JPH08137243A - Developing device - Google Patents
Developing deviceInfo
- Publication number
- JPH08137243A JPH08137243A JP6272567A JP27256794A JPH08137243A JP H08137243 A JPH08137243 A JP H08137243A JP 6272567 A JP6272567 A JP 6272567A JP 27256794 A JP27256794 A JP 27256794A JP H08137243 A JPH08137243 A JP H08137243A
- Authority
- JP
- Japan
- Prior art keywords
- toner
- developer
- carrier
- surface roughness
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Brush Developing In Electrophotography (AREA)
- Dry Development In Electrophotography (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電子写真方式による画像
形成装置において、静電潜像を現像する現像装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a developing device for developing an electrostatic latent image in an electrophotographic image forming apparatus.
【0002】[0002]
【従来の技術】従来から、電子写真法方式の画像形成装
置における現像装置には、トナーだけの1成分現像剤
と、トナーとキャリアから成る2成分現像剤とが使用さ
れている。2成分現像剤はカラートナーの発色性が良い
こと、トナー粒子を小粒径化しやすいので高画質化への
要求に対応しやすいこと、などの理由から最近広く使用
されている。特に、トナー粒子の小粒径化の問題につい
ては、トナー粒径を小さくすることによって高画質が得
られる上、トナーの帯電不良に起因するカブリや、現像
器からのトナーこぼれ、トナー飛散などの防止に有効で
あることが知られている。2. Description of the Related Art Conventionally, a developing device in an electrophotographic image forming apparatus uses a one-component developer containing only toner and a two-component developer containing toner and carrier. Two-component developers have recently been widely used for the reasons that they have good color developing properties for color toners and that they can easily reduce the particle size of toner particles and thus meet the demand for higher image quality. In particular, with regard to the problem of reducing the particle size of toner particles, high image quality can be obtained by reducing the particle size of toner, and in addition, fogging due to poor charging of toner, toner spill from the developing device, toner scattering, etc. It is known to be effective in prevention.
【0003】しかし、トナー粒径を小径化するにつれ
て、トナー個々の帯電量が少なくなるため、非静電的付
着力とトナー個々の帯電による静電的付着力とを比較す
ると、非静電的付着力の方が相対的に大きくなる傾向に
ある。ところで、トナーと現像剤、トナーと潜像担持
体、トナーと用紙の非静電的付着力は、電界によるトナ
ーの移動を妨げる。その結果、トナー飛散、濃度低下、
濃度むらなどの問題を惹き起こし、電子写真法による画
像形成にとって致命的な欠陥を生じる恐れがある。この
ような問題を解決するため、特開平5−19631号公
報には、現像剤担持体の表面粗さをより滑らかにする方
法、具体的には現像剤担持体の表面粗さ(Rz)を0.
5μmから3μmの範囲にする方法が示されている。However, as the toner particle size is reduced, the charge amount of each toner becomes smaller. Therefore, a comparison between the non-electrostatic adhesion force and the electrostatic adhesion force due to the individual charging of the toner shows that it is non-electrostatic. The adhesive force tends to be relatively larger. By the way, the non-electrostatic adhesive force between the toner and the developer, the toner and the latent image carrier, and the toner and the sheet impedes the movement of the toner due to the electric field. As a result, toner scattering, density decrease,
There is a risk of causing problems such as uneven density and causing fatal defects for image formation by electrophotography. In order to solve such a problem, Japanese Patent Laid-Open No. 5-19631 discloses a method for making the surface roughness of a developer carrier smoother, specifically, a surface roughness (Rz) of the developer carrier. 0.
A method of making the range from 5 μm to 3 μm is shown.
【0004】一方で、ますます高まる高画質化への要求
に対応するため、トナー粒子を小粒径化する研究が進め
られ、従来は塊を粉砕することにより製造していたトナ
ーが、化学的な処理により製造されるようになり、従来
は不定形であったトナーの形状が球形に近い形状になっ
てきた。しかし、球形化した現像剤を用いると、回転し
ながら現像剤を担持しつつ搬送する現像剤担持体と現像
剤との摩擦が小さくなり、現像剤担持体による現像剤の
搬送性が悪化する。特に、現像剤担持体に現像終了後の
現像剤が付着したまま再び現像領域に向かうと、感光体
上の現像濃度が低下するだけでなく、現像剤担持体に前
回の画像の履歴が残り、画像を乱す。On the other hand, in order to meet the ever-increasing demand for higher image quality, research is underway to reduce the particle size of toner particles. Conventionally, toner produced by crushing lumps is chemically Since the toner has been manufactured by various processes, the shape of the toner, which was conventionally indefinite, has become close to a sphere. However, when a spherical developer is used, friction between the developer carrying member that carries the developer while rotating and carrying the developer becomes small, and the developer carrying property of the developer carrying member deteriorates. In particular, if the developer bearing member is moved to the developing region again with the developer after completion of development attached, not only the development density on the photoconductor is lowered, but also the history of the previous image remains on the developer bearing member. Distort the image.
【0005】特開平4−26874号公報には、この問
題を解決する方法として、現像剤担持体の表面粗さRz
を5μmから10μmとして現像剤の搬送性を向上さ
せ、スクレーパによって現像剤担持体表面から現像剤を
強制的に掻き落とす方法が示されている。Japanese Unexamined Patent Publication (Kokai) No. 4-26874 discloses a method for solving this problem by developing the surface roughness Rz of the developer carrying member.
Is set to 5 μm to 10 μm to improve the transportability of the developer, and the scraper forcibly scrapes the developer off the surface of the developer carrying member.
【0006】[0006]
【発明が解決しようとする課題】しかし、スクレーパな
どのように現像剤担持体に機械的に接触する部材を用い
て、現像剤を強制的に掻き落とす方法では、長期間の使
用によって、また異物の付着や噛み込みによってスクレ
ーパ、現像剤担持体のいずれか、あるいは両方に傷が生
じ、この傷に沿って白抜け、黒筋等の画質欠陥を生じ
る。However, in the method of forcibly scraping off the developer by using a member such as a scraper which is in mechanical contact with the developer carrying member, the method of forcibly scraping off the developer causes a long-term use and also a foreign matter. Scratches are caused on either or both of the scraper and the developer carrying member due to the adherence or biting, and image defects such as white spots and black streaks occur along the scratches.
【0007】そこで、本発明は、これら従来の問題を解
決し、2成分現像剤を用いた画像形成装置において、高
品位の画質を再現するための現像装置を提供することを
目的とする。Therefore, an object of the present invention is to solve these conventional problems and to provide a developing device for reproducing high quality image in an image forming apparatus using a two-component developer.
【0008】[0008]
【課題を解決するための手段】上記目的を達成する本発
明の現像装置は、トナーとキャリアから成る2成分現像
剤を担持して回転する円筒状の現像剤担持体と、該現像
剤担持体の内側に配備した固定磁石とを備えた現像装置
において、前記トナーが円形度0.95以上の球形であ
るとともに、前記トナーの平均粒径Dtが2μm以上か
つ6μm以下であり、かつ、キャリア径をDcとする
時、前記現像剤担持体の表面粗さRzが、 (Dc+2×Dt)×0.25≦Rz≦(Dc+2×D
t)×0.5 なる関係を満たすものであることを特徴とする。SUMMARY OF THE INVENTION A developing device of the present invention which achieves the above-mentioned object, is a cylindrical developer carrier for supporting and rotating a two-component developer composed of toner and carrier, and the developer carrier. In a developing device equipped with a fixed magnet disposed inside, the toner has a spherical shape with a circularity of 0.95 or more, the average particle diameter Dt of the toner is 2 μm or more and 6 μm or less, and the carrier diameter is Is Dc, the surface roughness Rz of the developer carrier is (Dc + 2 × Dt) × 0.25 ≦ Rz ≦ (Dc + 2 × D
It is characterized in that the relationship of t) × 0.5 is satisfied.
【0009】なお、JIS−B0601には、表面粗さ
について次のように規定されている。「表面粗さとは、
品物の仕上げられた表面の小さい間隔で起こる凹凸をい
い、最大高さ(Rmax)、十点平均粗さ(Rz)及び
中心線平均粗さ(Ra)の3種類がある」。本発明にい
う平均粗さは上記の「十点平均粗さ(Rz)」を指す。The surface roughness is specified in JIS-B0601 as follows. "What is surface roughness?
It refers to irregularities that occur at small intervals on the finished surface of the product, and there are three types: maximum height (Rmax), ten-point average roughness (Rz), and center line average roughness (Ra). " The average roughness referred to in the present invention refers to the above-mentioned "ten-point average roughness (Rz)".
【0010】十点平均粗さ(Rz)は、JIS−B06
01によれば、「表面粗さ測定機によって求めた表面粗
さの断面曲線から、抜き取り部分の平均線に平行な直線
のうち、高い方から3番目の山頂を通るものと、深い方
から3番目の谷底を通るものを選び、この2本の直線の
間隔を断面曲線の縦倍率の方向に測定して、その値をミ
クロン単位で表したものをいう。」と規定されている。The ten-point average roughness (Rz) is JIS-B06.
According to 01, "From the cross-sectional curve of the surface roughness obtained by a surface roughness measuring device, of the straight lines parallel to the average line of the extracted portion, the one passing the third peak from the highest and the third from the deepest The one that passes through the bottom of the valley is selected, the distance between these two straight lines is measured in the direction of the longitudinal magnification of the cross-sectional curve, and the value is expressed in units of microns. "
【0011】[0011]
【作用】本発明の現像装置は、上記のように、現像剤担
持体の表面粗さが、(Dc+2×Dt)×0.25以
上、すなわち、トナー粒径Dtを2倍した値とキャリア
粒径Dcとの和の1/4以上となるように設定されてい
るので、現像剤担持体による現像剤の搬送性が向上し、
球形トナーは不定形トナーに比べ現像剤の搬送性を低下
させるという問題を解消し、円形度の高い球形トナーを
使用することができる。In the developing device of the present invention, as described above, the surface roughness of the developer carrying member is (Dc + 2 × Dt) × 0.25 or more, that is, the value obtained by doubling the toner particle diameter Dt and the carrier particle. Since it is set to 1/4 or more of the sum of the diameter Dc, the developer carrying property of the developer carrying member is improved,
The spherical toner solves the problem of lowering the transportability of the developer as compared with the irregular toner, and a spherical toner having a high circularity can be used.
【0012】また、本発明の現像装置は、現像剤担持体
の表面粗さが、(Dc+2×Dt)×0.5以下、すな
わち、トナー粒径Dtを2倍した値とキャリア粒径Dc
との和の1/2以下となるように設定されているので、
画像の濃度むらが発生しない。このように、本発明の現
像装置は、現像剤担持体の表面粗さを、上記のように設
定されているため、円形度0.95以上の球形トナーを
用いることができるようになり、トナーの球形化によっ
て非静電的付着力が減少し、小粒径トナーを使用しても
現像時の転写電界にトナーが追従できる。また、粒径6
μm以下のトナーを十分に帯電させ、静電的に保持する
ことができるため、トナー濃度の許容範囲が十分広くと
ることができ、カブリやトナー飛散の防止に有効であ
る。Further, in the developing device of the present invention, the surface roughness of the developer carrying member is (Dc + 2 × Dt) × 0.5 or less, that is, the value obtained by doubling the toner particle diameter Dt and the carrier particle diameter Dc.
Since it is set to 1/2 or less of the sum of
Image density unevenness does not occur. Thus, in the developing device of the present invention, since the surface roughness of the developer carrying member is set as described above, it becomes possible to use spherical toner having a circularity of 0.95 or more. The non-electrostatic adhesive force is reduced by the spheroidization of the toner particles, and the toner can follow the transfer electric field at the time of development even when the toner having a small particle size is used. Also, the particle size is 6
Since the toner having a particle size of μm or less can be sufficiently charged and electrostatically held, the toner concentration can have a wide allowable range, which is effective in preventing fog and toner scattering.
【0013】[0013]
【実施例】以下に図面を参照しながら本発明の実施例に
ついて説明する。図1は、本実施例における現像装置の
概要を示す図である。図1に示す現像装置4は、非磁性
導電性で回転速度を任意に設定できる現像剤担持体4
b、この現像剤担持体4bに内蔵された5極の固定マグ
ネット4m、現像剤担持体4b上の現像剤層の層厚を規
制する層厚規制部材6、及び現像装置4内の現像剤5を
撹拌するオーガ7を備えている。本実施例では、固定マ
グネット4mには、ローラ状のものを用いているが、ブ
ロック状の複数のマグネットで構成してもよい。現像装
置4は、現像剤担持体4bと感光体1との間に0.4m
mの間隙をもって配備されている。層厚規制部材6は、
現像剤担持体4bとの間に0.5mmの間隙をもって配
備され、現像剤担持体4b上の現像剤層の層厚を規制す
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an outline of the developing device in this embodiment. The developing device 4 shown in FIG. 1 is a non-magnetic conductive developer carrier 4 whose rotation speed can be arbitrarily set.
b, a fixed magnet 4m with 5 poles built in the developer carrying member 4b, a layer thickness regulating member 6 for regulating the layer thickness of the developer layer on the developer carrying member 4b, and the developer 5 in the developing device 4. Is equipped with an auger 7 for stirring. In the present embodiment, the fixed magnet 4m is a roller-shaped one, but it may be composed of a plurality of block-shaped magnets. The developing device 4 has a distance of 0.4 m between the developer carrying member 4 b and the photosensitive member 1.
It is deployed with a gap of m. The layer thickness regulating member 6 is
It is arranged with a gap of 0.5 mm between the developer carrier 4b and regulates the layer thickness of the developer layer on the developer carrier 4b.
【0014】図2は、現像剤担持体4b上の磁気プロフ
ァイルの概略図である。横軸は、図1における現像剤担
持体4bの時計の3時の短針位置を0度として反時計方
向に現像剤担持体を回転させた時の角度、縦軸は、現像
剤担持体上の磁束密度である。図2に示すように、現像
剤を剥離するための2つの反発磁極の中間の領域(約2
70度付近)に、100ガウス程度の磁極が発生してい
る。この領域の磁束密度がゼロであると、現像剤の剥離
性はさらに向上するが、本実施例では、発明の効果を確
かめるため、この領域の磁界を100ガウス程度のまま
とした。FIG. 2 is a schematic diagram of a magnetic profile on the developer carrier 4b. The horizontal axis represents the angle when the developer carrying member is rotated counterclockwise with the short hand position of the developer carrying member 4b at 3 o'clock in FIG. 1 set to 0 degree, and the vertical axis represents the developer carrying member on the developer carrying member. Magnetic flux density. As shown in FIG. 2, a region (about 2 mm) between the two repulsion magnetic poles for peeling the developer is formed.
At around 70 degrees), a magnetic pole of about 100 Gauss is generated. When the magnetic flux density in this region is zero, the releasability of the developer is further improved, but in this embodiment, the magnetic field in this region was kept at about 100 gauss in order to confirm the effect of the invention.
【0015】現像剤担持体4bの表面には、電圧印加装
置(図示せず)によって、任意のバイアス電圧を印加で
きるようになっている。現像剤5は2成分現像剤であ
り、トナー原料には非磁性ポリエステルトナーを用い、
製法の異なるタイプA,タイプB,タイプCの3種類の
トナーを準備した。タイプA、タイプBのトナーは混練
−粉砕法により製造される、不定形形状のトナーであ
る。タイプAのトナーとタイプBのトナーとでは、粉砕
条件が異なる。タイプCのトナーは、重合により製造し
た球形形状のトナーである。これら3種類のトナーにつ
いて円形度の測定を行った。ここで、トナーの円形度と
は、平面投影したトナーの像に対して、 同一面積の円の周長/トナーの外周長 と定義されるものであり、立方体の場合0.887、球
形に近づくほど1に近づく。円形度の測定装置には、ケ
ンブリッジ・インストロメント社製の画像処理装置、q
uantimet970を用い、上記の3種類のトナー
を、それぞれ約1000個測定し、平均値を求めた結
果、タイプAトナーは0.887、タイプBトナーは
0.940、タイプCトナーは0.985であった。An arbitrary bias voltage can be applied to the surface of the developer carrying member 4b by a voltage applying device (not shown). The developer 5 is a two-component developer, a non-magnetic polyester toner is used as a toner raw material,
Three types of toners, type A, type B, and type C, which were manufactured differently, were prepared. The type A and type B toners are irregularly shaped toners manufactured by the kneading-pulverization method. The pulverization conditions are different between the type A toner and the type B toner. Type C toner is a spherical toner produced by polymerization. The circularity of these three types of toner was measured. Here, the circularity of the toner is defined as the perimeter of a circle having the same area / the perimeter of the toner with respect to a toner image projected on a plane. In the case of a cube, it is 0.887, which is close to a sphere. It approaches one. The circularity measuring device is an image processing device manufactured by Cambridge Instrument Co., q
Approximately 1,000 of each of the above three types of toners were measured using the Quantimeter 970, and the average value was obtained. As a result, the type A toner was 0.887, the type B toner was 0.940, and the type C toner was 0.985. there were.
【0016】トナー粒径は、それぞれのトナーについ
て、篩分ポイントを変えて平均粒径7、5、2.5、
1.5μmの4種類に整粒した。 キャリアは、フェラ
イト系で、造粒・焼結後、適切なコート剤を塗布した
後、篩分ポイントを変えて平均粒径約60、45、3
5、20μmの4種類に整粒した。整粒後のトナーに適
切な外添剤を添加して、同一重量当りのトナー帯電量を
20μC/gに合わせた。The toner particle size is such that, for each toner, the average particle size is 7, 5, 2.5, by changing the sieving point.
The particle size was adjusted to 4 types of 1.5 μm. The carrier is a ferrite type, and after granulating and sintering, apply an appropriate coating agent, and then change the sieving point to obtain an average particle size of about 60, 45, 3
The particle size was adjusted to 4 types of 5 and 20 μm. An appropriate external additive was added to the toner after sizing, and the toner charge amount per the same weight was adjusted to 20 μC / g.
【0017】キャリアは、造粒・焼結後、適切なコート
剤を塗布し、その後篩分ポイントを変えて作成した。ト
ナー及びキャリアの粒径測定には、コールターカウンタ
を用いた。図3は、画像の粒状性に及ぼすトナー粒径及
びキャリア粒径の影響の度合いを示す図である。画像の
粒状性は、画像の見た目の滑らかさ、ないしは画像のキ
メ細かさを表す指標の一つであり、その指標は、顕微鏡
画像をコンピュータにより画像解析し、画像部分とノイ
ズ部分を周波数変換し、数値化して算出される。図3に
示すごとく、トナー粒径が小さくなると、粒状性が顕著
に向上することがわかる。また、キャリア粒径は小さい
方が粒状性が良くなるが、トナー粒径ほどの粒状性の向
上は見られない。粒状性の許容範囲は、図3の点線以下
の範囲であるが、粒状性がこの範囲内に納まるのは、粒
径6μm以下のトナーであることがわかった。図3で使
用したトナーはタイプAであるが、タイプB、タイプC
のトナーについても同様の結果が得られた。The carrier was prepared by granulating and sintering, applying an appropriate coating agent, and then changing the sieving point. A Coulter counter was used to measure the particle diameters of the toner and carrier. FIG. 3 is a diagram showing the degree of influence of the toner particle size and the carrier particle size on the image graininess. Image graininess is one of the indexes that represent the smoothness of the appearance of the image or the fineness of the image.The index analyzes the image of the microscope image by a computer and frequency-converts the image part and the noise part. , Is calculated numerically. As shown in FIG. 3, it is understood that the graininess is remarkably improved when the toner particle size is reduced. Further, the smaller the carrier particle size is, the better the graininess is, but the graininess is not improved as much as the toner particle size. Although the allowable range of the graininess is below the dotted line in FIG. 3, it was found that the toner having the graininess within this range is a toner having a particle size of 6 μm or less. The toner used in FIG. 3 is type A, but type B and type C
Similar results were obtained with the toner of No. 2.
【0018】図4は、カブリに及ぼすトナー粒径及びキ
ャリア粒径の影響の度合いを示す図である。カブリと
は、非画像部分にトナーが付着して画質を損なう現象を
いい、画像を限度見本と比較して判定した値で表され
る。図4に示すとおり、トナー粒径が大きいほど、また
キャリア粒径が小さいほど、カブリは少なくなることが
わかる。従って、小粒径トナーを用いる場合、キャリア
粒径も小粒径化することが好ましい。カブリの許容限度
は、図4の縦軸上で2の辺りなので、トナー粒径が2μ
m以下の場合はカブリを抑え切れないことがわかる。FIG. 4 is a diagram showing the degree of influence of toner particle size and carrier particle size on fog. Fog is a phenomenon in which toner adheres to non-image portions to impair image quality, and is represented by a value determined by comparing an image with a limit sample. As shown in FIG. 4, it is understood that the larger the toner particle size and the smaller the carrier particle size, the less the fog. Therefore, when using a toner having a small particle diameter, it is preferable that the particle diameter of the carrier is also made small. The permissible limit of fog is around 2 on the vertical axis in FIG. 4, so the toner particle size is 2 μm.
It can be seen that fog cannot be suppressed when the thickness is m or less.
【0019】ところで、現像工程後、現像されたトナー
像を感光体から用紙に転写するに際し、電界その他の影
響によって、用紙に転写されたトナーの一部が感光体に
逆戻りして、細線が細って、画質が劣化する現象が発生
することがある。そこで、細線の転写とトナーの円形度
との関係を把握するために、細線転写効率を測定した。By the way, after the developing process, when the developed toner image is transferred from the photoconductor to the paper, a part of the toner transferred to the paper is returned to the photoconductor due to the influence of the electric field and the like, and the fine line becomes thin. As a result, a phenomenon may occur in which the image quality deteriorates. Therefore, in order to understand the relationship between the transfer of fine lines and the circularity of toner, the fine line transfer efficiency was measured.
【0020】図5は、トナーの円形度と細線転写効率と
の関係を示す図である。転写効率とは、細線の現像後、
機械を一旦止めた状態で感光体上の転写前トナーの重量
と、転写後のトナーの重量とを測定し、次式によって算
出された値をいう。 転写効率(%)=(転写後のトナー重量/感光体上のト
ナー重量)×100 図5に示すとおり、トナーの円形度が高いと細線転写効
率が向上することがわかる。FIG. 5 is a diagram showing the relationship between the circularity of toner and the transfer efficiency of fine lines. What is transfer efficiency?
With the machine temporarily stopped, the weight of the toner before transfer on the photoconductor and the weight of the toner after transfer are measured, and the value is calculated by the following equation. Transfer efficiency (%) = (weight of toner after transfer / weight of toner on photoconductor) × 100 As shown in FIG. 5, it is understood that the fine line transfer efficiency is improved when the circularity of the toner is high.
【0021】満足できる画質を得るためには、目標値と
して、転写効率が90%以上であることが必要である
が、図5に示すとおり、転写効率が90%以上という条
件を満たすトナー円形度は、0.95以上であることが
わかる。次に、前述の各種現像剤が、現像剤担持体4b
上でどのように搬送されるかについて調査した。図2に
示す磁気プロファイルを持つ、現像剤担持体と固定磁石
とから成るアセンブリに、10gの現像剤を付着させ、
反発磁極を下方に向けて、一度現像剤担持体から離れた
現像剤が、再び現像剤担持体に付着することがないよう
にした上で、現像剤担持体4bをしばらく回転させた
後、なお現像剤担持体に付着している現像剤の量を測定
した。In order to obtain a satisfactory image quality, the transfer efficiency must be 90% or more as a target value, but as shown in FIG. 5, the toner circularity satisfying the condition that the transfer efficiency is 90% or more. Is 0.95 or more. Next, the above-mentioned various developers are added to the developer carrier 4b.
We investigated how they would be transported above. 2 g of the developer is attached to the assembly of the developer carrier and the fixed magnet having the magnetic profile shown in FIG.
After the repulsion magnetic pole is directed downward so that the developer once separated from the developer carrier does not adhere to the developer carrier again, after rotating the developer carrier 4b for a while, The amount of the developer adhering to the developer carrier was measured.
【0022】図6は、現像剤担持体の表面粗さと現像剤
残り量との関係を、種々のキャリア粒径の現像剤につい
てプロットした図である。現像剤残り量とは、現像剤の
搬送性を表す指標であり、オフライン状態で所定の量の
現像剤を乗せた現像剤担持体を回転させ、本来剥離すべ
き現像剤が、現像剤担持体の回転後にも剥離されずに残
った分を回収して、その重量を測ることによって得られ
る。FIG. 6 is a diagram in which the relationship between the surface roughness of the developer bearing member and the remaining amount of the developer is plotted for the developers having various carrier particle sizes. The residual amount of the developer is an index indicating the transportability of the developer, and the developer carrier on which a predetermined amount of the developer is placed is rotated in an offline state, and the developer to be originally peeled off is the developer carrier. It can be obtained by collecting the remaining amount which is not peeled off even after the rotation of, and measuring its weight.
【0023】図6に示すとおり、キャリア粒径が大きく
なると現像剤残り量が増加し、現像剤担持体4bの表面
粗さが大きくなると現像剤残り量が減少することがわか
る。十分な搬送性を持たせるには、現像剤残り量は0.
1%以下、すなわち10mg以下であるのが望ましい。
図6には、Cタイプの平均粒径7μmの球形トナーの例
を示したが、Aタイプ、Bタイプのトナーの場合は、と
もにCタイプのトナーよりも表面粗さが小さくても十分
搬送可能である。As shown in FIG. 6, it can be seen that as the carrier particle size increases, the residual developer amount increases, and as the surface roughness of the developer carrying member 4b increases, the residual developer amount decreases. The remaining amount of the developer is 0.
It is preferably 1% or less, that is, 10 mg or less.
FIG. 6 shows an example of the C type spherical toner having an average particle size of 7 μm. However, in the case of the A type and B type toners, both can be sufficiently transported even if the surface roughness is smaller than that of the C type toner. Is.
【0024】図7は、現像剤担持体表面粗さと現像剤残
り量との関係を、種々のトナー粒径の現像剤についてプ
ロットした図である。現像剤残り量に及ぼすトナー粒径
の影響は小さいものの、小粒径トナーを用いる場合の方
が、表面粗さを若干小さくしてもよいことがわかる。図
8は、上記図6、図7の各曲線が目標値、すなわち現像
剤残り量10mgの線と交わる点をプロットしたもので
あり、目標値を満たすトナー粒径、キャリア粒径及び現
像剤担持体表面粗さ間の関係を示している。各キャリア
粒径において、トナー粒径と現像剤担持体表面粗さとの
間に緩やかな右上がりの直線関係が見られる。この直線
群を式に表わすと(1)式が得られる。FIG. 7 is a diagram in which the relationship between the surface roughness of the developer bearing member and the remaining amount of the developer is plotted for developers having various toner particle sizes. Although the influence of the toner particle size on the remaining amount of the developer is small, it is understood that the surface roughness may be slightly reduced when the small particle size toner is used. FIG. 8 is a plot of the points at which the respective curves of FIGS. 6 and 7 intersect the target value, that is, the line of the remaining amount of the developer of 10 mg. The toner particle size, the carrier particle size and the developer carrying amount satisfying the target values are plotted. The relationship between body surface roughness is shown. At each carrier particle diameter, a gradual upward linear relationship is found between the toner particle diameter and the developer carrier surface roughness. Expression (1) is obtained by expressing this group of straight lines in an expression.
【0025】 Rz=(Dc+Dt×2)×0.25 …(1) ただし、現像剤担持体表面粗さをRz、キャリア粒径を
Dc、トナー粒径をDtとする。現像剤搬送性を満足さ
せるには、現像剤担持体表面粗さRzの値が(1)式の
右辺の値よりも大きいことが必要である。Rz = (Dc + Dt × 2) × 0.25 (1) However, the surface roughness of the developer carrier is Rz, the carrier particle diameter is Dc, and the toner particle diameter is Dt. In order to satisfy the developer transportability, it is necessary that the value of the surface roughness Rz of the developer carrier is larger than the value on the right side of the expression (1).
【0026】次に、現像剤担持体4bの表面粗さと現像
後の画像の濃度むらについて調べた結果について説明す
る。濃度むらは、2×2cmのベタ画像に色フィルタを
かけた光線を照射し、反射光の量を測定し、濃度の濃淡
を数値化して求める。濃度差が0.2以上の場合、「む
ら有り」、0.2未満の場合を「むら無し」とする。図
9は、縦軸に現像剤担持体の表面粗さ、横軸にキャリア
粒径をとり、画像濃度むらの有無をプロットした図であ
る。使用したトナー粒径は6μmである。Next, the results of examining the surface roughness of the developer carrying member 4b and the density unevenness of the image after development will be described. Density unevenness is obtained by irradiating a solid image of 2 × 2 cm with a light beam having a color filter applied, measuring the amount of reflected light, and digitizing the density of the density. When the density difference is 0.2 or more, "unevenness" is set, and when the density difference is less than 0.2, "unevenness" is set. FIG. 9 is a diagram in which the presence or absence of image density unevenness is plotted by plotting the surface roughness of the developer carrier on the vertical axis and the carrier particle size on the horizontal axis. The toner particle size used is 6 μm.
【0027】図9に示すとおり、濃度むらの発生は、キ
ャリア粒径にほぼ依存しており、図中の斜線を境に表面
粗さがその斜線を越えて粗くなると濃度むらが発生する
が、キャリア粒径が十分大きい場合は濃度むらは発生し
ない。この現象について、図10のモデルを用いて考察
する。図10は、現像装置の現像剤担持体と現像剤との
相互関係を示すモデルである。As shown in FIG. 9, the occurrence of density unevenness depends substantially on the carrier particle diameter. When the surface roughness becomes rougher than the diagonal line in the figure, the density unevenness occurs. If the carrier particle size is sufficiently large, uneven density does not occur. This phenomenon will be considered using the model shown in FIG. FIG. 10 is a model showing the mutual relationship between the developer carrier of the developing device and the developer.
【0028】図10(a)は現像剤担持体の表面粗さが
滑らかな場合、図10(b)は現像剤担持体の表面粗さ
が中程度に粗い場合、図10(c)は現像剤担持体の表
面粗さが粗い場合のモデルである。現像剤が現像剤担持
体の磁極上に来ると、トナー5tに覆われたキャリア5
cは、磁極の影響によってチェーン状に連なり、いわゆ
る穂立ちの状態となる。図10(a)のように滑らかな
面上では、現像剤担持体4bが矢印X方向に移動して
も、現像剤は磁石に引っ張られて磁極上に留まろうと
し、現像剤は搬送されにくい。FIG. 10 (a) shows the case where the surface roughness of the developer carrying member is smooth, FIG. 10 (b) shows the case where the surface roughness of the developer carrying member is medium, and FIG. 10 (c) shows the developing process. This is a model when the surface roughness of the agent carrier is rough. When the developer comes on the magnetic pole of the developer carrier, the carrier 5 covered with the toner 5t
The c is connected in a chain due to the influence of the magnetic pole, and is in a so-called spiked state. On a smooth surface as shown in FIG. 10A, even if the developer carrying member 4b moves in the direction of the arrow X, the developer is pulled by the magnet and tries to stay on the magnetic pole, and the developer is conveyed. Hateful.
【0029】これに対し現像剤担持体4b表面が或る程
度粗くなると、図10(b)のように、現像剤担持体4
bの移動に伴い、現像剤担持体4b表面の凹部では現像
剤5c,5tは磁極上に留まろうとするが、現像剤担持
体4bが移動して磁極上に凸部が来ると、現像剤5c,
5tは凸部を乗り越えることができずに、現像剤担持体
4bと共に移動するため、現像剤の搬送性は図10
(a)に比べ向上する。On the other hand, when the surface of the developer carrying member 4b becomes rough to some extent, as shown in FIG.
With the movement of b, the developers 5c and 5t try to stay on the magnetic poles in the concave portions on the surface of the developer carrying body 4b, but when the developer carrying body 4b moves and the convex portions come on the magnetic poles, 5c,
Since 5t cannot move over the convex portion and moves together with the developer carrier 4b, the developer transportability is as shown in FIG.
Improved compared to (a).
【0030】しかし、図10(c)のように、現像剤担
持体4bの表面を粗くし過ぎると、感光体1と現像剤担
持体4bとの間の現像間隔にむらが生じる。このむらは
現像時の現像電界に悪影響を及ぼし、画像濃度むらの原
因となる。図10(d)のモデルに示すように、現像剤
チェーンの最小単位は、キャリア粒子1個とトナー粒子
2個の粒径を合計したものと考えられる。この最小単位
の概念に基づいて、上記の実施例の結果を考察すると、
画像濃度むらの発生はこの最小単位に依存しており、現
像剤担持体の表面粗さが、以下に示す(2)式の値を越
えると、画像濃度むらが発生することがわかる。However, as shown in FIG. 10 (c), if the surface of the developer carrying member 4b is made too rough, the developing interval between the photoconductor 1 and the developer carrying member 4b becomes uneven. This unevenness adversely affects the developing electric field at the time of development and causes unevenness in image density. As shown in the model of FIG. 10D, the minimum unit of the developer chain is considered to be the sum of the particle sizes of one carrier particle and two toner particles. Based on the concept of this minimum unit, considering the results of the above-mentioned embodiment,
The occurrence of the image density unevenness depends on this minimum unit, and it can be seen that the image density unevenness occurs when the surface roughness of the developer carrying member exceeds the value of the formula (2) shown below.
【0031】 Rz=(Dc+Dt×2)×0.5 …(2) ただし、現像剤担持体表面粗さをRz、キャリア粒径を
Dc、トナー粒径をDtとする。この(2)式と前記の
(1)式とを合成すると、次の(3)式が得られる。 (Dc+2×Dt)×0.25≦Rz≦(Dc+2×Dt)×0.5 …(3) ただし、現像剤担持体表面粗さをRz、キャリア粒径を
Dc、トナー粒径をDtとする。Rz = (Dc + Dt × 2) × 0.5 (2) However, the surface roughness of the developer carrying member is Rz, the carrier particle diameter is Dc, and the toner particle diameter is Dt. By combining this equation (2) and the above equation (1), the following equation (3) is obtained. (Dc + 2 × Dt) × 0.25 ≦ Rz ≦ (Dc + 2 × Dt) × 0.5 (3) However, the developer carrier surface roughness is Rz, the carrier particle diameter is Dc, and the toner particle diameter is Dt. .
【0032】すなわち、現像剤担持体の表面粗さRz
が、(3)式の関係を満たすように、キャリア粒径D
c、トナー粒径Dtを設定することによって、濃度むら
のない画像を得ることができる。That is, the surface roughness Rz of the developer carrier.
Of the carrier particle size D
By setting c and the toner particle diameter Dt, it is possible to obtain an image without density unevenness.
【0033】[0033]
【発明の効果】以上説明したように、本発明によれば、
現像剤担持体の表面粗さを適正な範囲に設定したことに
より、現像剤担持体による現像剤の搬送性が向上して、
球形トナーを使用することができるようになるため、ト
ナーをより小粒径化することができて、粒状性のよい高
品位の画質を得ることができる。As described above, according to the present invention,
By setting the surface roughness of the developer carrier to an appropriate range, the developer carrying property of the developer carrier is improved,
Since the spherical toner can be used, the toner can have a smaller particle size, and high-quality image with good graininess can be obtained.
【0034】また、現像剤担持体の表面粗さを適正な範
囲に設定したことにより、画像の濃度むらが発生しな
い。さらに、現像剤担持体の表面粗さを適正な範囲に設
定したので、円形度0.95以上の球形トナーを用いる
ことができるようになり、トナーの球形化によって非静
電的付着力が減少し、小粒径トナーを使用しても現像時
の転写電界にトナーが追従できるようになり、画質が向
上する。Further, since the surface roughness of the developer carrying member is set within an appropriate range, uneven density of the image does not occur. Further, since the surface roughness of the developer carrying member is set in an appropriate range, it becomes possible to use spherical toner having a circularity of 0.95 or more, and the non-electrostatic adhesive force is reduced by making the toner spherical. However, even if a small particle size toner is used, the toner can follow the transfer electric field at the time of development, and the image quality is improved.
【0035】また、球形化したトナーを使用することが
できるので、トナーの非静電的付着力が減少し、粒径6
μm以下の小粒径トナーを使用しても、現像時の転写電
界にトナーが十分追従できるようになり、カブリやトナ
ー飛散を防止することができる。さらに、現像剤掻き取
り部材を設けずとも、反発磁界の作用のみで、現像剤担
持体から現像剤を完全に剥離できるので、現像剤担持体
表面の損傷や摩耗を防止することができる。Further, since the spherical toner can be used, the non-electrostatic adhesive force of the toner is reduced, and the particle size is 6
Even if a toner having a small particle diameter of μm or less is used, the toner can sufficiently follow the transfer electric field at the time of development, and fog and toner scattering can be prevented. Further, without providing the developer scraping member, the developer can be completely peeled off from the developer carrying member only by the action of the repulsive magnetic field, so that the surface of the developer carrying member can be prevented from being damaged or worn.
【図1】本実施例における現像装置の概要を示す図であ
る。FIG. 1 is a diagram showing an outline of a developing device in this embodiment.
【図2】現像剤担持体上の磁気プロファイルの概略図で
ある。FIG. 2 is a schematic view of a magnetic profile on a developer carrier.
【図3】画像の粒状性に及ぼすトナー粒径及びキャリア
粒径の影響を示す図である。FIG. 3 is a diagram showing influences of toner particle diameter and carrier particle diameter on image graininess.
【図4】カブリに及ぼすトナー粒径及びキャリア粒径の
影響を示す図である。FIG. 4 is a diagram showing the effects of toner particle size and carrier particle size on fog.
【図5】トナーの円形度と細線転写効率との関係を示す
図である。FIG. 5 is a diagram showing a relationship between toner circularity and fine line transfer efficiency.
【図6】現像剤担持体の表面粗さと現像剤残り量との関
係を種々のキャリア粒径の現像剤についてプロットした
図である。FIG. 6 is a diagram in which the relationship between the surface roughness of the developer bearing member and the residual developer amount is plotted for developers having various carrier particle diameters.
【図7】現像剤担持体表面粗さと現像剤残り量との関係
を種々のトナー粒径の現像剤についてプロットした図で
ある。FIG. 7 is a diagram in which the relationship between the surface roughness of the developer bearing member and the remaining amount of the developer is plotted for developers having various toner particle sizes.
【図8】現像剤残り量が目標値を満たす、トナー粒径、
キャリア粒径及び現像剤担持体表面粗さ間の関係を示
す。FIG. 8 is a toner particle size at which the residual developer amount satisfies a target value,
The relationship between carrier particle diameter and developer carrier surface roughness is shown.
【図9】縦軸に現像剤担持体の表面粗さ、横軸にキャリ
ア粒径をとり、画像濃度むらの有無をプロットした図で
ある。FIG. 9 is a diagram in which the presence or absence of image density unevenness is plotted with the vertical axis representing the surface roughness of the developer bearing member and the horizontal axis representing the carrier particle size.
【図10】現像装置の現像剤担持体と現像剤との相互関
係を示すモデルである。FIG. 10 is a model showing the mutual relationship between the developer carrier of the developing device and the developer.
1 感光体 4 現像装置 4b 現像剤担持体 4m 固定マグネット 5 現像剤 5t トナー 5c キャリア 6 層厚規制部材 7 オーガ 1 Photoconductor 4 Developing Device 4b Developer Carrier 4m Fixed Magnet 5 Developer 5t Toner 5c Carrier 6 Layer Thickness Controlling Member 7 Auger
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03G 9/10 15/09 Z (72)発明者 福原 琢 神奈川県海老名市本郷2274番地 富士ゼロ ックス株式会社海老名事業所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number for FI G03G 9/10 15/09 Z (72) Inventor Taku Fukuhara 2274 Hongo, Ebina-shi, Kanagawa Fuji Xerox Ebina Office Co., Ltd.
Claims (1)
を担持して回転する円筒状の現像剤担持体と、該現像剤
担持体の内側に配備した固定磁石とを備えた現像装置に
おいて、 前記トナーが円形度0.95以上の球形であるととも
に、前記トナーの平均粒径Dtが2μm以上かつ6μm
以下であり、かつ、キャリア径をDcとする時、前記現
像剤担持体の表面粗さRzが、 (Dc+2×Dt)×0.25≦Rz≦(Dc+2×D
t)×0.5 なる関係を満たすものであることを特徴とする現像装
置。1. A developing device comprising: a cylindrical developer carrier that carries and rotates a two-component developer composed of a toner and a carrier; and a fixed magnet disposed inside the developer carrier, The toner is spherical with a circularity of 0.95 or more, and the average particle diameter Dt of the toner is 2 μm or more and 6 μm.
When the carrier diameter is Dc, the surface roughness Rz of the developer carrier is (Dc + 2 × Dt) × 0.25 ≦ Rz ≦ (Dc + 2 × D
A developing device which satisfies the relationship of t) × 0.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6272567A JPH08137243A (en) | 1994-11-07 | 1994-11-07 | Developing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6272567A JPH08137243A (en) | 1994-11-07 | 1994-11-07 | Developing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08137243A true JPH08137243A (en) | 1996-05-31 |
Family
ID=17515712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6272567A Pending JPH08137243A (en) | 1994-11-07 | 1994-11-07 | Developing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08137243A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1172961A (en) * | 1997-08-29 | 1999-03-16 | Dainippon Ink & Chem Inc | Color toner |
JPH11202557A (en) * | 1997-04-04 | 1999-07-30 | Canon Inc | Image forming toner, image forming method and heat fixing method |
EP1162516A2 (en) | 2000-06-08 | 2001-12-12 | Canon Kabushiki Kaisha | Developing apparatus |
US9104142B2 (en) | 2012-12-11 | 2015-08-11 | Canon Kabushiki Kaisha | Developing device and image forming apparatus |
EP3021169A1 (en) * | 2014-11-17 | 2016-05-18 | Canon Kabushiki Kaisha | Developing device |
-
1994
- 1994-11-07 JP JP6272567A patent/JPH08137243A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11202557A (en) * | 1997-04-04 | 1999-07-30 | Canon Inc | Image forming toner, image forming method and heat fixing method |
JPH1172961A (en) * | 1997-08-29 | 1999-03-16 | Dainippon Ink & Chem Inc | Color toner |
EP1162516A2 (en) | 2000-06-08 | 2001-12-12 | Canon Kabushiki Kaisha | Developing apparatus |
EP1162516A3 (en) * | 2000-06-08 | 2004-06-30 | Canon Kabushiki Kaisha | Developing apparatus |
US9104142B2 (en) | 2012-12-11 | 2015-08-11 | Canon Kabushiki Kaisha | Developing device and image forming apparatus |
EP3021169A1 (en) * | 2014-11-17 | 2016-05-18 | Canon Kabushiki Kaisha | Developing device |
US9665038B2 (en) | 2014-11-17 | 2017-05-30 | Canon Kabushiki Kaisha | Developing device having a developer carrying member with recessed portions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920007328B1 (en) | Developing apparatus for static latent image development | |
JP2899193B2 (en) | Electrostatic image developing toner and image forming method | |
US5310615A (en) | Image forming method | |
US5534982A (en) | Developing apparatus | |
JP2009244905A (en) | Developing device | |
US20020028094A1 (en) | Developing apparatus | |
US6104903A (en) | Developing device | |
US6878496B2 (en) | Electrophotoreceptor, image forming method, image forming apparatus and processing cartridge | |
JPH08137243A (en) | Developing device | |
JP3740274B2 (en) | Developer carrier, apparatus unit, and image forming apparatus | |
JP3538784B2 (en) | High-speed electrostatic image development method | |
JPH08129273A (en) | Image forming method | |
JP2590870B2 (en) | Color image recording method | |
JP3902843B2 (en) | Image forming apparatus | |
JP2515970B2 (en) | Development device | |
JP3460514B2 (en) | One-component developing device using magnetic toner for one-component development | |
JPH09325597A (en) | Image forming device | |
JP2872504B2 (en) | One-component developer for electrostatic image development and image forming method | |
JP2550568B2 (en) | Color image recording method | |
JP3230171B2 (en) | Developing device | |
JPS61179472A (en) | Developing device | |
JP2736970B2 (en) | Color image recording method | |
JP3079404B2 (en) | One-component magnetic developer and image forming method | |
JP3091031B2 (en) | Developing device | |
JP3014133B2 (en) | Image forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20011218 |