-malic acid chloralide L-malic acid 13.4 g (0.1 mol) and chloral hydrate 16.5
g (0.1 mol) was mixed, and 25 ml of concentrated sulfuric acid was gradually added thereto with stirring. The mixed solution became a homogeneous solution and immediately solidified. After leaving it overnight, it was poured into ice water, separated, washed with water and dried to obtain a crude crystal. This is recrystallized twice from toluene and L
-Colorless needle crystals of maloyl chloride were obtained.

収率 61.5%。融点 139.1〜140.0℃。 Yield 61.5%. Melting point 139.1-140.0 ° C.

〔α〕▲25 D▼=+85.6°(C=2.50,ベンゼン)。[Α] ▲ 25 D ▼ = + 85.6 ° (C = 2.50, benzene).

1H-NMR(CDCl3)δppm:3.0(d,2H,CH2),4.8(t,1H,C
H),5.8(s,1H,CCl3-CH),8.8(broad,1H,COOH)。
1 H-NMR (CDCl 3 ) δppm: 3.0 (d, 2H, CH 2 ), 4.8 (t, 1H, C
H), 5.8 (s, 1H, CCl 3 -CH), 8.8 (broad, 1H, COOH).

IR(KBr)νcm-1:1680(C=O),1440,1390(CH2),
1300(CCl3),1210(エステル)。
IR (KBr) ν cm -1 : 1680 (C = O), 1440, 1390 (CH 2 ),
1300 (CCl 3), 1210 (ester).

(2)L−リンゴ酸クロラリドベンジルエステルの合成 L−リンゴ酸クロラリド10g(38ミリモル)とベンジ
ルアルコール4.7ml(45.6ミリモル)を脱水アセトン200
mlに溶解し、攪拌しながら氷冷した。その溶液にジシク
ロヘキシルカルボジイミド(DCC)9.4g(45.6ミリモ
ル)を溶かしたアセトン溶液を滴下した。1時間氷浴中
で攪拌後、さらに室温で3日間攪拌を行った。反応混合
物を氷冷後、過することにより反応中に生じたジシク
ロヘキシルウレア(DCU)を除去し、その液を中圧液
体クロマトグラフィーにかけて単離(展開溶媒:n−ヘキ
サン/酢酸エチル=3/1容積比)し、パウダー状のL−
リンゴ酸クロラリドベンジルエステルを得た。
(2) Synthesis of L-malic acid chloralide benzyl ester 10 g (38 mmol) of L-malic acid chloralide and 4.7 ml (45.6 mmol) of benzyl alcohol were dehydrated with acetone 200
It was dissolved in ml and ice-cooled with stirring. An acetone solution containing 9.4 g (45.6 mmol) of dicyclohexylcarbodiimide (DCC) was added dropwise to the solution. After stirring in an ice bath for 1 hour, the mixture was further stirred at room temperature for 3 days. After cooling the reaction mixture with ice, dicyclohexylurea (DCU) generated during the reaction was removed by passing, and the liquid was isolated by medium pressure liquid chromatography (developing solvent: n-hexane / ethyl acetate = 3/1). Volume ratio) and powdered L-
Obtained malic acid chloralidobenzyl ester.

収率 16.5%。融点 163.6〜165.1℃。 Yield 16.5%. Melting point 163.6-165.1 ° C.

Rf:0.35(n−ヘキサン/酢酸エチル=3/1容積比)。 Rf: 0.35 (n-hexane / ethyl acetate = 3/1 volume ratio).

〔α〕▲25 D▼=+25.7°(C=1.0,クロロホル
ム)。
[Α] ▲ 25 D ▼ = + 25.7 ° (C = 1.0, chloroform).

1H-NMR(CDCl3)δppm:3.0(d,2H,CH2),4.8(t,1H,C
H),5.1(s,2H,C6H5CH2 ),5.7(s,1H,CCl3-CH),7.3(b
road,5H,C6H5)。
1 H-NMR (CDCl 3 ) δppm: 3.0 (d, 2H, CH 2 ), 4.8 (t, 1H, C
H), 5.1 (s, 2H, C 6 H 5 C H 2 ), 5.7 (s, 1H, CCl 3 -CH), 7.3 (b
road, 5H, C 6 H 5 ).

IR(KBr)νcm-1:1720(C=O),1450,1400(CH2),
1300(CCl3),1170(エステル),740,700(フェニ
ル)。
IR (KBr) ν cm -1 : 1720 (C = O), 1450, 1400 (CH 2 ),
1300 (CCl 3), 1170 (ester), 740,700 (phenyl).

(3)β−ベンジル−L−マレートの合成 L−リンゴ酸クロラリドベンジルエステル0.45gを1N
−塩酸15mlとアセトン15mlとの混合溶液中に入れ室温で
5日間攪拌反応させた。反応溶液からアセトンを留去
し、n−ヘキサンを用いて抽出した。この有機層を中圧
液体クロマトグラフィーにより分取(展開溶媒n−ヘキ
サン/酢酸エチル=3/1容積比)し、シロップ状のβ−
ベンジル−L−マレートを得た。
(3) Synthesis of β-benzyl-L-malate L-malic acid chloralide benzyl ester 0.45 g was added to 1N
-The mixture was placed in a mixed solution of hydrochloric acid (15 ml) and acetone (15 ml) and reacted with stirring at room temperature for 5 days. Acetone was distilled off from the reaction solution, and the mixture was extracted with n-hexane. This organic layer was separated by medium pressure liquid chromatography (developing solvent n-hexane / ethyl acetate = 3/1 volume ratio) to give a syrup β-
Benzyl-L-malate was obtained.

収率 63.4%。〔α〕▲25 D▼=−8.6°(C=1.0,メ
タノール)。
Yield 63.4%. [Α] ▲ 25 D ▼ = -8.6 ° (C = 1.0, methanol).

1H-NMR(CD3COCD3)δppm:2.9(d,2H,CH2),4.7(t,1
H,CH),5.1(s,2H,C6H5CH2 ),6.7(broad,2H,OH,COO
H),7.3(broad,5H,C6H5)。
1 H-NMR (CD 3 COCD 3 ) δppm: 2.9 (d, 2H, CH 2 ), 4.7 (t, 1
H, CH), 5.1 (s, 2H, C 6 H 5 C H 2 ), 6.7 (broad, 2H, OH, COO
H), 7.3 (broad, 5H , C 6 H 5).

IR(KBr)νcm-1:1720(C=O),1500(フェニル),
1450,1380(CH2),1240,1170(エステル),740,700(フ
ェニル)。
IR (KBr) νcm -1 : 1720 (C = O), 1500 (phenyl),
1450,1380 (CH 2), 1240,1170 (ester), 740,700 (phenyl).

参考例2.β−ベンジル−L−マレートの合成 (1)β−ベンジル−L−アスパルテートの合成 L−アスパラギン酸10.1g(75.1ミリモル)に80%硫
酸10.1g(82.5ミリモル)とベンジルアルコール23.9ml
(231ミリモル)を加え、70℃で攪拌した。約30分後に
均一溶液となったが、さらに同温度で2時間攪拌した。
反応後同温度で2時間減圧濃縮して水分を除いた後、反
応混合物を炭酸水素ナトリウム14gを含む冷水50ml中に
投入し、充分攪拌した。これに、エーテル30mlを加えて
さらに攪拌した後結晶を取し、粗製物を冷水で洗浄、
乾燥後、これを15倍量の水で再結晶してβ−ベンジル−
L−アスパルテートの針状結晶を得た。
Reference Example 2. Synthesis of β-benzyl-L-malate (1) Synthesis of β-benzyl-L-aspartate To 10.1 g (75.1 mmol) of L-aspartic acid, 10.1 g (82.5 mmol) of 80% sulfuric acid and benzyl alcohol 23.9 ml
(231 mmol) was added, and the mixture was stirred at 70 ° C. After about 30 minutes, a homogeneous solution was obtained, but the solution was further stirred at the same temperature for 2 hours.
After the reaction, the mixture was concentrated under reduced pressure at the same temperature for 2 hours to remove water, and then the reaction mixture was poured into 50 ml of cold water containing 14 g of sodium hydrogencarbonate and sufficiently stirred. To this, 30 ml of ether was added, and the mixture was further stirred, crystals were taken, and the crude product was washed with cold water.
After drying, this was recrystallized with 15 times amount of water to obtain β-benzyl-
Acicular crystals of L-aspartate were obtained.

収率 43.4%。融点 216.3〜217.2℃。 Yield 43.4%. Melting point 216.3-217.2 ° C.

〔α〕▲25 D▼=+28.4°(C=0.50,1N−塩酸)。[Α] ▲ 25 D ▼ = + 28.4 ° (C = 0.50,1N-hydrochloric acid).

1H-NMR(D2O)δppm:3.1(d,2H,CH2),4.1(t,1H,C
H),5.2(s,2H,C6H5CH2 ),7.4(broad,5H,C6H5)。
1 H-NMR (D 2 O) δppm: 3.1 (d, 2H, CH 2 ), 4.1 (t, 1H, C
H), 5.2 (s, 2H , C 6 H 5 C H 2), 7.4 (broad, 5H, C 6 H 5).

IR(KBr)νcm-1:3400(NH2),1730(C=O),1500
(フェニル),1400(CH2),1220,1160(エステル),74
0,700(フェニル)。
IR (KBr) νcm -1 : 3400 (NH 2 ), 1730 (C = O), 1500
(Phenyl), 1400 (CH 2 ), 1220, 1160 (ester), 74
0,700 (phenyl).

(2)β−ベンジル−L−マレートの合成 β−ベンジル−L−アスパルテート5g(22.4ミリモ
ル)を0℃で1N−硫酸67.5ml(33.6ミリモル)に溶解し
た。これに亜硝酸ナトリウム2.4g(33.6ミリモル)の水
溶液を同温度で1時間かけて滴下した後、3時間攪拌し
た。反応溶液にさらに亜硝酸ナトリウム0.47g(6.7ミリ
モル)を加え、室温で一昼夜放置した後、エーテルで抽
出することにより粗シロップを得た。これをメタノール
中で活性炭処理してβ−ベンジル−L−マレートの無色
透明シロップを得た。
(2) Synthesis of β-benzyl-L-malate 5 g (22.4 mmol) of β-benzyl-L-aspartate was dissolved in 67.5 ml (33.6 mmol) of 1N-sulfuric acid at 0 ° C. An aqueous solution of 2.4 g (33.6 mmol) of sodium nitrite was added dropwise thereto at the same temperature over 1 hour, and then stirred for 3 hours. 0.47 g (6.7 mmol) of sodium nitrite was further added to the reaction solution, and the mixture was allowed to stand at room temperature for one day and then extracted with ether to obtain a crude syrup. This was treated with activated carbon in methanol to obtain a colorless transparent syrup of β-benzyl-L-malate.

収率 94.7%。 Yield 94.7%.

1H-NMR及びIRは参考例1で得られたものと一致した。 1 H-NMR and IR agreed with those obtained in Reference Example 1.

参考例3.マライドジベンジルエステルの合成 酸化亜鉛0.12gの存在下、β−ベンジル−L−マレー
ト5.9gを20mmHg,140℃で10時間減圧加熱することによ
り、脱水縮合させた。反応後酸化亜鉛を去し液を中
圧液体クロマトグラフィーにかけることにより目的物を
分取した(展開溶媒:n−ヘキサン/酢酸エチル=3/1容
積比)。これを酢酸エチルで3回再結晶することによ
り、環状二量体マライドジベンジルエステルの無色針状
結晶を得た。
Reference Example 3. Synthesis of Malide Dibenzyl Ester In the presence of 0.12 g of zinc oxide, 5.9 g of β-benzyl-L-malate was dehydrated and condensed by heating under reduced pressure at 20 mmHg and 140 ° C. for 10 hours. After the reaction, zinc oxide was removed and the liquid was subjected to medium pressure liquid chromatography to separate the target product (developing solvent: n-hexane / ethyl acetate = 3/1 volume ratio). This was recrystallized three times with ethyl acetate to give colorless needle crystals of cyclic dimer malide dibenzyl ester.

収率 17%。 融点 85.6〜86.4℃。 Yield 17%. Melting point 85.6-86.4 ° C.

Rf:0.59(n−ヘキサン/酢酸エチル=3/1容積比)。 Rf: 0.59 (n-hexane / ethyl acetate = 3/1 volume ratio).

〔α〕▲25 D▼:−0.80°(C=2.00,メタノール)。[Α] ▲ 25 D ▼: −0.80 ° (C = 2.00, methanol).

元素分析値:C22H20O8 計算値(%) C:64.07,H:4.89 実測値(%) C:63.92,H:4.92。Elemental analysis: C 22 H 20 O 8 Calculated (%) C: 64.07, H : 4.89 Found (%) C: 63.92, H : 4.92.

質量分析法:m/e412(M+)。Mass spectrometry: m / e 412 (M + ).

1H-NMR(CD3COCD3)δppm:3.2(d,2H,CH2),5.2(s,2
H,C6H5CH2 ),6.8(t,1H,CH),7.3(broad,5H,C6H5)。
1 H-NMR (CD 3 COCD 3 ) δppm: 3.2 (d, 2H, CH 2 ), 5.2 (s, 2
H, C 6 H 5 C H 2 ), 6.8 (t, 1H, CH), 7.3 (broad, 5H, C 6 H 5 ).

IR(KBr)νcm-1:1760〜1740(エステル,C=O),150
0(フェニル),1460,1380(CH2),1290,1260,1230,1150
(エステル),750,700(フェニル)。
IR (KBr) ν cm -1 : 1760 to 1740 (ester, C = O), 150
0 (phenyl), 1460, 1380 (CH 2 ), 1290, 1260, 1230, 1150
(Ester), 750,700 (phenyl).

参考例4.マライドジベンジルエステルの合成 β−ベンジル−L−マレート11.9gとSb2O30.012gを20
mmHg,180℃で4時間減圧加熱することにより、脱水縮合
を行った。反応後は参考例3と同様に処理して参考例3
と同品質のマライドジベンジルエステルを得た。
Reference Example 4 Synthesis of Malide Dibenzyl Ester 20. 11.9 g of β-benzyl-L-malate and 0.012 g of Sb 2 O 3 were added.
Dehydration condensation was performed by heating under reduced pressure at mmHg and 180 ° C. for 4 hours. After the reaction, the same treatment as in Reference Example 3 was carried out to prepare Reference Example 3.
The same quality of malide dibenzyl ester was obtained.

収率 6%。 Yield 6%.

実施例1.α−リンゴ酸・乳酸共重合体の合成 (1)β−ベンジルマレート・乳酸共重合体の合成重合
管内をジクロロジメチルシランを用いてシラン化させ、
乾燥トルエンにより洗浄した後、120℃の乾燥器内で使
用直前まで十分に乾燥させた。この重合管中にマライド
ジベンジルエステル1.18g(2.9ミリモル),L−ラクチド
1.02g(7.1ミリモル)及び0.03モル%のオクチル酸スズ
のトルエン溶液を加え、十分に窒素置換を行った後、室
温〜50℃で減圧下にトルエンを完全に除去して封管し
た。これを180℃で48時間加熱することにより、開環共
重合させた。反応後、反応混合物を乾燥アセトン20mlに
溶かし、無水酢酸で処理して重合体末端を保護した後、
攪拌しながら600mlのメタノール中に一滴ずつ落とし、
重合体の白色沈澱を得た。
Example 1. Synthesis of α-malic acid / lactic acid copolymer (1) Synthesis of β-benzylmalate / lactic acid copolymer Silanization of the inside of a polymerization tube using dichlorodimethylsilane,
After washing with dry toluene, it was thoroughly dried in a dryer at 120 ° C until just before use. 1.18 g (2.9 mmol) of malide dibenzyl ester and L-lactide were placed in this polymerization tube.
After adding 1.02 g (7.1 mmol) and 0.03 mol% of a tin octylate solution in toluene and performing sufficient nitrogen substitution, the toluene was completely removed under reduced pressure at room temperature to 50 ° C., and the tube was sealed. This was heated at 180 ° C. for 48 hours to perform ring-opening copolymerization. After the reaction, the reaction mixture was dissolved in 20 ml of dry acetone and treated with acetic anhydride to protect the polymer terminals,
While stirring, drop each drop into 600 ml of methanol,
A white precipitate of polymer was obtained.

重合率 29%。1H-NMR或はβ−ベンジルマレートのモ
ル吸光係数 から算出される共重合体中のβ−ベンジルマレートのモ
ル分率は14%であった。GPC 4.21×104
Polymerization rate 29%. 1 H-NMR or molar extinction coefficient of β-benzylmalate The molar fraction of β-benzyl maleate in the copolymer calculated from was 14%. GPC 4.21 x 10 4 .

1H-NMR(DMSO-d6)δppm:1.3(d,3H,CH3),3.1(d,2
H,CH2),5.1(s,2H,C6H5CH2 ),5.2(t,1H,CH-CH3),6.7
〜6.9(t,1H,CHCH2CO),7.3(broad,5H,C6H5)。
1 H-NMR (DMSO-d 6 ) δppm: 1.3 (d, 3H, CH 3 ), 3.1 (d, 2
H, CH 2 ), 5.1 (s, 2H, C 6 H 5 C H 2 ), 5.2 (t, 1H, C H -CH 3 ), 6.7
~ 6.9 (t, 1H, C H CH 2 CO), 7.3 (broad, 5H, C 6 H 5 ).

IR(KBr)νcm-1:1740(エステル,C=O),1580,1500
(フェニル),1450,1380(CH2),1250,1180(エステ
ル),750,700(フェニル)。
IR (KBr) ν cm -1 : 1740 (Ester, C = O), 1580, 1500
(Phenyl), 1450, 1380 (CH 2 ), 1250, 1180 (ester), 750,700 (phenyl).

(2)α−リンゴ酸・乳酸共重合体の合成 (1)で得たβ−ベンジルマレート・乳酸共重合体0.
62gを5mlの酢酸エチルに溶解し、これにパラジウム・カ
ーボン(5%)0.18gを加えた後、水素ガスを通じて室
温で接触還元を行った。12時間後に脱ベンジル化反応が
完全に終了した。反応溶液を過してパラジウム・カー
ボンを除いた後、減圧下で液を濃縮することにより、
吸湿性パウダー状の目的物を定量的に得た。
(2) Synthesis of α-malic acid / lactic acid copolymer β-benzylmalate / lactic acid copolymer obtained in (1)
62 g was dissolved in 5 ml of ethyl acetate, 0.18 g of palladium carbon (5%) was added thereto, and catalytic reduction was carried out at room temperature through hydrogen gas. After 12 hours, the debenzylation reaction was completed. After removing the palladium-carbon by passing the reaction solution, by concentrating the solution under reduced pressure,
A hygroscopic powdery target substance was quantitatively obtained.

なお、脱ベンジル反応が完全に進行したことは、生成
ポリマーの1H-NMRの7.3ppm(C6H5)の吸収の消失によっ
て確認した。
The complete progress of the debenzylation reaction was confirmed by the disappearance of 1 H-NMR absorption of 7.3 ppm (C 6 H 5 ) of the produced polymer.

1H-NMR(DMSO-d6)δppm:1.3(d,3H,CH3),3.0(d,2
H,CH2),5.2(t,1H,CH-CH3),5.5(t,1H,CHCH2CO)。
1 H-NMR (DMSO-d 6 ) δppm: 1.3 (d, 3H, CH 3 ), 3.0 (d, 2
H, CH 2 ), 5.2 (t, 1H, C H -CH 3 ), 5.5 (t, 1H, C H CH 2 CO).

IR(KBr)νcm-1:3400(OH),1750〜1700(エステ
ル,カルボン酸,C=O),1450,1380(CH2),1250,1150
(エステル),1100(OH)。
IR (KBr) ν cm -1 : 3400 (OH), 1750 to 1700 (ester, carboxylic acid, C = O), 1450, 1380 (CH 2 ), 1250, 1150
(Ester), 1100 (OH).

溶解性:ジオキサン,アセトニトリル,クロロホル
ム,塩化メチレン,トルエン(高温),テトラヒドロフ
ラン(THF)に可溶。
Solubility: Soluble in dioxane, acetonitrile, chloroform, methylene chloride, toluene (high temperature), tetrahydrofuran (THF).

GPC(THF;RI)分子量=36300,分散度=2.2。 GPC (THF; RI) molecular weight = 36300, dispersity = 2.2.

実施例2.α−リンゴ酸・乳酸共重合体の合成 (1)β−ベンジルマレート・乳酸共重合体の合成 0.12モル%のオクチル酸スズの存在下、マライドジベ
ンジルエステル1.18g(2.9ミリモル)とL−ラクチド0.
42g(2.9ミリモル)の開環共重合を180℃で48時間行っ
た。反応後は実施例1の(1)と同様に処理して目的物
を定量的に得た。
Example 2. Synthesis of α-malic acid / lactic acid copolymer (1) Synthesis of β-benzyl maleate / lactic acid copolymer In the presence of 0.12 mol% tin octylate, 1.18 g (2.9 mmol) of malide dibenzyl ester was prepared. ) And L-lactide 0.
42 g (2.9 mmol) of ring-opening copolymerization was carried out at 180 ° C. for 48 hours. After the reaction, the same treatment as in (1) of Example 1 was carried out to quantitatively obtain the desired product.

重合率 18%。 Polymerization rate 18%.

β−ベンジルマレートのモル分率 21%。GPC 1.42×10421% molar fraction of β-benzyl maleate. GPC 1.42 × 10 4 .

(2)α−リンゴ酸・乳酸共重合体の合成 (1)で得たβ−ベンジルマレート・乳酸共重合体0.
62gを用い実施例1の(2)と全く同様に反応、処理し
て、α−リンゴ酸・乳酸共重合体のパウダーを定量的に
得た。
(2) Synthesis of α-malic acid / lactic acid copolymer β-benzylmalate / lactic acid copolymer obtained in (1)
Using 62 g, the reaction and treatment were carried out in exactly the same manner as in (2) of Example 1 to quantitatively obtain a powder of α-malic acid / lactic acid copolymer.

GPC(THF;RI)分子量=11600,分散度=3.1。 GPC (THF; RI) molecular weight = 11600, dispersity = 3.1.

1H-NMR,IR,溶解性等の物性は実施例1と同じ。Physical properties such as 1 H-NMR, IR and solubility are the same as in Example 1.

実施例3.β−ベンジルマレート・乳酸共重合体の合成 0.04モル%のジラウリル酸ジ−n−ブチルスズの存在
下、マライドジベンジルエステル1.18g(2.9ミリモル)
とL−ラクチド1.02g(7.1ミリモル)の開環共重合を20
0℃で48時間行った。反応後は実施例1の(1)と同様
に処理して目的物を得た。
Example 3. Synthesis of β-benzylmalate / lactic acid copolymer 1.18 g (2.9 mmol) of malide dibenzyl ester in the presence of 0.04 mol% di-n-butyltin dilauryl acid.
And L-lactide 1.02 g (7.1 mmol) were subjected to ring-opening copolymerization 20
It was carried out at 0 ° C for 48 hours. After the reaction, the same treatment as in (1) of Example 1 was carried out to obtain the desired product.

重合率 23%。 Polymerization rate 23%.

β−ベンジルマレートのモル分率 13%。 13% molar fraction of β-benzylmalate.

実施例4.β−ベンジルマレート・乳酸共重合体の合成 0.02モル%のテトラフェニルスズの存在下、マライド
ジベンジルエステル1.18g(2.9ミリモル)とL−ラクチ
ド1.02g(7.1ミリモル)の開環共重合を180℃で24時間
行った。反応後は実施例1の(1)と同様に処理して目
的物を得た。
Example 4. Synthesis of β-benzylmalate / lactic acid copolymer Ring-opening of 1.18 g (2.9 mmol) of malide dibenzyl ester and 1.02 g (7.1 mmol) of L-lactide in the presence of 0.02 mol% of tetraphenyltin. The copolymerization was carried out at 180 ° C. for 24 hours. After the reaction, the same treatment as in (1) of Example 1 was carried out to obtain the desired product.

重合率 9%。 Polymerization rate 9%.

β−ベンジルマレートのモル分率 8%。 8% molar fraction of β-benzyl malate.

〔発明の効果〕〔The invention's effect〕

以上述べた如く、本発明は新規な共重合体とその製法
を提供するものであり、本発明の共重合体は、分子内に
化学修飾可能なカルボキシル基を有し、且つ高分子量で
ある為、生体内分散吸収性高分子として医薬及び医療分
野での広範な用途が期待できるものである点に顕著な効
果を奏するものである。
As described above, the present invention provides a novel copolymer and a method for producing the same, and the copolymer of the present invention has a carboxyl group that can be chemically modified in the molecule and has a high molecular weight. In addition, it has a remarkable effect in that it can be expected to have a wide range of uses in the fields of medicine and medicine as a biodispersible polymer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式[I] (式中、m及びnは夫々独立して2以上の整数を表
す。) で示され、分子量が11,000〜37,000である、α−リンゴ
酸と乳酸との共重合体。
1. A general formula [I] (In the formula, m and n each independently represent an integer of 2 or more.) A copolymer of α-malic acid and lactic acid having a molecular weight of 11,000 to 37,000.
【請求項2】α−リンゴ酸のモル分率(n/m+n)が0.0
5〜0.25である特許請求の範囲第1項記載の共重合体。
2. The molar fraction (n / m + n) of α-malic acid is 0.0.
The copolymer according to claim 1, which is 5 to 0.25.
【請求項3】マライドジベンジルエステルとL−ラクチ
ドとを開環共重合させ、然る後、脱ベンジル保護するこ
とにより製造することを特徴とする、一般式[I] (式中、m及びnは前記に同じ。) で示され、分子量が11,000〜37,000である、α−リンゴ
酸と乳酸との共重合体の製造法。
3. A compound represented by the general formula [I], which is produced by ring-opening copolymerization of malide dibenzyl ester and L-lactide, followed by debenzylation protection. (In the formula, m and n are the same as above.), And a method for producing a copolymer of α-malic acid and lactic acid having a molecular weight of 11,000 to 37,000.
JP61239762A 1986-10-08 1986-10-08 New copolymer Expired - Lifetime JPH0813874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61239762A JPH0813874B2 (en) 1986-10-08 1986-10-08 New copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61239762A JPH0813874B2 (en) 1986-10-08 1986-10-08 New copolymer

Publications (2)

Publication Number Publication Date
JPS6392641A JPS6392641A (en) 1988-04-23
JPH0813874B2 true JPH0813874B2 (en) 1996-02-14

Family

ID=17049539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239762A Expired - Lifetime JPH0813874B2 (en) 1986-10-08 1986-10-08 New copolymer

Country Status (1)

Country Link
JP (1) JPH0813874B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594091A (en) * 1994-02-21 1997-01-14 Takeda Chemical Industries, Ltd. Matrix for sustained-release preparation
JPWO2009087910A1 (en) * 2008-01-09 2011-05-26 国立大学法人京都工芸繊維大学 Method for producing biodegradable polymer
CN103304417B (en) * 2012-03-15 2014-12-24 江南大学 Preparation method and application of amphiphatic copolymer modified chitosan compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780999B2 (en) * 1986-02-28 1995-08-30 扶桑化学工業株式会社 Process for producing polymer or copolymer of hydroxypolycarboxylic acid
JPH0781000B2 (en) * 1986-03-12 1995-08-30 扶桑化学工業株式会社 Process for producing polymer or copolymer of hydroxypolycarboxylic acid ester

Also Published As

Publication number Publication date
JPS6392641A (en) 1988-04-23

Similar Documents

Publication Publication Date Title
JP2626717B2 (en) Method for producing anhydride copolymer
EP0171907B2 (en) Use of a copolymer in a controlled drug release composition
US5010167A (en) Poly(amide-and imide-co-anhydride) for biological application
Kricheldorf et al. Polylactones, 42. Zn l‐lactate‐catalyzed polymerizations of 1, 4‐dioxan‐2‐one
JP2641840B2 (en) Biodegradable poly (lactic acid) s having improved physical properties and methods for their production
Li et al. Hydrolytic degradation of poly (oxyethylene)–poly‐(ε‐caprolactone) multiblock copolymers
JP2001514618A (en) Monomers derived from hydroxy acids and polymers prepared therefrom
JP2003192774A (en) BIODEGRADABLE POLYLACTIDE, POLYGLYCOLIDE OR LACTIDE GLYCOLIDE COPOLYMER/POLY-epsilon-CAPROLACTONE MULTI-BLOCK COPOLYMER AND ITS PRODUCTION METHOD
JPH0218418A (en) Novel polyanhydride
JPS6128521A (en) Novel polymer and its production
Perego et al. Copolymers of l‐and d, l‐lactide with 6‐caprolactone: synthesis and characterization
JPH09272789A (en) Aliphatic polyester composition
JP3035716B2 (en) Process for producing polyesters based on hydroxycarboxylic acids
JPH0813874B2 (en) New copolymer
JP2000505499A (en) Poly (ester anhydrides) and their intermediates
Ogata et al. Synthesis of polyesters from active diesters
JPH06157703A (en) Thermoplastic aliphatic polyester and its modified material
Lee et al. Synthesis and degradation behaviors of PEO/PL/PEO tri-block copolymers
JP2992694B2 (en) Hydroxycarboxylic acid copolymer
Karal-Yilmaz et al. Synthesis and characterization of poly (L-lactic acid-co-ethylene oxide-co-aspartic acid) and its interaction with cells
JP3184680B2 (en) Purification method of polyhydroxycarboxylic acid
Chen et al. Synthesis and solubility of polylactide-co-poly (amino acid) random copolymer
CN113150254A (en) Method for preparing nontoxic polylactic acid by regulating and controlling lactic acid aqueous solution
JP2007056079A (en) Lactic acid/peptide block copolymer and method for producing the same
Huang et al. Biodegradable polymers derived from aminoacids