JPH08136609A - Withstand voltage testing device - Google Patents

Withstand voltage testing device

Info

Publication number
JPH08136609A
JPH08136609A JP27727694A JP27727694A JPH08136609A JP H08136609 A JPH08136609 A JP H08136609A JP 27727694 A JP27727694 A JP 27727694A JP 27727694 A JP27727694 A JP 27727694A JP H08136609 A JPH08136609 A JP H08136609A
Authority
JP
Japan
Prior art keywords
voltage
inductor
test
corona
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27727694A
Other languages
Japanese (ja)
Inventor
Ikuya Iketani
生也 池谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I K D KK
Original Assignee
I K D KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I K D KK filed Critical I K D KK
Priority to JP27727694A priority Critical patent/JPH08136609A/en
Publication of JPH08136609A publication Critical patent/JPH08136609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE: To detect a corona voltage with a sufficiently large amplitude. CONSTITUTION: In a withstand voltage testing device which detects a corona voltage generated from an object 4 to be tested by applying a voltage to the object 4 from a testing power source 1, an inductor 3 is connected in series between the power source 1 and object 4. In addition, a capacitor is connected in series with the inductor 3 so as to change the resonance frequency of a serial resonance circuit composed of the inductor 3 and capacitor to a testing frequency. Since the inductor 3 enlarges the sporadically generated corona voltage, the voltage can be detected with high sensitivity and, since the resonance frequency of the serial resonance circuit composed of the inductor 3 and capacitor is changed to the testing frequency, the impedance of the testing frequency can be reduced to about zero.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランスやチョークコ
イル、絶縁電線等の耐電圧を試験する耐電圧試験装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a withstand voltage tester for testing withstand voltage of transformers, choke coils, insulated wires and the like.

【0002】[0002]

【従来の技術】図5は従来の層間耐電圧試験装置の回路
構成を示す図である。従来、トランスやチョークコイル
等を被試験体としてその層間耐電圧を試験する場合に
は、例えば図5に示すように高圧出力トランスTから被
試験体Sの層間に高電圧を印加し、その両端からハイパ
スフィルタFを通してコロナ電圧計Vによりコロナ電圧
を検出している。例えば被試験体Sの層間がフラッシュ
オーバして完全に短絡状態に至るメカニズムを考察する
と、絶縁体のモデルとしては図2に示すように層間を微
小間隙の複数個のコンデンサC1 〜Cn の直列接続回路
からなる。したがって、その両端に高電圧が印加される
と、直列接続されたコンデンサの1乃至複数個の耐圧不
良ではコロナが散発的に発生し、コンデンサの全部が耐
圧不良であればフラッシュオーバとなり、完全に耐圧不
良となる。このようにコロナは、被試験体Sの絶縁体が
フラッシュオーバして完全に短絡状態になる手前の電圧
で発生するものであり、耐電圧不良になる前兆であるた
め、層間耐電圧試験では、このコロナの発生を確実に検
出することが重要である。
2. Description of the Related Art FIG. 5 is a diagram showing a circuit configuration of a conventional interlayer withstand voltage test apparatus. Conventionally, when testing an interlayer withstand voltage using a transformer, a choke coil or the like as a device under test, a high voltage is applied between layers of the device under test S from a high voltage output transformer T as shown in FIG. The corona voltage is detected by the corona voltmeter V through the high-pass filter F. For example, considering the mechanism in which the layers of the device under test S are flashed over to reach a completely short-circuited state, as a model of the insulator, as shown in FIG. 2, a plurality of capacitors C 1 to C n having a minute gap between the layers are formed. It consists of a series connection circuit. Therefore, when a high voltage is applied to both ends of the capacitors, corona sporadicly occurs when one or more of the capacitors connected in series have a poor withstand voltage, and when all of the capacitors have a poor withstand voltage, a flashover occurs. Poor pressure resistance. As described above, the corona is generated at a voltage before the insulator of the device under test S is flashed over and becomes a completely short-circuited state, and is a sign that a withstand voltage failure occurs. Therefore, in the interlayer withstand voltage test, It is important to reliably detect the occurrence of this corona.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の耐電圧
試験装置では、コロナが発生する周波数帯域において高
圧出力トランスTの出力インピーダンスが高いため、コ
ロナ電圧はそれほど減衰せず問題はないが、検出感度は
悪いという問題がある。
However, in the conventional withstanding voltage test apparatus, since the output impedance of the high voltage output transformer T is high in the frequency band in which corona occurs, the corona voltage is not attenuated so much and no problem occurs. There is a problem of poor sensitivity.

【0004】本発明は、上記の課題を解決するものであ
って、微小なコロナ発生であってもコロナ電圧が拡大さ
れた十分大きな振幅で検出することができる耐電圧試験
装置を提供することを目的とするものである。
The present invention solves the above problems and provides a withstand voltage test apparatus capable of detecting a corona voltage with a sufficiently large amplitude even if a minute corona is generated. It is intended.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、試
験電源から被試験体に電圧を印加して被試験体に発生す
るコロナ電圧を検出する耐電圧試験装置において、試験
電源と被試験体との間にインダクタを直列に挿入接続し
たことを特徴とし、さらには、インダクタと直列にキャ
パシタを接続してインダクタとキャパシタの直列共振回
路の共振周波数を試験周波数にしたことを特徴とするも
のである。
To this end, the present invention provides a withstand voltage test apparatus for applying a voltage from a test power supply to a device under test to detect a corona voltage generated in the device under test. It is characterized in that an inductor is inserted and connected in series between and, and further, a capacitor is connected in series with the inductor and the resonance frequency of the series resonance circuit of the inductor and the capacitor is set to the test frequency. is there.

【0006】[0006]

【作用】本発明の耐電圧試験装置では、試験電源と被試
験体との間にインダクタを直列に挿入接続したので、散
発的に発生するコロナ電圧を高感度で検出することがで
きる。また、インダクタと直列にキャパシタを接続して
インダクタとキャパシタの直列共振回路の共振周波数を
試験周波数にしたので、試験周波数におけるインピーダ
ンスをゼロに近づけることができる。
In the withstand voltage test apparatus of the present invention, since the inductor is inserted and connected in series between the test power supply and the device under test, sporadic corona voltage can be detected with high sensitivity. Further, since the resonance frequency of the series resonance circuit of the inductor and the capacitor is set to the test frequency by connecting the capacitor in series with the inductor, the impedance at the test frequency can be brought close to zero.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明に係る耐電圧試験装置の1実施例
を示す図、図2はコロナの発生を説明するためのモデル
回路を示す図、図3はコロナ電圧の検出を説明するため
のモデル回路を示す図であり、図中、1は試験電源、2
は高圧出力トランス、3はインダクタ、4は被試験体、
5はハイパスフィルタ、6はコロナ電圧計、Eは試験電
源、Lはインダクタ、C1〜Cnは絶縁体、SWはスイ
ッチ、Vはピーク検波電圧計を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a withstand voltage test apparatus according to the present invention, FIG. 2 is a diagram showing a model circuit for explaining corona generation, and FIG. 3 is a model circuit for explaining detection of corona voltage. FIG. 2 is a diagram showing a test power source, 2
Is a high voltage output transformer, 3 is an inductor, 4 is a device under test,
5 is a high-pass filter, 6 is a corona voltmeter, E is a test power supply, L is an inductor, C1 to Cn are insulators, SW is a switch, and V is a peak detection voltmeter.

【0008】図1において、高圧出力トランス2は、例
えば10V程度の試験電源1の電圧を1000Vに昇圧
して出力し、インダクタ3を通して被試験体4に印加す
るものである。被試験体4は、トランスやチョークコイ
ル、絶縁電線等であり、それらの導体間や導体と絶縁体
間に高圧出力トランス2の高圧出力が印加される。ハイ
パスフィルタ5は、インダクタ3を通して被試験体4に
高圧出力を印加する給電ライン間に接続され、試験電源
1の供給する試験周波数帯域を阻止し、被試験体4で発
生するコロナ電圧の周波数帯域を通過させるものであ
り、このハイパスフィルタ5を通してコロナ電圧計6に
被試験体4で発生するコロナ電圧が取り込まれる。コロ
ナ電圧計6は、望ましくは例えばピーク値検波型がよい
が、他のタイプのものであってもよいことは勿論であ
る。
In FIG. 1, a high voltage output transformer 2 boosts the voltage of a test power supply 1 of, for example, about 10 V to 1000 V and outputs the voltage, which is applied to a device under test 4 through an inductor 3. The device under test 4 is a transformer, a choke coil, an insulated wire, or the like, and the high voltage output of the high voltage output transformer 2 is applied between the conductors or between the conductor and the insulator. The high-pass filter 5 is connected between the power supply lines that apply a high-voltage output to the DUT 4 through the inductor 3, blocks the test frequency band supplied by the test power supply 1, and causes the frequency band of the corona voltage generated in the DUT 4. The corona voltage generated in the DUT 4 is taken into the corona voltmeter 6 through the high pass filter 5. The corona voltmeter 6 is preferably, for example, a peak value detection type, but it goes without saying that it may be another type.

【0009】次に、上記の如く構成された耐電圧試験装
置によるコロナ電圧の検出を説明する。例えば本発明に
係る耐電圧試験装置により高圧出力を絶縁体に印加する
と、図2の絶縁体C1〜Cnに示すように微小間隙の複
数のコンデンサの直列接続回路で表すことができる。そ
して、絶縁体C1〜Cnの1乃至複数個の耐圧不良が時
間的に散発する状態がコロナの発生であり、絶縁体C1
〜Cnの全部が耐圧不良であればフラッシュオーバとな
り、完全に耐圧不良となる。そこで、これら絶縁体C1
〜Cnにおける耐圧不良によるコロナの発生を図3に示
すようにスイッチSWの短絡(オン)とし、スイッチS
Wの両端をピーク検波電圧計Vで検出するように構成し
たのが本発明に係る耐電圧試験装置である。図3に示す
モデル回路において、スイッチSWは、コロナ発生時に
短絡するものであるから、散発的に閉じてすぐ復帰す
る。このとき、スイッチSWの両端は、試験電源Eに直
列に接続されたインダクタLのため過度現象を起こし
て、例えばインダクタLの代わりに抵抗が接続されてい
る場合に比べて格段に高い電圧になり、その電圧がピー
ク検波電圧計Vによって検出される。また、当然のこと
ながらインダクタLの接続によって高圧出力トランスの
出力インピーダンスより高いインピーダンスが得られる
ので、コロナ電圧の負荷降下は低減される。
Next, the detection of the corona voltage by the withstand voltage test device constructed as described above will be explained. For example, when a high voltage output is applied to the insulator by the withstand voltage test apparatus according to the present invention, it can be represented by a series connection circuit of a plurality of capacitors having a minute gap as shown by the insulators C1 to Cn in FIG. Corona generation is a state in which one or a plurality of withstand voltage defects of the insulators C1 to Cn are sporadically generated over time.
If all of ~ Cn are defective in breakdown voltage, a flashover occurs and the breakdown voltage is completely defective. Therefore, these insulators C1
As shown in FIG. 3, the occurrence of corona due to the breakdown voltage failure in Cn to Cn is short-circuited (ON) to switch SW, and switch S
The withstand voltage test apparatus according to the present invention is configured so that both ends of W are detected by the peak detection voltmeter V. In the model circuit shown in FIG. 3, since the switch SW is short-circuited when a corona occurs, it closes sporadically and immediately returns. At this time, both ends of the switch SW cause a transient phenomenon due to the inductor L connected in series to the test power supply E, and have a much higher voltage than in the case where a resistor is connected instead of the inductor L, for example. , The voltage is detected by the peak detection voltmeter V. Further, as a matter of course, since the impedance higher than the output impedance of the high voltage output transformer is obtained by connecting the inductor L, the load drop of the corona voltage is reduced.

【0010】耐電圧試験装置では、トランスの1次巻線
対2次巻線の絶縁耐力を調べる耐電圧試験や、1次巻線
や2次巻線に用いる被覆電線の巻線相互のショート状態
を調べる層間耐電圧試験が行われる。例えば巻線として
1000ターン巻く場合、100ターン巻いてその上に
層間紙を巻き、次にまた100ターン巻くというように
10層にわたって繰り返し巻くので、1ターン当たりの
電位差は小さいので問題はないが、層の間では100倍
の電位差が生じることになる。通常、不良というのはこ
のような部位での耐電圧不良あり、その由来から層間耐
電圧と呼んでいる。したがって、この場合には、2次側
で層間耐電圧不良ががおきても、1次巻線ー2次巻線間
が電磁結合しているため、1次側の試験だけでも良否の
判定は可能となる。また、例えば1次定格10V、2次
定格1000Vのトランスの試験では、高圧トランスは
必要ない。
In the withstanding voltage test device, a withstand voltage test for checking the dielectric strength of the primary winding vs. the secondary winding of the transformer and a short-circuit state between the windings of the covered electric wire used for the primary winding and the secondary winding Then, an inter-layer withstand voltage test is conducted. For example, when winding 1000 turns as a winding, 100 turns, the interlayer paper is wound on it, and then 100 turns, so that the potential difference per turn is small, so there is no problem. A 100-fold potential difference will occur between the layers. Usually, a defect is a withstand voltage defect in such a portion, and is called an interlayer withstand voltage because of its origin. Therefore, in this case, even if the interlayer withstand voltage defect occurs on the secondary side, the primary winding and the secondary winding are electromagnetically coupled, and therefore the pass / fail judgment can be made only by the primary side test. It will be possible. Further, for example, in a test of a transformer having a primary rating of 10V and a secondary rating of 1000V, a high voltage transformer is not required.

【0011】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、高圧出力トランスの高圧出力をインダク
タを通して被試験体に印加したが、さらにインダクタに
キャパシタを直列に接続してもよい。図4は本発明に係
る耐電圧試験装置の他の実施例を示す図であり、7はイ
ンダクタ3と共振回路を形成するキャパシタを示す。図
1に示す耐電圧試験装置において、インダクタ3の値に
よっては、印加電圧の負荷降下が無視できない場合があ
る。その場合には、図4に示すようにキャパシタ7によ
りインダクタ3と直列共振回路を構成することにより、
試験周波数においてインピーダンスをゼロに近づけるこ
とができる。
The present invention is not limited to the above embodiment, but various modifications can be made. For example, in the above embodiment, the high voltage output of the high voltage output transformer was applied to the device under test through the inductor, but a capacitor may be connected in series to the inductor. FIG. 4 is a diagram showing another embodiment of the withstand voltage test apparatus according to the present invention, and 7 shows a capacitor forming a resonance circuit with the inductor 3. In the withstand voltage test apparatus shown in FIG. 1, the load drop of the applied voltage may not be negligible depending on the value of the inductor 3. In that case, by forming a series resonance circuit with the inductor 3 by the capacitor 7 as shown in FIG.
The impedance can be brought close to zero at the test frequency.

【0012】[0012]

【発明の効果】以上の説明から明らかなように、本発明
によれば、インダクタを通して高圧出力トランスの高圧
出力を被試験体に印加するので、微小なコロナが発生し
た場合であっても、拡大された十分な振幅のコロナ電圧
を検出することができ、検出精度の向上を図ることがで
きる。
As is apparent from the above description, according to the present invention, the high voltage output of the high voltage output transformer is applied to the device under test through the inductor, so that even if a minute corona occurs, the expansion is achieved. The corona voltage having a sufficient amplitude can be detected, and the detection accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る耐電圧試験装置の1実施例を示
す図である。
FIG. 1 is a diagram showing one embodiment of a withstand voltage test apparatus according to the present invention.

【図2】 コロナの発生を説明するためのモデル回路を
示す図である。
FIG. 2 is a diagram showing a model circuit for explaining generation of corona.

【図3】 コロナ電圧の検出を説明するためのモデル回
路を示す図である。
FIG. 3 is a diagram showing a model circuit for explaining detection of a corona voltage.

【図4】 本発明に係る耐電圧試験装置の他の実施例を
示す図である。
FIG. 4 is a diagram showing another embodiment of the withstand voltage test apparatus according to the present invention.

【図5】 従来の層間耐電圧試験装置の回路構成を示す
図である。
FIG. 5 is a diagram showing a circuit configuration of a conventional interlayer withstand voltage test device.

【符号の説明】[Explanation of symbols]

1…試験電源、2…高圧出力トランス、3…インダク
タ、4…被試験体、5…ハイパスフィルタ、6…コロナ
電圧計
1 ... Test power supply, 2 ... High voltage output transformer, 3 ... Inductor, 4 ... DUT, 5 ... High pass filter, 6 ... Corona voltmeter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試験電源から被試験体に電圧を印加して
被試験体に発生するコロナ電圧を検出する耐電圧試験装
置において、試験電源と被試験体との間にインダクタを
直列に挿入接続したことを特徴とする耐電圧試験装置。
1. A withstand voltage test apparatus for detecting a corona voltage generated in a device under test by applying a voltage from the test power supply to the device under test, and connecting an inductor in series between the test power supply and the device under test. A withstand voltage test device characterized in that
【請求項2】 インダクタと直列にキャパシタを接続し
てインダクタとキャパシタの直列共振回路の共振周波数
を試験周波数にしたことを特徴とする請求項1記載の耐
電圧試験装置。
2. A withstand voltage test apparatus according to claim 1, wherein a capacitor is connected in series with the inductor and a resonance frequency of a series resonance circuit of the inductor and the capacitor is set to a test frequency.
JP27727694A 1994-11-11 1994-11-11 Withstand voltage testing device Pending JPH08136609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27727694A JPH08136609A (en) 1994-11-11 1994-11-11 Withstand voltage testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27727694A JPH08136609A (en) 1994-11-11 1994-11-11 Withstand voltage testing device

Publications (1)

Publication Number Publication Date
JPH08136609A true JPH08136609A (en) 1996-05-31

Family

ID=17581277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27727694A Pending JPH08136609A (en) 1994-11-11 1994-11-11 Withstand voltage testing device

Country Status (1)

Country Link
JP (1) JPH08136609A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576062A (en) * 2013-10-25 2014-02-12 中国一冶集团有限公司 Wireless frequency conversion resonance withstand voltage testing device and testing method thereof
CN105353278A (en) * 2015-10-26 2016-02-24 中国十七冶集团有限公司 Crown block high-voltage power supply system electrical equipment whole alternating-current withstand voltage testing method
CN114518513A (en) * 2022-02-24 2022-05-20 哈尔滨理工大学 Dry-type air-core reactor turn-to-turn insulation test model and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576062A (en) * 2013-10-25 2014-02-12 中国一冶集团有限公司 Wireless frequency conversion resonance withstand voltage testing device and testing method thereof
CN105353278A (en) * 2015-10-26 2016-02-24 中国十七冶集团有限公司 Crown block high-voltage power supply system electrical equipment whole alternating-current withstand voltage testing method
CN114518513A (en) * 2022-02-24 2022-05-20 哈尔滨理工大学 Dry-type air-core reactor turn-to-turn insulation test model and preparation method thereof

Similar Documents

Publication Publication Date Title
US4771355A (en) System and method for arc detection in dynamoelectric machines
Liu et al. A study of the sweep frequency impedance method and its application in the detection of internal winding short circuit faults in power transformers
US4156846A (en) Detection of arcing faults in generator windings
US4356443A (en) Detection of arcing faults in polyphase electric machines
KR0172603B1 (en) Apparatus for monitoring degradation of insulation of electrical installation
DE19644833A1 (en) Device for testing the insulation of an electrical conductor
US3667034A (en) Method of testing an electrical winding including the step of connecting the winding to provide a tank circuit
Shanmugam et al. Influence of the load on the impulse frequency response approach based diagnosis of transformer’s inter-turn short-circuit
JPH08136609A (en) Withstand voltage testing device
Johnson Slot discharge detection coil surface and core of high-voltage stator windings
EP0216001A1 (en) Method for testing the primary windings of inductive voltage transformers
JPH03128471A (en) Monitoring device for insulation deterioration of electric equipment
US2558091A (en) Method and means for detecting discharges on high-voltage windings
JP3155310B2 (en) Two-terminal circuit element measuring device with contact check function and contact check method for measured object
Rylander A high-frequency voltage test for insulation of rotating electrical apparatus
Di Pasquale et al. Frequency characterization of cast-resin transformers
US1792320A (en) High-frequency testing apparatus
JPH09119959A (en) Method for monitoring detection sensitivity of partial discharge measuring device
Dupuis An introduction to electrical diagnostic testing of power transformers
Murty et al. SFRA: A Non-Invasive (Non-Destructive) Test for Verifying Mechanical and Geometrical Integrity of Transformers
US1923565A (en) Testing apparatus and method
JP4089129B2 (en) Insulation diagnostic bridge circuit
JPH0627180A (en) Interlayer breakdown voltage evaluation tester
JPS59630Y2 (en) Transformer testing equipment
Sexton et al. Detection of turn-to-turn faults in large high-voltage turbine generators