JPH08136758A - Dispersion compensated optical fiber for multiwavelength transmission - Google Patents

Dispersion compensated optical fiber for multiwavelength transmission

Info

Publication number
JPH08136758A
JPH08136758A JP7258142A JP25814295A JPH08136758A JP H08136758 A JPH08136758 A JP H08136758A JP 7258142 A JP7258142 A JP 7258142A JP 25814295 A JP25814295 A JP 25814295A JP H08136758 A JPH08136758 A JP H08136758A
Authority
JP
Japan
Prior art keywords
dispersion
refractive index
optical fiber
core
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7258142A
Other languages
Japanese (ja)
Inventor
Yoichi Akasaka
洋一 赤坂
Ryuichi Sugizaki
隆一 杉崎
Atsushi Umeda
淳 梅田
Kunio Ogura
邦男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7258142A priority Critical patent/JPH08136758A/en
Publication of JPH08136758A publication Critical patent/JPH08136758A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02252Negative dispersion fibres at 1550 nm
    • G02B6/02261Dispersion compensating fibres, i.e. for compensating positive dispersion of other fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02285Characterised by the polarisation mode dispersion [PMD] properties, e.g. for minimising PMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE: To provide a dispersion compensated optical fiber suitable for multiwavelength optical transmission. CONSTITUTION: The distribution of refractive index of this dispersion compensated optical fiber is made to be a W-shape distribution. The fiber consists of a core 1, inner clad layer 2 set on the outside of core 1 and a pure quartz outermost clad layer is set on the outside of it. The core 1 is doped with Ge to increase the refractive index by 2.8% difference of the refractive index, while the inner clad layer is homogeneously doped with fluorine to decrease the refractive index by 0.45%. The ratio of diameters of the core 1 to the inner clad layer 2 is controlled to 1:1.5 to 1:4.0. The fiber has a high negative dispersion structure as <=-100ps/nm/km dispersion in the region where the slope of the wavelength dispersion is negative.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数の波長の光送
信信号を多重送信するときの、特に、波長1550nm近辺で
の波長多重伝送時の波長分散を補償する波長多重伝送用
分散補償光ファイバに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion compensating optical fiber for wavelength division multiplex transmission, which is used for multiplex transmission of optical transmission signals of a plurality of wavelengths, particularly for wavelength division multiplex transmission at a wavelength around 1550 nm. It is about.

【0002】[0002]

【従来の技術】光通信のファイバネットワークとして13
00nm零分散ファイバネットワークが知られている。この
ファイバネットワークでは、波長1300nmの光信号を送信
することによって、受信側ではほぼ零分散の受信波が得
られ、信頼性の高い光通信が行われる。
2. Description of the Related Art As a fiber network for optical communication 13
00 nm zero dispersion fiber networks are known. In this fiber network, by transmitting an optical signal with a wavelength of 1300 nm, a reception wave of almost zero dispersion is obtained on the receiving side, and highly reliable optical communication is performed.

【0003】最近においては、この既設の1300nm零分散
ファイバネットワークを用いて、複数の波長の光送信信
号(光パルス送信信号)を伝送する波長多重通信が行わ
れつつある。既設の1300nm零分散伝送網で波長1550nm近
辺の波長を使用して波長多重通信を行うと、17ps/nm/
km程度の分散が生じ、長距離伝送に障害が生じる。一般
に、波長分散には正の分散と負の分散があり、正の分散
は、波長が大きくなるに連れ、光伝送路の屈折率が小さ
くなって光伝送速度が大きくなり、この速度アップ分に
対応してパルス幅が広がる現象を言い、負の分散は、こ
れとは逆に波長が大きくなるに連れ、光伝送路の屈折率
が高くなって光伝送速度が減少し、この速度減少分に対
応してパルス幅が広がる現象を言う。
Recently, wavelength multiplexing communication for transmitting optical transmission signals (optical pulse transmission signals) of a plurality of wavelengths is being performed using the existing 1300 nm zero dispersion fiber network. 17 ps / nm / when using wavelength multiplexing near the wavelength of 1550 nm in the existing 1300 nm zero-dispersion transmission network
Dispersion of about km occurs, and long-distance transmission is impaired. Generally, there are positive dispersion and negative dispersion in chromatic dispersion, and positive dispersion has a smaller refractive index of the optical transmission line and a larger optical transmission speed as the wavelength increases. Correspondingly, it means a phenomenon in which the pulse width widens.Negative dispersion, on the contrary, as the wavelength increases, the refractive index of the optical transmission line increases and the optical transmission speed decreases. Correspondingly, it is a phenomenon in which the pulse width widens.

【0004】通常の既設の1300nm零分散伝送網は、波長
1500nm近辺では、前記の如く17ps/nm/km程度の分散を
持っており、この伝送網で、例えば、100 kmという如
く、長距離伝送を行うと、その受信側では1700ps/nm程
度の分散が生じ、1550nm近辺で波長を細分割して高密度
高速通信を行おうとすると、前記の如く、分散が大きい
ために、一方側の波長の信号と他方側の波長の信号とが
重なって信号の分離が困難になり、光通信性能が悪化す
るという問題が生じる。
A conventional existing 1300 nm zero-dispersion transmission network is
In the vicinity of 1500 nm, there is a dispersion of about 17 ps / nm / km as described above, and if long distance transmission is performed with this transmission network, for example, 100 km, the dispersion of about 1700 ps / nm will occur on the receiving side. When the wavelength is subdivided near 1550 nm and high-density high-speed communication is attempted, the signal of one side wavelength and the signal of the other side are overlapped and the signal is separated due to the large dispersion as described above. Becomes difficult and the optical communication performance deteriorates.

【0005】従来においては、このような波長分散の分
散量増大をできるだけ防止するために、光伝送路に特定
波長の分散量を補償するための分散補償光ファイバを挿
入している。
Conventionally, in order to prevent such an increase in the dispersion amount of chromatic dispersion as much as possible, a dispersion compensating optical fiber for compensating for the dispersion amount of a specific wavelength is inserted in the optical transmission line.

【0006】この種の分散補償光ファイバは、負の分散
を持っており、前記1300nm零分散伝送網の正の分散をこ
の分散補償ファイバの負の分散で減殺して光伝送の特定
波長の分散量の増大を防止しようとするものである。
This type of dispersion compensating optical fiber has a negative dispersion, and the positive dispersion of the 1300 nm zero dispersion transmission network is canceled by the negative dispersion of this dispersion compensating fiber to disperse a specific wavelength of the optical transmission. It is intended to prevent an increase in quantity.

【0007】[0007]

【発明が解決しようとする課題】分散補償光ファイバに
は特開平6−11620号公報に示されているような5
種類の屈折率構造がある。この5種類の屈折率構造は図
5に示されるもので、図5の(a)、図5の(b)の屈
折率分布では分散スロープ(波長の変化に対する分散の
変化の割合)はいずれも正の値を持っており、このよう
な分散補償ファイバを用いる場合は、ある特定の波長に
対しては分散補償を行いうるがその他の波長に対して
は、分散量が増加してしまうため波長多重伝送を行う補
償光ファイバとしては不適である。図5の(c)から図
5の(e)までの3種のファイバは負の分散スロープを
持つ屈折率分布がありうる。この図5の(c)のいわゆ
るW型屈折率分布構造は古くから検討がなされている
が、従来のW型ファイバは負の分散スロープは持ちうる
が負の分散量が小さいため分散補償に必要なファイバ長
が非常に大きくなってしまい、実用には適さないもので
あった。負の分散量を増加させるためにはコア径を小さ
くしていくとよいが、W型屈折率分布ではコア径を小さ
くしていき、負の分散量を大きくしていくと、あるとこ
ろから分散スロープが負から正に反転してしまい波長多
重伝送に適さなくなってしまう。
A dispersion compensating optical fiber has a structure as shown in JP-A-6-11620.
There are different types of refractive index structures. These five types of refractive index structures are shown in FIG. 5, and in the refractive index distributions of FIGS. 5 (a) and 5 (b), the dispersion slope (rate of change of dispersion with respect to change of wavelength) is all. It has a positive value, and when such a dispersion compensating fiber is used, dispersion compensation can be performed for a certain specific wavelength, but for other wavelengths, the dispersion amount increases, so the wavelength It is not suitable as a compensating optical fiber for performing multiplex transmission. The three kinds of fibers shown in FIGS. 5C to 5E may have a refractive index profile having a negative dispersion slope. The so-called W-type refractive index distribution structure of FIG. 5 (c) has been studied for a long time, but the conventional W-type fiber can have a negative dispersion slope but has a small negative dispersion amount, which is necessary for dispersion compensation. However, the fiber length becomes extremely large, which is not suitable for practical use. In order to increase the negative dispersion amount, it is better to reduce the core diameter, but in the W-type refractive index distribution, if the core diameter is reduced and the negative dispersion amount is increased, the dispersion from a certain point The slope is inverted from negative to positive, making it unsuitable for wavelength division multiplexing transmission.

【0008】本発明は上記従来の課題を解決するために
なされたものであり、その目的は、既設の1300nm零分散
伝送網を利用し、1550nm近辺での分散を広い波長域で補
償し、波長多重伝送を可能にする波長多重伝送用分散補
償ファイバを提供するため、W型屈折率分布における効
果的な大きさを持つ負の分散スロープと効果的な大きさ
を持つ負の分散値を同時に持ちうる構造を提供すること
である。
The present invention has been made in order to solve the above-mentioned conventional problems, and an object thereof is to utilize an existing 1300 nm zero-dispersion transmission network to compensate for dispersion in the vicinity of 1550 nm in a wide wavelength range, In order to provide a dispersion compensating fiber for wavelength division multiplexing that enables multiplex transmission, it has both a negative dispersion slope having an effective magnitude and a negative dispersion value having an effective magnitude in the W-type refractive index distribution. It is to provide a reliable structure.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のような手段を講じている。すなわち、
第1の発明は、光ファイバのコア半径をa、波長分散を
σ、光送信信号の波長をλとした場合、波長分散スロー
プ(dσ/dλ)が零になるコア半径をa0 とし、dσ
/dλ=−0.28ps/nm2 /kmとなるコア半径をa1 とし
たとき、a0 ≦a≦a1 の範囲内で波長分散σをσ≦−
100 ps/nm/kmの範囲とした構成をもって課題を解決す
る手段としている。
The present invention takes the following means in order to achieve the above object. That is,
In the first invention, when the core radius of the optical fiber is a, the chromatic dispersion is σ, and the wavelength of the optical transmission signal is λ, the core radius at which the chromatic dispersion slope (dσ / dλ) is zero is a 0, and dσ is
/ Dλ = -0.28ps / nm 2 / km, where a 1 is the core radius, the chromatic dispersion σ is σ ≤-within the range of a 0 ≤ a ≤ a 1.
The configuration with a range of 100 ps / nm / km is used as a means to solve the problem.

【0010】また、第2の発明は、光ファイバのコア半
径をa、波長分散をσ、光送信信号の波長をλとした場
合、波長分散スロープ(dσ/dλ)が零になるコア半
径をa0 とし、dσ/dλ=−0.28ps/nm2 /kmとなる
コア半径をa1 としたとき、a0 ≦a≦a1 の範囲内で
波長分散σをσ≦−100 ps/nm/kmの範囲とし、光ファ
イバの屈折率構造はW形の屈折率分布を有し、コアの外
側に内部クラッド層を形成し、その外側を最外層のクラ
ッド層とし、内部クラッド層は屈折率を低くするドーパ
ントが比屈折率差で−0.45%になるようにドープされ、
最外層のクラッド層は純石英とし、コアには屈折率を高
めるドーパントが比屈折率差で+2.8 %になるようにド
ープされている構成をもって課題を解決する手段として
いる。
The second invention is such that, when the core radius of the optical fiber is a, the chromatic dispersion is σ, and the wavelength of the optical transmission signal is λ, the core radius at which the chromatic dispersion slope (dσ / dλ) becomes zero is and a 0, dσ / dλ = -0.28ps / nm 2 / when km to become the core radius was defined as a 1, a 0 ≦ a ≦ a ≦ wavelength dispersion sigma sigma within a range -100 ps / nm / In the range of km, the refractive index structure of the optical fiber has a W-shaped refractive index distribution, the inner clad layer is formed outside the core, and the outer clad layer is the outermost clad layer. The dopant to be lowered is doped to have a relative refractive index difference of −0.45%,
The outermost clad layer is made of pure quartz, and the core is doped with a dopant for increasing the refractive index so that the relative refractive index difference is + 2.8%.

【0011】さらに、第3の発明は、前記第1の発明の
構成のもとで、光ファイバの屈折率構造はW形の屈折率
分布を有し、コアの外側に内部クラッド層を形成し、そ
の外側を最外層のクラッド層とし、内部クラッド層は屈
折率を低くするドーパントが比屈折率差で−0.45%にな
るようにドープされ、最外層のクラッド層は純石英と
し、コアには屈折率を高めるドーパントが比屈折率差で
+2.8 %になるようにドープされ、コアと内部クラッド
層の直径比を1対1.5 〜1対4.0 の範囲とした構成をも
って課題を解決する手段としている。
A third aspect of the invention is based on the structure of the first aspect, wherein the refractive index structure of the optical fiber has a W-shaped refractive index distribution, and an inner cladding layer is formed outside the core. , The outer cladding layer is the outermost cladding layer, the inner cladding layer is doped with a dopant that lowers the refractive index so that the relative refractive index difference is -0.45%, the outermost cladding layer is pure quartz, and the core is As a means to solve the problem, a dopant that raises the refractive index is doped so that the relative refractive index difference becomes + 2.8%, and the diameter ratio between the core and the inner cladding layer is set in the range of 1: 1.5 to 1: 4.0. There is.

【0012】さらに、第4の発明は、前記第3の発明の
構成のもとで、さらに、波長が1550nmで分散波長スロー
プを負の領域とし、かつ、コア径が2.1 μmより大で2.
3 μmより小さい範囲において、光波長1550nmでの波長
分散値が−100 ps/nm/kmより小であって−170 ps/nm
/kmよりも大とした構成をもって課題を解決する手段と
している。
Furthermore, a fourth invention is based on the configuration of the third invention, further, in which the wavelength is 1550 nm, the dispersion wavelength slope is in the negative region, and the core diameter is larger than 2.1 μm.
In the range smaller than 3 μm, the wavelength dispersion value at the light wavelength of 1550 nm is smaller than −100 ps / nm / km and −170 ps / nm
It is a means to solve the problem with a configuration larger than / km.

【0013】上記構成の本発明において、例えば、既設
の1300nm零分散伝送網に本発明の波長多重伝送用分散補
償光ファイバを挿入し、1550nm近辺の波長を使用して波
長多重光通信を行うと、1300nm零分散伝送網を通って終
端に達した各波長の光信号は大きな波長分散量を持つ
が、本発明の分散補償光ファイバは負の高い分散と負の
分散スロープを同時に持つために、前記1300nm零分散伝
送網を通ることによって発生した大きな正の分散量が分
散補償光ファイバの大きな負の分散と負の分散スロープ
による分散量によって減殺補償が効果的に行われ、本発
明の分散補償光ファイバを通った各波長の光信号は分散
量がほぼ零に近い値となる。この結果、受信側での各波
長の信号分離が明確に行われ、信頼正の高い高密度高速
の波長多重光伝送通信が可能となる。
In the present invention having the above configuration, for example, when the dispersion compensating optical fiber for wavelength division multiplexing transmission of the present invention is inserted into an existing 1300 nm zero dispersion transmission network and wavelength division multiplexing optical communication is performed using wavelengths around 1550 nm. , The optical signal of each wavelength reaching the terminal end through the 1300 nm zero-dispersion transmission network has a large amount of chromatic dispersion, but the dispersion-compensating optical fiber of the present invention has negative high dispersion and negative dispersion slope at the same time. The large positive dispersion amount generated by passing through the 1300 nm zero dispersion transmission network is effectively compensated by the large negative dispersion of the dispersion compensating optical fiber and the dispersion amount due to the negative dispersion slope. The dispersion amount of the optical signal of each wavelength that has passed through the optical fiber has a value close to zero. As a result, signal separation of each wavelength is clearly performed on the receiving side, and reliable, high-density, high-speed, wavelength-multiplexed optical transmission communication becomes possible.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1には本発明に係る波長多重伝
送用分散補償光ファイバの一実施形態例の構成が示され
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of an embodiment of a dispersion compensating optical fiber for wavelength division multiplexing transmission according to the present invention.

【0015】本実施形態例の分散補償光ファイバは、屈
折率構造がW形構造を呈しており、そのコア1には比屈
折率差Δの値で、Δ=2.8 %になるように屈折率を高め
るゲルマニウムGeがドープされている。コア1の外側
は内部クラッド層2となっており、この内部クラッド層
2には比屈折率差Δの値で、−0.45%になるように屈折
率を低くするフッ素Fが均一にドープされている。この
内部クラッド層2の外側は純石英の最外層のクラッド層
(図示せず)となっている。コアと内部クラッド層との
直径比a/Dは1:1.5 〜1:4.0 の範囲で設定されて
いる。
In the dispersion compensating optical fiber of this embodiment, the refractive index structure has a W-shaped structure, and the core 1 has a refractive index difference Δ of Δ = 2.8%. Is doped with germanium Ge which enhances the conductivity. The outer side of the core 1 is an inner clad layer 2. The inner clad layer 2 is uniformly doped with fluorine F which lowers the refractive index so that the relative refractive index difference Δ is −0.45%. There is. The outer side of the inner clad layer 2 is an outermost clad layer (not shown) of pure quartz. The diameter ratio a / D between the core and the inner cladding layer is set in the range of 1: 1.5 to 1: 4.0.

【0016】なお、図4には従来の一般的な単純ステッ
プ形のファイバ構造を比較例として示したもので、この
比較例のものは、コア1は比屈折率差で2.8 %となるよ
うに屈折率を高くするゲルマニウムをドープしてあり、
コア1の外側のクラッドは、比屈折率差で−0.45%にな
るように屈折率を低くするフッ素Fを均一にドープした
ものである。
FIG. 4 shows a conventional general simple step type fiber structure as a comparative example. In this comparative example, the core 1 has a relative refractive index difference of 2.8%. It is doped with germanium to increase the refractive index,
The clad outside the core 1 is uniformly doped with fluorine F which lowers the refractive index so that the relative refractive index difference becomes −0.45%.

【0017】前記図1に示すファイバ構造のもとで、コ
アと内部クラッド層との直径比をパラメータとして各コ
ア径における分散値σと分散スロープδを計算により求
めると表1〜表3のようになる。
Under the fiber structure shown in FIG. 1, the dispersion value σ and the dispersion slope δ at each core diameter are calculated by using the diameter ratio between the core and the inner cladding layer as parameters, and as shown in Tables 1 to 3. become.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】なお、この分散値σと分散スロープδの演
算式は次の式を用いた。
The following equation was used as the arithmetic expression of the dispersion value σ and the dispersion slope δ.

【0022】 σ=(K/C)dM2/dK+(K/C)(d(M1−M2)/dK)d(V ・b)/dV+{(M1−M2)/C}Vd2 (V・b)/dV2 ・・・・・( 1)Σ = (K / C) dM2 / dK + (K / C) (d (M1−M2) / dK) d (V · b) / dV + {(M1−M2) / C} Vd 2 (V · b) / dV 2 (1)

【0023】δ=dσ/dλ・・・・・(2)Δ = dσ / dλ (2)

【0024】演算を行う上での各記号は次のものを表し
ている。C:光速、K:媒体空間の波数、n1:コアの
屈折率、n2:外部クラッドの屈折率、Δ:コアと外部
クラッドとの比屈折率差、V:(K・n1・a(2
Δ))1/2 、a:コア径、M1:d(K・n1)/d
K、M2:d(K・n2)/dK、b:正規化変数。
The symbols used in the calculation represent the following. C: speed of light, K: wave number of medium space, n1: refractive index of core, n2: refractive index of outer cladding, Δ: relative refractive index difference between core and outer cladding, V: (K · n1 · a (2
Δ)) 1/2 , a: core diameter, M1: d (K · n1) / d
K, M2: d (K · n2) / dK, b: normalized variable.

【0025】表1はコア径と内部クラッドとの直径比が
1:2.5 の場合の計算結果であり、表2はコアと内部ク
ラッドとの直径比が1:1.5 の場合の計算結果を示して
おり、表3はコアと内部クラッドとの直径比が1:4.0
の場合の計算結果を示している。
Table 1 shows the calculation results when the diameter ratio between the core diameter and the inner cladding is 1: 2.5, and Table 2 shows the calculation results when the diameter ratio between the core and the inner cladding is 1: 1.5. Table 3 shows that the diameter ratio of the core to the inner cladding is 1: 4.0.
The calculation result in the case of is shown.

【0026】これらの計算結果から明らかなように、あ
るコア径を境として分散スロープが正から負に反転して
いる。表1のデータでは、コア径が2.1 μmを境として
分散スロープが反転し、表2のデータではコア径が2.00
〜2.17の間のあるコア径を境として分散スロープが反転
し、表3のデータでは、コア径が2.1 μmと2.2 μmの
間のあるコア径を境として分散スロープが反転してい
る。したがって、これらの計算データに基づき、分散ス
ロープが負の範囲で、負の高分散を持つ分散補償光ファ
イバの構造が特定できる。
As is clear from these calculation results, the dispersion slope is inverted from positive to negative at a certain core diameter. In the data of Table 1, the dispersion slope is reversed at the core diameter of 2.1 μm, and in the data of Table 2, the core diameter is 2.00.
The dispersion slope is inverted at a certain core diameter between ˜2.17, and in the data in Table 3, the dispersion slope is inverted at a certain core diameter between 2.1 μm and 2.2 μm. Therefore, the structure of the dispersion compensating optical fiber having a high negative dispersion can be specified in the negative range of the dispersion slope based on these calculation data.

【0027】本実施形態例ではこの点に着目し、負の分
散スロープを持ち、かつ、負の高分散を持つ分散補償光
ファイバを提供するものであり、本実施形態例では、光
ファイバのコア半径をa、波長分散をσ、波長をλとし
た場合、分散スロープ(dσ/dλ)が−0.28ps/nm2
/kmとなるコア半径をa1 としたときに、a0 ≦a≦a
1 の範囲内で波長分散σがσ≦−100 ps/nm/kmとなる
分散補償光ファイバを得るもので、表1のデータでは、
コア径2.1 〜2.3 の範囲でその条件が満たされており、
表2のデータでは、コア径が2.17μmで、また、表3の
データでは、コア径が2.2 〜2.4 nmの範囲でそれぞれ条
件が満たされている。
Focusing on this point, the present embodiment provides a dispersion compensating optical fiber having a negative dispersion slope and a high negative dispersion. In the present embodiment, the core of the optical fiber is provided. When the radius is a, the wavelength dispersion is σ, and the wavelength is λ, the dispersion slope (dσ / dλ) is -0.28ps / nm 2
When the core radius that becomes / km is a 1 , a 0 ≤ a ≤ a
A dispersion compensating optical fiber having a chromatic dispersion σ of σ ≦ −100 ps / nm / km within the range of 1 is obtained.
The condition is satisfied in the core diameter range of 2.1 to 2.3,
In the data in Table 2, the core diameter is 2.17 μm, and in the data in Table 3, the conditions are satisfied in the core diameter range of 2.2 to 2.4 nm.

【0028】前記各表に示す計算結果と実際に作製した
分散補償光ファイバの実測値とでは多少の差があり、例
えば、コア径と内部クラッドとの直径比が1:2.5 の実
際に作製した分散補償光ファイバの実測値は、コア径が
2.124 μmで分散値が−163.3 ps/nm/km、分散スロー
プが−0.129 ps/nm2 /kmの値であり、コア径が2.184
μmでは分散値が−152 ps/nm/kmで、分散スロープが
−0.249 ps/nm2 /kmの値となり、前記負の分散スロー
プの範囲内で−100 ps/nm/km以下となる負の高分散を
持つファイバは、計算によって得られる値を参考にして
(その計算値を目ざし、必要に応じ修正して)作製する
ことによって得られる。
There is a slight difference between the calculation results shown in the above tables and the actually measured values of the dispersion-compensating optical fiber actually manufactured. For example, the diameter ratio of the core diameter to the inner cladding was 1: 2.5. The measured value of the dispersion compensating optical fiber is
2.124 μm, dispersion value is -163.3 ps / nm / km, dispersion slope is −0.129 ps / nm 2 / km, and core diameter is 2.184.
In μm, the dispersion value is −152 ps / nm / km, the dispersion slope is −0.249 ps / nm 2 / km, and the negative slope is −100 ps / nm / km or less within the range of the negative dispersion slope. A fiber having a high dispersion can be obtained by referring to the value obtained by calculation (aiming at the calculated value and correcting if necessary).

【0029】図2は本実施形態例における分散補償光フ
ァイバの各コア直径に対する分散スロープと分散値との
実測結果をコアと内部クラッドとの直径比をパラメータ
として示したものである。この実測結果のデータに基づ
き、分散スロープが零以下となる範囲において、波長分
散が−100 ps/nm/km以下の負の高分散となるコア径範
囲が求められ、コア径を特定することによって内部クラ
ッド層の径が定まり、図1に示すファイバ構造を持ち優
れた波長分散補償性能を備えた分散補償光ファイバが得
られる。なお、図2中に図4の従来の比較例ファイバの
実測データを参考のために示してある。
FIG. 2 shows the measurement results of the dispersion slope and the dispersion value for each core diameter of the dispersion compensating optical fiber in this embodiment, using the diameter ratio of the core and the inner cladding as a parameter. Based on the data of this actual measurement result, in the range where the dispersion slope is 0 or less, the chromatic dispersion has a negative high dispersion of -100 ps / nm / km or less. The diameter of the inner cladding layer is determined, and a dispersion compensating optical fiber having the fiber structure shown in FIG. 1 and excellent chromatic dispersion compensating performance can be obtained. In addition, in FIG. 2, the actual measurement data of the conventional comparative example fiber of FIG. 4 is shown for reference.

【0030】前記の如く、分散スロープが負の範囲で、
波長分散が−100 ps/nm/km以下となる負の高分散を持
つ分散補償光ファイバを、正の分散を持つ光伝送路に挿
入することにより、光伝送路で生じる大きな正の分散を
効果的に補償して受信側で各波長の分散を小さな値(望
ましくはほぼ零の分散)に補償することができる。通常
の光伝送路は正の分散スロープを持っているので、本実
施形態例の負の分散スロープを持つ分散補償光ファイバ
を使用することにより、各波長の受信側での波長分散の
ばらつき変動を抑制して、波長分散を小さなばらつきの
範囲内に揃えることができるという効果も得られる。
As mentioned above, when the dispersion slope is in the negative range,
By inserting a dispersion-compensating optical fiber with a high negative dispersion, which has a chromatic dispersion of -100 ps / nm / km or less, into the optical transmission line with positive dispersion, the large positive dispersion produced in the optical transmission line is effective. It is possible to compensate the dispersion of each wavelength to a small value (desirably, a dispersion of substantially zero) on the receiving side. Since an ordinary optical transmission line has a positive dispersion slope, by using the dispersion compensating optical fiber having the negative dispersion slope of the present embodiment example, variations in chromatic dispersion on the receiving side of each wavelength can be prevented. There is also an effect that the wavelength dispersion can be suppressed and the wavelength dispersion can be made uniform within a range of small variation.

【0031】また、既設の1300nm零分散ファイバネット
ワークを用いて、1550nm近辺での波長多重伝送を行う場
合には、波長1550nm近辺で分散スロープが負の領域を持
ち、かつ、コア径が2.1 μmより大きく2.3 μmよりも
小さい範囲で分散補償光ファイバの選択条件を設定する
ことにより、波長1550nmでの分散値が−100 ps/nm/km
より小さい負の高分散のファイバが選定される。この光
ファイバを分散補償光ファイバとして既設の1300nm零分
散ファイバネットワークに挿入し、1550nm近辺の波長を
用いて波長多重光伝送を行うことにより、光伝送路の分
散を効果的に補償して各波長の分散の小さい光信号の受
信が可能となる。
When wavelength multiplexing transmission around 1550 nm is performed using the existing 1300 nm zero dispersion fiber network, the dispersion slope has a negative region near the wavelength 1550 nm and the core diameter is 2.1 μm or less. By setting the selection condition of the dispersion compensating optical fiber in the range of less than 2.3 μm, the dispersion value at the wavelength of 1550 nm is −100 ps / nm / km.
A smaller negative high dispersion fiber is chosen. This optical fiber is inserted into an existing 1300 nm zero-dispersion fiber network as a dispersion compensating optical fiber, and wavelength-multiplexed optical transmission is performed using wavelengths near 1550 nm, thereby effectively compensating for the dispersion of the optical transmission line. It is possible to receive an optical signal having a small dispersion.

【0032】図3は本実施形態例で製作した分散補償光
ファイバの誘導ブリルアン散乱の実測データを示したも
のである。この誘導ブリルアン散乱の実測装置はグラフ
の内部に参考のため示してある。この図で、横軸は光の
入力パワーレベルを示しており、縦軸は後方散乱光のパ
ワーレベルを示してある。この実験データから明らかな
ように、入力パワーレベルが8dBmで、誘導ブリルア
ン散乱が生じており、この誘導ブリルアン散乱が生じる
敷居値の8dBmは従来の一般的な正の分散スロープを
持った分散補償光ファイバと同様であり、本実施形態例
の分散補償光ファイバは、従来のものに比べ誘導ブリル
アン散乱が悪化してはおらず、後方散乱光を発生しない
範囲で入力パワーを十分に高めることができ、実用性を
十分に満足していることが分かる。
FIG. 3 shows measured data of stimulated Brillouin scattering of the dispersion compensating optical fiber manufactured in this embodiment. This stimulated Brillouin scattering measurement device is shown inside the graph for reference. In this figure, the horizontal axis represents the input power level of light and the vertical axis represents the power level of backscattered light. As is clear from this experimental data, when the input power level is 8 dBm, stimulated Brillouin scattering occurs, and the threshold value of 8 dBm at which this stimulated Brillouin scattering occurs is the conventional dispersion-compensated light with a positive dispersion slope. The same as the fiber, the dispersion-compensating optical fiber of the present embodiment example, the stimulated Brillouin scattering is not worse than the conventional one, it is possible to sufficiently increase the input power in the range that does not generate backscattered light, It can be seen that the practicality is fully satisfied.

【0033】なお、本発明は上記実施形態例に限定され
ることはなく、様々な実施の形態を採り得るものであ
る。
The present invention is not limited to the above embodiment, but various embodiments can be adopted.

【0034】[0034]

【発明の効果】本発明によれば、負の分散スロープを持
ち、かつ、負の高分散を有する今までにない分散補償光
ファイバを提供することが可能となり、この負の分散ス
ロープを持ち、かつ、負の高分散を持った本発明の光フ
ァイバを正の分散を持った光伝送路に波長多重光通信の
分散補償光ファイバとして使用することにより、光伝送
路で生じた大きな各波長の分散量を効果的に減殺して受
信側では波長分散の小さい受信波とすることが可能とな
り、これにより、高密度高速の波長多重光通信の信頼性
を格段に高めることが可能となる。
According to the present invention, it becomes possible to provide an unprecedented dispersion compensating optical fiber having a negative dispersion slope and a high negative dispersion, and having the negative dispersion slope, Moreover, by using the optical fiber of the present invention having a high negative dispersion as a dispersion compensating optical fiber for wavelength division multiplexing optical communication in an optical transmission line having a positive dispersion, It is possible to effectively reduce the amount of dispersion and form a reception wave with small chromatic dispersion on the receiving side, and thus it is possible to significantly improve the reliability of high-density and high-speed wavelength-multiplexed optical communication.

【0035】また、本発明の分散補償光ファイバは負の
高分散を持つので、光伝送路を通った光送信信号に大き
な正の分散が生じても短いファイバ長でその正の分散を
補償できることになる。したがって、分散補償光ファイ
バをパッケージに収容する場合においても、そのパッケ
ージは小型のものでよく、嵩張らないために、非常に実
用性に優れたものとなる。
Further, since the dispersion compensating optical fiber of the present invention has a high negative dispersion, even if a large positive dispersion occurs in the optical transmission signal passing through the optical transmission line, the positive dispersion can be compensated with a short fiber length. become. Therefore, even when the dispersion compensating optical fiber is housed in a package, the package does not need to be small in size and is not bulky, which makes the package very practical.

【0036】さらに、既設の1300nm零分散伝送網で、15
50nm近辺での波長を使用して波長多重光通信を行う場合
に、本発明の分散補償光ファイバを光伝送路に挿入使用
することにより、同様に、各波長の送信光信号の受信側
での波長分散を効果的に減殺補償することができること
となり、前記既設の伝送網を利用して1550nm近辺での信
頼性の高い高密度高速の波長多重通信が可能となる。
Furthermore, in the existing 1300 nm zero dispersion transmission network, 15
When performing wavelength division multiplexing optical communication using wavelengths around 50 nm, by inserting and using the dispersion compensating optical fiber of the present invention in the optical transmission line, similarly, at the receiving side of the transmission optical signal of each wavelength. Since the chromatic dispersion can be effectively canceled and compensated, highly reliable high-density and high-speed WDM communication in the vicinity of 1550 nm becomes possible by using the existing transmission network.

【0037】ところで、光ファイバには、光を効果的に
伝搬するための条件がある。この光の伝搬条件は光ファ
イバの伝搬屈折率(β/K)に依存する。ここで、βは
伝搬係数で、波動の各周波数ωを波動の位相速度で割っ
た値であり、Kは媒体空間の波数である。
By the way, the optical fiber has a condition for effectively propagating light. This light propagation condition depends on the propagation refractive index (β / K) of the optical fiber. Here, β is a propagation coefficient, a value obtained by dividing each frequency ω of the wave by the phase velocity of the wave, and K is the wave number of the medium space.

【0038】W型の屈折率分布をもつ光ファイバにおい
ては、前記光の伝搬屈折率はコアの比屈折率差Δ+ と内
部クラッドの比屈折率差Δ- の値に左右され、これらの
比屈折率差Δ+ ,Δ- の最適な組み合わせを見い出すこ
とが必要となる。
In the optical fiber having a [0038] W-type refractive index distribution of the propagation refractive index of the light of the relative refractive index difference delta relative refractive index difference delta + and inner cladding of the core - is dependent on the values of these ratios It is necessary to find the optimum combination of refractive index differences Δ + and Δ .

【0039】本発明者の検討によれば、コアの比屈折率
差Δ+ が大きく、内部クラッドの比屈折率差Δ- が小さ
い方が伝搬条件を満たし易い傾向となり、特に、コアの
比屈折率差Δ+ を+2.8 %、内部クラッドの比屈折率差
Δ- を−0.45%とした組み合わせが光の最適伝搬条件を
与える。この最適伝搬条件から外れるに従い光の伝搬性
能が低下する。例えば、Δ+ =+2.8 %,Δ- =−0.7
%とした光ファイバでは、Δ- が大き過ぎて光の伝搬性
能が低下し、また、Δ+ =+2.1 %,Δ- =−0.35%と
した光ファイバではΔ+ が小さ過ぎるため同様に光の伝
搬性能が低下する。
According to a study made by the present inventor, the larger the relative refractive index difference Δ + of the core and the smaller the relative refractive index difference Δ − of the inner cladding, the more easily the propagation conditions tend to be satisfied. The combination with the index difference Δ + of + 2.8% and the relative refractive index difference Δ of the inner cladding of −0.45% gives the optimum light propagation conditions. As the optimum propagation conditions are deviated, the light propagation performance deteriorates. For example, Δ + = + 2.8%, Δ - = -0.7
%, The optical fiber has too large Δ and the light propagation performance is deteriorated, and Δ + = + 2.1% and Δ = −0.35% are too small Δ +, the same is true. The light propagation performance deteriorates.

【0040】本発明の如く、Δ+ =+2.8 %,Δ- =−
0.45%の値を与えることで、光伝搬の最適伝搬屈折率が
得られる。
As in the present invention, Δ + = + 2.8%, Δ - =-
By giving a value of 0.45%, the optimum propagation refractive index for light propagation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る波長多重伝送用分散補償光ファイ
バの一実施形態例を示すファイバ構成の説明図である。
FIG. 1 is an explanatory diagram of a fiber configuration showing an embodiment of a dispersion compensating optical fiber for wavelength division multiplexing transmission according to the present invention.

【図2】本実施形態例の分散補償光ファイバの分散スロ
ープと分散の各種実測データのグラフである。
FIG. 2 is a graph of various measured data of dispersion slope and dispersion of the dispersion compensating optical fiber of the present embodiment example.

【図3】本実施形態例の分散補償光ファイバの誘導ブリ
ルアン散乱の実測データのグラフである。
FIG. 3 is a graph of measured data of stimulated Brillouin scattering of the dispersion compensating optical fiber of the present embodiment example.

【図4】従来の一般的な単純ステップ形の光ファイバ構
造の説明図である。
FIG. 4 is an explanatory diagram of a conventional general simple step type optical fiber structure.

【図5】特開平6−11620号公報に示されている5
種類の屈折率構造の説明図である。
FIG. 5: 5 shown in JP-A-6-11620
It is explanatory drawing of a kind of refractive index structure.

【符号の説明】[Explanation of symbols]

1 コア 2 内部クラッド層 1 core 2 inner clad layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/18 H04J 14/00 14/02 (72)発明者 小倉 邦男 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H04B 10/18 H04J 14/00 14/02 (72) Inventor Kunio Ogura 2 Marunouchi, Chiyoda-ku, Tokyo No. 6-1 Furukawa Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバのコア半径をa、波長分散を
σ、光送信信号の波長をλとした場合、波長分散スロー
プ(dσ/dλ)が零になるコア半径をa0とし、dσ
/dλ=−0.28ps/nm2 /kmとなるコア半径をa1 とし
たとき、a0≦a≦a1 の範囲内で波長分散σをσ≦−1
00 ps/nm/kmの範囲とした波長多重伝送用分散補償光
ファイバ。
1. When the core radius of the optical fiber is a, the chromatic dispersion is σ, and the wavelength of the optical transmission signal is λ, the core radius at which the chromatic dispersion slope (dσ / dλ) becomes zero is a 0, and d σ is
/Dλ=−0.28ps/nm 2 / km, where a 1 is the core radius, chromatic dispersion σ is σ ≦ −1 within the range of a 0 ≦ a ≦ a 1.
A dispersion compensating optical fiber for wavelength division multiplexing transmission in the range of 00 ps / nm / km.
【請求項2】 光ファイバのコア半径をa、波長分散を
σ、光送信信号の波長をλとした場合、波長分散スロー
プ(dσ/dλ)が零になるコア半径をa0とし、dσ
/dλ=−0.28ps/nm2 /kmとなるコア半径をa1 とし
たとき、a0≦a≦a1 の範囲内で波長分散σをσ≦−1
00 ps/nm/kmの範囲とし、光ファイバの屈折率構造は
W形の屈折率分布を有し、コアの外側に内部クラッド層
を形成し、その外側を最外層のクラッド層とし、内部ク
ラッド層は屈折率を低くするドーパントが比屈折率差で
−0.45%になるようにドープされ、最外層のクラッド層
は純石英とし、コアには屈折率を高めるドーパントが比
屈折率差で+2.8 %になるようにドープされている波長
多重伝送用分散補償光ファイバ。
2. When the core radius of the optical fiber is a, the chromatic dispersion is σ, and the wavelength of the optical transmission signal is λ, the core radius at which the chromatic dispersion slope (dσ / dλ) is zero is a 0, and dσ is
/Dλ=−0.28ps/nm 2 / km, where a 1 is the core radius, chromatic dispersion σ is σ ≦ −1 within the range of a 0 ≦ a ≦ a 1.
In the range of 00 ps / nm / km, the refractive index structure of the optical fiber has a W-shaped refractive index distribution, the inner clad layer is formed outside the core, and the outer clad layer is the outermost clad layer. The layer is doped with a dopant that lowers the refractive index so that the relative refractive index difference is −0.45%, the outermost cladding layer is pure quartz, and the core has a refractive index increasing dopant of +2 due to the relative refractive index difference. Dispersion compensating optical fiber for WDM transmission doped to 8%.
【請求項3】 光ファイバの屈折率構造はW形の屈折率
分布を有し、コアの外側に内部クラッド層を形成し、そ
の外側を最外層のクラッド層とし、内部クラッド層は屈
折率を低くするドーパントが比屈折率差で−0.45%にな
るようにドープされ、最外層のクラッド層は純石英と
し、コアには屈折率を高めるドーパントが比屈折率差で
+2.8 %になるようにドープされ、コアと内部クラッド
層の直径比を1対1.5 〜1対4.0 の範囲とした請求項1
記載の波長多重伝送用分散補償光ファイバ。
3. The refractive index structure of an optical fiber has a W-shaped refractive index distribution, an inner clad layer is formed on the outside of the core, and the outer side is the outermost clad layer, and the inner clad layer has a refractive index. The dopant to be lowered is doped to have a relative refractive index difference of −0.45%, the outermost cladding layer is made of pure quartz, and the core has a refractive index difference of + 2.8% to increase the refractive index difference. 2. The diameter ratio of the core to the inner cladding layer doped in the range of 1: 1.5 to 1: 4.0.
A dispersion compensating optical fiber for wavelength-division multiplexing transmission.
【請求項4】 波長が1550nmで分散波長スロープを負の
領域とし、かつ、コア径が2.1 μmより大で2.3 μmよ
り小さい範囲において、光波長1550nmでの波長分散値が
−100 ps/nm/kmより小であって−170 ps/nm/kmより
も大とした請求項3記載の波長多重伝送用分散補償光フ
ァイバ。
4. The wavelength dispersion value at a light wavelength of 1550 nm is −100 ps / nm / in the range where the wavelength is 1550 nm and the dispersion wavelength slope is in the negative region and the core diameter is larger than 2.1 μm and smaller than 2.3 μm. The dispersion compensating optical fiber for wavelength division multiplex transmission according to claim 3, which is smaller than km and larger than -170 ps / nm / km.
JP7258142A 1994-09-13 1995-09-11 Dispersion compensated optical fiber for multiwavelength transmission Pending JPH08136758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7258142A JPH08136758A (en) 1994-09-13 1995-09-11 Dispersion compensated optical fiber for multiwavelength transmission

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24469194 1994-09-13
JP6-244691 1994-09-13
JP7258142A JPH08136758A (en) 1994-09-13 1995-09-11 Dispersion compensated optical fiber for multiwavelength transmission

Publications (1)

Publication Number Publication Date
JPH08136758A true JPH08136758A (en) 1996-05-31

Family

ID=26536856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7258142A Pending JPH08136758A (en) 1994-09-13 1995-09-11 Dispersion compensated optical fiber for multiwavelength transmission

Country Status (1)

Country Link
JP (1) JPH08136758A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195056A (en) * 1997-09-17 1999-04-09 Fujikura Ltd Dispersion compensating optical fiber
JPH11507445A (en) * 1996-07-31 1999-06-29 コーニング インコーポレイテッド Dispersion-corrected single-mode waveguide
WO1999047953A1 (en) * 1998-03-16 1999-09-23 The Furukawa Electric Co., Ltd. Wavelength-multiplexing optical transmission channel and optical fiber used therefor
JP2000028841A (en) * 1998-07-07 2000-01-28 Furukawa Electric Co Ltd:The Optical fiber type optical parts
WO2000017685A1 (en) * 1998-09-18 2000-03-30 Sumitomo Electric Industries, Ltd. Dispersion compensating fiber
WO2000017684A1 (en) * 1998-09-18 2000-03-30 Sumitomo Electric Industries, Ltd. Dispersion compensating fiber
WO2000025158A1 (en) * 1998-10-23 2000-05-04 The Furukawa Electric Co., Ltd. Dispersion compensation optical fiber and wavelength multiplex optical transmission line comprising dispersion compensation optical fiber
US6307994B1 (en) 1998-06-24 2001-10-23 Samsung Electronics Co., Ltd. Multi-cladding optical fiber, long-period optical fiber grating written therein and writing method thereof
KR100322135B1 (en) * 1999-03-11 2002-02-04 윤종용 Optical Fiber in which residual mechanical stress is maximized and method for fabricating fiber gratings using the same
US6400877B1 (en) 2000-09-01 2002-06-04 Sumitomo Electric Industries, Ltd. Negative-dispersion optical fiber and optical transmission line incorporating the same
KR100353755B1 (en) * 1997-12-05 2002-09-27 스미토모덴키고교가부시키가이샤 Dispersion flat optical fiber
US6625362B2 (en) 2000-07-14 2003-09-23 Fujitsu Limited Dispersion compensating optical fiber
US7233728B2 (en) 2002-03-13 2007-06-19 Fujikura Ltd. Dispersion compensating optical fiber
JP2010044426A (en) * 1999-01-04 2010-02-25 Alcatel-Lucent Optical fiber with low slope of wavelength dispersion

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507445A (en) * 1996-07-31 1999-06-29 コーニング インコーポレイテッド Dispersion-corrected single-mode waveguide
JPH1195056A (en) * 1997-09-17 1999-04-09 Fujikura Ltd Dispersion compensating optical fiber
KR100353755B1 (en) * 1997-12-05 2002-09-27 스미토모덴키고교가부시키가이샤 Dispersion flat optical fiber
WO1999047953A1 (en) * 1998-03-16 1999-09-23 The Furukawa Electric Co., Ltd. Wavelength-multiplexing optical transmission channel and optical fiber used therefor
US6307994B1 (en) 1998-06-24 2001-10-23 Samsung Electronics Co., Ltd. Multi-cladding optical fiber, long-period optical fiber grating written therein and writing method thereof
KR100333897B1 (en) * 1998-06-24 2002-07-31 광주과학기술원 Stress-Relieved Long-Range Optical Fiber Grids
JP2000028841A (en) * 1998-07-07 2000-01-28 Furukawa Electric Co Ltd:The Optical fiber type optical parts
US6603913B1 (en) 1998-09-18 2003-08-05 Sumitomo Electric Industries, Ltd. Single-mode optical fiber having multiple cladding regions for dispersion compensation
WO2000017684A1 (en) * 1998-09-18 2000-03-30 Sumitomo Electric Industries, Ltd. Dispersion compensating fiber
WO2000017685A1 (en) * 1998-09-18 2000-03-30 Sumitomo Electric Industries, Ltd. Dispersion compensating fiber
WO2000025158A1 (en) * 1998-10-23 2000-05-04 The Furukawa Electric Co., Ltd. Dispersion compensation optical fiber and wavelength multiplex optical transmission line comprising dispersion compensation optical fiber
JP2010044426A (en) * 1999-01-04 2010-02-25 Alcatel-Lucent Optical fiber with low slope of wavelength dispersion
KR100322135B1 (en) * 1999-03-11 2002-02-04 윤종용 Optical Fiber in which residual mechanical stress is maximized and method for fabricating fiber gratings using the same
US6625362B2 (en) 2000-07-14 2003-09-23 Fujitsu Limited Dispersion compensating optical fiber
US6400877B1 (en) 2000-09-01 2002-06-04 Sumitomo Electric Industries, Ltd. Negative-dispersion optical fiber and optical transmission line incorporating the same
US7233728B2 (en) 2002-03-13 2007-06-19 Fujikura Ltd. Dispersion compensating optical fiber

Similar Documents

Publication Publication Date Title
US6404967B2 (en) Optical fiber and optical transmission line using the same
US5721800A (en) Dispersion-shifted fiber
US6169837B1 (en) Dispersion-flattened optical fiber
US6501892B1 (en) Dispersion-compensating fiber
US5568583A (en) Dispersion compensating optical fiber for wavelength multiplex transmission and method using same
JP3615731B2 (en) Dispersion compensating optical waveguide fiber
US20020102082A1 (en) Optical fiber for metropolitan and access network systems
EP0862069A2 (en) Optical fiber
US6477306B2 (en) Dispersion-compensating optical fiber, and, optical transmission line and dispersion-compensating module respectively including the same
JPH07168046A (en) Optical fiber for dividing and multiplexing wavelength
US6603913B1 (en) Single-mode optical fiber having multiple cladding regions for dispersion compensation
US6496631B2 (en) Optical transmission line and optical transmission system including the same
US6256440B1 (en) Dispersion-shifted optical fiber
JPH08136758A (en) Dispersion compensated optical fiber for multiwavelength transmission
JP2002533774A (en) Optical system and method with low loss and nonlinear effects
JP4299467B2 (en) Single mode optical fiber
JPH10325913A (en) Dispersion compensative optical fiber and wavelength multiple light transmission line
US6493494B1 (en) Dispersion compensating fiber for wavelength division multiplexed optical fiber transmission systems using dispersion shifted fiber as line fiber
US6633714B2 (en) Optical fiber for wavelength division multiplex transmission systems
JP4920829B2 (en) Monomode optical fiber for optical fiber transmission networks with wavelength division multiplexing
US6587627B2 (en) Dispersion-compensating fiber, and dispersion-compensating module and hybrid optical fiber link using the same
US6952518B2 (en) Dispersion-shifted single-mode fiber having low dispersion slope for large capacity transmission
KR100433297B1 (en) Optical fiber for wavelength division multiplexing communication
KR100666433B1 (en) Dispersion controlling optical fiber and manufacturing method thereof
JPH10300966A (en) Optical fiber