JPH08135604A - Oil pressure valve device - Google Patents

Oil pressure valve device

Info

Publication number
JPH08135604A
JPH08135604A JP27645994A JP27645994A JPH08135604A JP H08135604 A JPH08135604 A JP H08135604A JP 27645994 A JP27645994 A JP 27645994A JP 27645994 A JP27645994 A JP 27645994A JP H08135604 A JPH08135604 A JP H08135604A
Authority
JP
Japan
Prior art keywords
pressure
valve
hydraulic
chamber
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27645994A
Other languages
Japanese (ja)
Inventor
Hideyo Kato
英世 加藤
Masami Ochiai
正巳 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP27645994A priority Critical patent/JPH08135604A/en
Publication of JPH08135604A publication Critical patent/JPH08135604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE: To provide an oil pressure valve device capable of miniaturizing the device and reducing a manufacturing cost by realizing the commonness of the structure and arrangement of constant differential pressure type and variable differential pressure type pressure compensation valves. CONSTITUTION: When pressure, received by a first pressure receiving part 61b in an upward direction from an inflow port 10, is weaker than the sum of the highest load pressure received by a second pressure receiving part 61c in a downward direction and the spring force of a spring 32s, a pilot valve 61 is pressed downward to shut off a back pressure chamber 54 from a second passage 64. Pressure oil in the inflow port 10 is led in the back pressure chamber 54 via a first passage 62 to seat a main valve 60 to shut off the inflow port 10 from an outflow port 11. While when pressure, received by the first pressure receiving part 61b in an upward direction, is increased, the pilot valve 61 is moved upward to allow the second passage 65 to communicate with the back pressure chamber 54 to flow out pressure oil in the back pressure chamber 54 into the outflow port 11, but at that time, the inner pressure of the back pressure chamber 54 is lowered by pressure drop through an orifice 63 to move the main valve 60 upward to directly allow the inflow port 10 to communicate with the outflow port 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、油圧ショベルや油圧ク
レーンなどの油圧機械に備えられるアクチュエータの駆
動を制御する油圧弁装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic valve device for controlling the drive of an actuator provided in a hydraulic machine such as a hydraulic excavator or a hydraulic crane.

【0002】[0002]

【従来の技術】ポンプから吐出される圧油を複数のアク
チュエータへ導きこれらアクチュエータの駆動を制御す
る油圧回路の構成において、従来、ポンプ吐出圧がアク
チュエータの最高負荷圧よりも一定圧だけ高くなるよう
にポンプ吐出容量を制御する、いわゆるロードセンシン
グ制御を行うものがある。このような油圧回路において
は、可変容量型ポンプの吐出管路が分岐した複数の並列
管路のそれぞれに、可変絞り部とこの可変絞り部の前後
差圧を所定値に制御する圧力補償弁とを備えた油圧弁装
置が接続され、さらに油圧弁装置の下流側に、この油圧
弁装置にそれぞれ駆動制御されるアクチュエータが負荷
管路を介し接続されている。そしてそれぞれのアクチュ
エータの負荷圧は、負荷管路から分岐された負荷圧信号
管路に導かれ、負荷圧信号管路に設けられたチェック弁
を介し、ポンプ傾転角を制御する1つの検出路に導かれ
る。上記構成において、吐出管路から分岐して設けられ
た信号管路を介し導かれたポンプの吐出圧と、検出路で
検出されたこの油圧回路のアクチュエータ負荷圧のうち
最大のものである最高負荷圧とが、それぞれポンプの傾
転制御部に導かれ、吐出圧が最高負荷圧よりも一定圧力
高くなるようにポンプの吐出容量が制御される。
2. Description of the Related Art In the construction of a hydraulic circuit that guides pressure oil discharged from a pump to a plurality of actuators and controls the drive of these actuators, conventionally, the pump discharge pressure is set to be higher than the maximum load pressure of the actuator by a certain pressure. There is a so-called load sensing control for controlling the pump discharge capacity. In such a hydraulic circuit, a variable throttle portion and a pressure compensation valve for controlling the differential pressure across the variable throttle portion to a predetermined value are provided in each of the plurality of parallel pipelines into which the discharge pipeline of the variable displacement pump is branched. Is connected to the hydraulic valve device, and further to the downstream side of the hydraulic valve device, actuators that are driven and controlled by the hydraulic valve device are connected via a load conduit. Then, the load pressure of each actuator is guided to a load pressure signal line branched from the load line, and via a check valve provided in the load pressure signal line, one detection path for controlling the pump tilt angle. Be led to. In the above-mentioned configuration, the maximum load which is the maximum of the discharge pressure of the pump introduced through the signal line branched from the discharge line and the actuator load pressure of this hydraulic circuit detected in the detection line. The pressure and the pressure are respectively guided to the tilt control section of the pump, and the discharge capacity of the pump is controlled so that the discharge pressure is higher than the maximum load pressure by a constant pressure.

【0003】このような油圧回路に関する公知技術例と
して、例えば以下のものがある。 WO90/00683 この公知技術は、油圧ポンプと、この油圧ポンプから吐
出される圧油によって駆動される複数のアクチュエータ
と、これらのアクチュエータのそれぞれに対応して設け
られ、油圧ポンプからアクチュエータに供給される圧油
の流れを制御する複数の方向制御弁と、これらの方向制
御弁に付属して設けられ、方向制御弁の上流圧力と下流
圧力との差圧である前後差圧を制御する複数の圧力補償
弁とを備えるとともに、油圧ポンプの吐出圧力がアクチ
ュエータの負荷圧力よりも一定圧力高くなるように制御
される基本構成の油圧回路を提供するものである。
The following are examples of known techniques relating to such a hydraulic circuit. WO90 / 00683 In this known technique, a hydraulic pump, a plurality of actuators driven by pressure oil discharged from the hydraulic pump, and the actuators are provided corresponding to each of these actuators, and the hydraulic pump supplies the actuators. A plurality of directional control valves that control the flow of pressure oil and a plurality of pressures that are attached to these directional control valves and that control the differential pressure across the directional control valve, which is the differential pressure between the upstream pressure and the downstream pressure. The present invention provides a hydraulic circuit having a basic configuration that includes a compensating valve and is controlled such that the discharge pressure of the hydraulic pump is higher than the load pressure of the actuator by a constant pressure.

【0004】特開平6−2340号公報 この公知技術は、上記基本構成の油圧回路において、複
数の圧力補償弁のうちいずれかが、方向制御弁の前後差
圧を常に一定に制御する一定差圧式圧力補償弁からな
り、複数の圧力補償弁のうち他のものが、方向制御弁の
前後差圧を、油圧ポンプの吐出圧とアクチュエータの最
大負荷圧との差圧に一致するように制御する可変差圧式
圧力補償弁からなるものであり、これにより、例えば油
圧ショベルの複合操作に応じた分流調整を可能とするも
のである。
In this known technique, in the hydraulic circuit having the above-mentioned basic configuration, one of a plurality of pressure compensating valves constantly controls the differential pressure across the directional control valve to be a constant differential pressure type. A variable pressure control valve that controls the differential pressure across the directional control valve to match the differential pressure between the hydraulic pump discharge pressure and the actuator maximum load pressure. The pressure compensation valve is composed of a differential pressure type pressure compensating valve, which enables, for example, flow adjustment according to a combined operation of a hydraulic excavator.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記公
知技術においては、以下のような課題が存在する。すな
わち、上記公知技術に例示したような基本構成を負荷
圧力の異なる複数のアクチュエータの複合駆動に適用し
た場合には、以下のような2つの構成が考えられる。 (a)それぞれのアクチュエータを制御する方向制御弁の
すべてに、圧力補償弁として、方向制御弁の前後差圧を
常に一定に制御するいわゆる一定差圧式圧力補償弁を設
けた場合 この場合、油圧ポンプから吐出される流量よりも各アク
チュエータの要求流量の総和の方が大きくなる飽和状態
になると、低圧側アクチュエータに供給される流量は一
定に保たれるものの、高圧側アクチュエータの供給され
る流量が減少する。すなわち、複数のアクチュエータの
うち高負荷側から順次流量が不足し始め、円滑なアクチ
ュエータ駆動ができなくなるという不都合が生じる。
However, the above-mentioned known technique has the following problems. That is, when the basic configuration as exemplified in the above-mentioned known technique is applied to the combined drive of a plurality of actuators having different load pressures, the following two configurations are possible. (a) When a so-called constant differential pressure type pressure compensating valve that constantly controls the differential pressure across the directional control valve to be constant is provided as a pressure compensating valve in all of the directional control valves that control each actuator. When the total flow rate demanded by each actuator is greater than the flow rate discharged from the saturated state, the flow rate supplied to the low-voltage side actuator will remain constant, but the flow rate supplied to the high-voltage side actuator will decrease. To do. That is, the flow rate starts to become insufficient from the high load side of the plurality of actuators, and smooth actuator drive cannot be performed.

【0006】(b)それぞれのアクチュエータを制御する
方向制御弁のすべてに、圧力補償弁として、方向制御弁
の前後差圧を、油圧ポンプの吐出圧と、複数のアクチュ
エータの最高負荷圧との差圧に一致させるように制御す
るいわゆる可変差圧式圧力補償弁を設けた場合 この場合、各アクチュエータの要求流量の総和が大きく
なって飽和状態になろうとするとき、要求流量の増加に
伴う油圧ポンプの吐出圧の低下の程度に応じて各可変差
圧式圧力補償弁は各方向制御弁の前後差圧をそれまでに
比べて小さくなるように制御する。これにより各可変差
圧式圧力補償弁の通過流量がそれまでに比べて小さくな
って飽和状態の発生が防止されるとともに、各アクチュ
エータの負荷圧に関係なく複数の可変絞り部それぞれの
絞り開口面積比に応じた流量分配を行うことができる。
すなわち、油圧ポンプから吐出される流量は、高圧側ア
クチュエータ・低圧側アクチュエータのそれぞれに完全
に分流され、複数のアクチュエータの円滑な駆動が可能
となる。しかし、この場合、高負荷優先的な流量分配と
なる結果、低負荷側のアクチュエータ速度が低下すると
いう新たな課題が生じる。例えば油圧ショベルにおい
て、バケットにすくい込んだ土砂をダンプトラックに積
み込む作業の場合、フロント作業部のブームを上昇させ
ると同時にこのフロント作業部の備わる上部旋回体を旋
回動作させる複合操作を行う。このとき、可変差圧式圧
力補償弁のみによる油圧弁装置においては、慣性の大き
な旋回負荷を基準としてポンプのロードセンシング制御
及び圧力補償弁による圧力補償制御が行われることにな
る。よって、慣性の大きな旋回モータへ接続される管路
では、その起動始めに高負荷圧となるので安全弁から分
流された流量が排出され、その分の油圧動力が損失とな
る。また、この損失によりブーム上げ速度の低下を招
く。また、低負荷であるブームシリンダへ接続される管
路では圧力補償弁による圧力補償制御で流路を絞ること
から発熱してエネルギー損失が発生し、この損失分につ
いてもさらにブーム上げ速度の低下を招く。さらにこの
とき、一般に、ポンプの駆動源保護のために、馬力(=
吐出圧×吐出流量)が一定以下となるように制御する傾
転制御装置が具備されていることから、ポンプ圧が旋回
安全弁のリリーフ圧力まで上昇してポンプの吐出流量が
減少する。よってこの流量減少に伴って更なるブーム上
げ速度の低下を招く。すなわち、旋回体の急加速とブー
ムの低速度とにより、オペレータは円滑な積み込み作業
ができなくなるという不都合が生じる。
(B) As a pressure compensating valve, the differential pressure across the directional control valve is used as a pressure compensating valve for all the directional control valves for controlling the respective actuators. When a so-called variable differential pressure type pressure compensating valve that controls so as to match the pressure is provided In this case, when the sum of the required flow rate of each actuator increases and it is about to become saturated, the hydraulic pump Each variable differential pressure type pressure compensating valve controls the differential pressure across each directional control valve so as to be smaller than before depending on the degree of decrease in discharge pressure. As a result, the flow rate through each variable differential pressure type pressure compensating valve becomes smaller than before, and the occurrence of saturation is prevented, and the throttle opening area ratio of each variable throttle section is independent of the load pressure of each actuator. The flow rate can be distributed according to
That is, the flow rate discharged from the hydraulic pump is completely shunted to each of the high-pressure side actuator and the low-pressure side actuator, and the plurality of actuators can be smoothly driven. However, in this case, as a result of the flow distribution being prioritized for the high load, a new problem arises that the actuator speed on the low load side decreases. For example, in a hydraulic excavator, in the case of a work for loading earth and sand scooped into a bucket into a dump truck, a combined operation is performed in which a boom of a front working unit is raised and at the same time, an upper swing body provided in the front working unit is swung. At this time, in the hydraulic valve device using only the variable differential pressure type pressure compensating valve, the load sensing control of the pump and the pressure compensating control by the pressure compensating valve are performed on the basis of the swing load having a large inertia. Therefore, in the pipe line connected to the swing motor having a large inertia, the load pressure becomes high at the beginning of its activation, so that the flow rate diverted from the safety valve is discharged, and the hydraulic power for that amount is lost. In addition, this loss causes a decrease in boom raising speed. Also, in the pipeline connected to the boom cylinder that has a low load, pressure compensation control by the pressure compensation valve throttles the flow passage to generate heat, which causes energy loss. Invite. Further, at this time, generally, in order to protect the drive source of the pump, horsepower (=
Since the tilt control device for controlling the discharge pressure × the discharge flow rate to be less than or equal to a certain value is provided, the pump pressure rises to the relief pressure of the swing safety valve and the discharge flow rate of the pump decreases. Therefore, as the flow rate decreases, the boom raising speed further decreases. That is, due to the rapid acceleration of the revolving superstructure and the low speed of the boom, the operator cannot carry out smooth loading work.

【0007】また、公知技術においては、上記のよう
な複合操作時においても、低負荷側のアクチュエータ速
度は低下せず上記問題は生じない。すなわちフロント作
業部のブームを上昇させると同時にこのフロント作業部
の備わる上部旋回体を旋回動作させる複合操作を行う場
合は、ブームシリンダ側に一定差圧式の圧力補償弁を備
えた油圧弁装置を、旋回モータ側に可変差圧式の圧力補
償弁を備えた油圧弁装置を設けることによって、低負荷
側のブーム上げ速度の低下を防止することができる。し
かしながら、この公知技術の油圧弁装置においては、
一定差圧式圧力補償弁及び可変差圧式圧力補償弁はそれ
ぞれ独立した完全別構造の弁であり、これらの弁の共通
化には配慮されていない。よってこれらが備えられる油
圧弁装置全体の構造の共通化を図ることができず、圧力
補償弁に係る制御信号圧管路が複雑化する。そして、こ
れらにより油圧弁装置の小型化・製造コストの低減が困
難となるという課題が存在する。
Further, in the known technique, the actuator speed on the low load side does not decrease even during the complex operation as described above, and the above problem does not occur. That is, when performing a combined operation in which the boom of the front working unit is raised and the upper revolving structure provided in this front working unit is swung, a hydraulic valve device equipped with a constant pressure differential type pressure compensation valve on the boom cylinder side is used. By providing the hydraulic valve device having the variable differential pressure type pressure compensating valve on the swing motor side, it is possible to prevent the boom raising speed on the low load side from decreasing. However, in this known hydraulic valve device,
The constant differential pressure type pressure compensating valve and the variable differential pressure type pressure compensating valve are completely independent valves, and no consideration is given to the common use of these valves. Therefore, the structure of the entire hydraulic valve device provided with these cannot be made common, and the control signal pressure line related to the pressure compensating valve becomes complicated. Then, there is a problem that it becomes difficult to downsize the hydraulic valve device and reduce the manufacturing cost.

【0008】本発明の目的は、一定差圧式・可変差圧式
圧力補償弁の構造及びその配置を共通化することによ
り、小型化・製造コストの低減を図ることができる油圧
弁装置を提供することである。
An object of the present invention is to provide a hydraulic valve device which can be downsized and reduced in manufacturing cost by making the structure and arrangement of the constant differential pressure type / variable differential pressure type pressure compensation valve common. Is.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、可変容量型の油圧ポンプ、この油
圧ポンプの圧油により駆動される複数のアクチュエータ
の最高負荷圧を検出する負荷圧検出管路、前記油圧ポン
プの吐出圧を検出する吐出圧検出管路、前記負荷圧検出
管路及び前記吐出圧検出管路に接続され前記吐出圧が前
記最高負荷圧よりも所定値だけ高くなるように前記油圧
ポンプの吐出容量を制御するポンプ制御手段を備えた油
圧回路に複数個設けられ、その複数個のそれぞれが、可
変絞りを備えた方向制御弁と、前記可変絞りの前後差圧
を所定の値に制御する圧力補償部とを有し、対応する1
つのアクチュエータの駆動を制御する油圧弁装置におい
て、前記圧力補償部は、ケーシングに形成され前記可変
絞りの下流側に接続された流入ポート及び流出ポートを
互いに連通・遮断する主弁と、前記ケーシングの内壁と
前記主弁の背面とにより形成される背圧室と、前記主弁
の内部に形成され前記背圧室と前記流入ポートとを絞り
を介し連通する第1流路と、前記主弁の内部に形成され
前記背圧室と前記流出ポートとを連通可能な第2流路
と、前記負荷圧検出管路及び前記吐出圧検出管路のいず
れか一方に接続され前記最高負荷圧及び前記吐出圧のい
ずれか一方が導かれる受圧室と、一端が前記主弁に形成
された貫通孔に挿入されるとともに他端が前記受圧室内
に配置され、前記背圧室の流体圧力を制御して前記主弁
を動作させるパイロット部材と、を有しており、前記パ
イロット部材は、前記第2流路を介し前記背圧室と前記
流出ポートとを連通・遮断する弁を構成する絞り部と、
前記パイロット部材の一端に設けられ前記貫通孔内にお
いて前記流入ポートと第2流路とを遮断するとともに該
流入ポートの圧力を前記絞り部の開弁方向に受圧する第
1受圧部と、前記パイロット部材の他端に設けられ前記
受圧室内において該受圧室に導かれた前記最高負荷圧及
び吐出圧のいずれか一方を前記絞り部の閉弁方向に受圧
する第2受圧部とを備え、この第2受圧部は、前記パイ
ロット部材を前記絞り部の閉弁方向及び開弁方向のいず
れか一方に付勢するばねに当接されていることを特徴と
する油圧弁装置が提供される。
In order to achieve the above object, according to the present invention, the maximum load pressure of a variable displacement hydraulic pump and a plurality of actuators driven by pressure oil of this hydraulic pump is detected. Connected to the load pressure detection pipeline, the discharge pressure detection pipeline for detecting the discharge pressure of the hydraulic pump, the load pressure detection pipeline and the discharge pressure detection pipeline, the discharge pressure is a predetermined value from the maximum load pressure. A plurality of hydraulic circuits are provided in the hydraulic circuit including pump control means for controlling the discharge capacity of the hydraulic pump so that the displacement becomes higher, and each of the plurality of directional control valves includes a variable throttle and a front-back differential of the variable throttle. And a pressure compensator for controlling the pressure to a predetermined value.
In the hydraulic valve device for controlling the drive of two actuators, the pressure compensating unit includes a main valve that connects and disconnects an inflow port and an outflow port that are formed in a casing and connected to a downstream side of the variable throttle, and a main valve of the casing. A back pressure chamber formed by an inner wall and a back surface of the main valve; a first flow passage formed inside the main valve, the first flow passage communicating the back pressure chamber with the inflow port via a throttle; A second flow path formed inside and capable of communicating the back pressure chamber with the outflow port, and the maximum load pressure and the discharge connected to either one of the load pressure detection conduit and the discharge pressure detection conduit. A pressure receiving chamber into which either one of the pressures is guided, one end of which is inserted into a through hole formed in the main valve and the other end of which is disposed in the pressure receiving chamber, and which controls the fluid pressure of the back pressure chamber Pyro that operates the main valve Has a preparative member, said pilot member includes a diaphragm portion constituting a valve for communicating or blocking the said back pressure chamber through said second passage and said outlet port,
A first pressure receiving portion which is provided at one end of the pilot member, blocks the inflow port and the second flow path in the through hole, and receives the pressure of the inflow port in the valve opening direction of the throttle portion; A second pressure receiving portion which is provided at the other end of the member and which receives one of the maximum load pressure and the discharge pressure introduced into the pressure receiving chamber in the pressure receiving chamber in a valve closing direction of the throttle portion; A hydraulic valve device is provided in which the 2 pressure receiving portion is in contact with a spring that biases the pilot member in one of a valve closing direction and a valve opening direction of the throttle portion.

【0010】好ましくは、前記油圧弁装置において、前
記受圧室は、前記負荷圧検出管路に接続されて前記最高
負荷圧が導かれており、前記第2受圧部に当接するばね
は、前記パイロット部材を前記絞り部の閉弁方向に付勢
していることを特徴とする油圧弁装置が提供される。
Preferably, in the hydraulic valve device, the pressure receiving chamber is connected to the load pressure detecting pipe line to guide the maximum load pressure, and the spring contacting the second pressure receiving portion is the pilot. There is provided a hydraulic valve device characterized in that a member is urged in a valve closing direction of the throttle portion.

【0011】また好ましくは、前記油圧弁装置におい
て、前記受圧室は、前記吐出圧検出管路に接続されて前
記吐出圧が導かれており、前記第2受圧部に当接するば
ねは、前記パイロット部材を前記絞り部の開弁方向に付
勢していることを特徴とする油圧弁装置が提供される。
Further preferably, in the hydraulic valve device, the pressure receiving chamber is connected to the discharge pressure detecting conduit to guide the discharge pressure, and the spring contacting the second pressure receiving portion is the pilot. There is provided a hydraulic valve device characterized in that a member is urged in a valve opening direction of the throttle portion.

【0012】さらに好ましくは、前記油圧弁装置におい
て、前記方向制御弁は、中立位置において前記流入ポー
ト及び流出ポートのいづれかをタンクポートへ連通させ
ることを特徴とする油圧弁装置が提供される。
More preferably, in the hydraulic valve device, the directional control valve is provided with the inflow port and the outflow port in communication with a tank port at a neutral position.

【0013】[0013]

【作用】以上のように構成した本発明においては、圧力
補償部の受圧室に負荷圧検出管路が接続され最高負荷圧
が導かれるとともに第2受圧部に当接するばねがパイロ
ット部材を絞り部の閉弁方向に付勢している場合、貫通
孔内にあるパイロット部材の第1受圧部が流入ポートか
ら絞り部の開弁方向に受圧する圧力が、受圧室内にある
第2受圧部が受圧室に導かれた最高負荷圧から絞り部の
閉弁方向に受圧する圧力と、第2受圧部に当接して絞り
部の閉弁方向に付勢するばね力との和よりも小さいとき
は、絞り部が閉弁する方向にパイロット部材が移動し、
背圧室と流出ポートとが遮断される。またこのとき、流
入ポート内の圧油は主弁の内部に形成された第1流路を
介して背圧室へ導かれており、この背圧室の流体圧によ
って主弁が移動し、流入ポートと流出ポートとが遮断さ
れる。また、流入ポートの圧力が上昇し、第1受圧部が
絞り部の開弁方向に受圧する圧力が、第2受圧部が絞り
部の閉弁方向に受圧する圧力と絞り部の閉弁方向に付勢
するばね力との和より大きくなると、絞り部が開弁する
方向にパイロット部材が移動し、主弁の内部に形成され
た第2流路を介して背圧室と流出ポートとが連通する。
これによって流入ポートから第1流路を介し背圧室に導
かれている圧油が第2流路を介して流出ポートへ流出す
るが、第1流路に設けられた絞りによる圧力降下で背圧
室内の圧力が低下して主弁が背圧室方向へ移動するの
で、流入ポートと流出ポートとが直接連通することとな
る。すなわち、以上のような動作によって、可変絞りの
下流側に接続された流入ポート内の圧力を、負荷圧検出
管路で検出される最高負荷圧よりもばね力分だけ高くな
るように制御する、可変差圧方式の圧力補償部を実現す
ることができる。
In the present invention constructed as described above, the load pressure detecting pipe line is connected to the pressure receiving chamber of the pressure compensating portion to guide the maximum load pressure, and the spring which abuts the second pressure receiving portion causes the pilot member to narrow the pilot member. When the first pressure receiving portion of the pilot member in the through hole receives the pressure in the valve opening direction of the throttle portion from the inflow port, the second pressure receiving portion in the pressure receiving chamber receives the pressure. When it is smaller than the sum of the pressure received from the maximum load pressure introduced into the chamber in the valve closing direction of the throttle portion and the spring force that abuts the second pressure receiving portion and urges the throttle portion in the valve closing direction, The pilot member moves in the direction to close the throttle,
The back pressure chamber and the outflow port are shut off. Further, at this time, the pressure oil in the inflow port is guided to the back pressure chamber through the first flow path formed inside the main valve, and the main valve moves due to the fluid pressure in the back pressure chamber to cause inflow. The port is blocked from the outflow port. Further, the pressure of the inflow port rises, and the pressure that the first pressure receiving portion receives in the valve opening direction of the throttle portion is the same as the pressure that the second pressure receiving portion receives in the valve closing direction of the throttle portion and the valve closing direction of the throttle portion. When it becomes larger than the sum of the biasing spring force, the pilot member moves in the direction in which the throttle portion opens, and the back pressure chamber communicates with the outflow port via the second flow path formed inside the main valve. To do.
As a result, the pressure oil guided from the inflow port to the back pressure chamber via the first flow path flows out to the outflow port via the second flow path, but the back pressure is reduced by the throttle provided in the first flow path. Since the pressure in the pressure chamber decreases and the main valve moves toward the back pressure chamber, the inflow port and the outflow port are in direct communication. That is, by the above operation, the pressure in the inflow port connected to the downstream side of the variable throttle is controlled to be higher by the spring force than the maximum load pressure detected by the load pressure detection pipe line, A variable differential pressure type pressure compensator can be realized.

【0014】一方、圧力補償部の受圧室に吐出圧検出管
路が接続され油圧ポンプの吐出圧が導かれるとともに第
2受圧部に当接するばねがパイロット部材を絞り部の開
弁方向に付勢している場合、貫通孔内にあるパイロット
部材の第1受圧部が流入ポートから絞り部の開弁方向に
受圧する圧力と、第2受圧部に当接して絞り部の開弁方
向に付勢するばね力との和が、受圧室内にある第2受圧
部が受圧室に導かれた吐出圧から絞り部の閉弁方向に受
圧する圧力よりも小さいときは、絞り部が閉弁する方向
にパイロット部材が移動し、背圧室と流出ポートとが遮
断される。またこのとき、流入ポート内の圧油は主弁の
内部に形成された第1流路を介して背圧室へ導かれてお
り、この背圧室の流体圧によって主弁が移動し、流入ポ
ートと流出ポートとが遮断される。
On the other hand, a discharge pressure detection conduit is connected to the pressure receiving chamber of the pressure compensating unit to guide the discharge pressure of the hydraulic pump, and a spring contacting the second pressure receiving unit urges the pilot member in the valve opening direction of the throttle unit. In this case, the first pressure receiving portion of the pilot member in the through hole receives pressure from the inflow port in the valve opening direction of the throttle portion, and the second pressure receiving portion contacts the second pressure receiving portion and urges in the valve opening direction of the throttle portion. When the sum of the spring force of the throttle valve and the second pressure receiving portion in the pressure receiving chamber is smaller than the pressure received by the second pressure receiving portion in the pressure receiving chamber in the valve closing direction of the throttle portion, the throttle valve closes in the valve closing direction. The pilot member moves, and the back pressure chamber and the outflow port are shut off. Further, at this time, the pressure oil in the inflow port is guided to the back pressure chamber through the first flow path formed inside the main valve, and the main valve moves due to the fluid pressure in the back pressure chamber to cause inflow. The port is blocked from the outflow port.

【0015】また、流入ポートの圧力が上昇し、貫通孔
内にあるパイロット部材の第1受圧部が流入ポートから
絞り部の開弁方向に受圧する圧力と、第2受圧部に当接
して絞り部の開弁方向に付勢するばね力との和が、受圧
室内にある第2受圧部が受圧室に導かれた吐出圧から絞
り部の閉弁方向に受圧する圧力よりも大きくなると、絞
り部が開弁する方向にパイロット部材が移動し、主弁の
内部に形成された第2流路を介して背圧室と流出ポート
とが連通する。これによって流入ポートから第1流路を
介し背圧室に導かれている圧油が第2流路を介して流出
ポートへ流出するが、第1流路に設けられた絞りによる
圧力降下で背圧室内の圧力が低下して主弁が背圧室方向
へ移動するので、流入ポートと流出ポートとが直接連通
することとなる。すなわち、以上のような動作によっ
て、吐出圧検出管路で検出される油圧ポンプの吐出圧、
すなわち可変絞りの上流側の圧力を、下流側に接続され
た流入ポートの圧力よりもばね力分だけ高くなるように
制御する、一定差圧方式の圧力補償部を実現することが
できる。
Further, the pressure of the inflow port rises, the pressure at which the first pressure receiving portion of the pilot member in the through hole receives from the inflow port in the valve opening direction of the throttle portion, and the second pressure receiving portion comes into contact with the throttle portion. When the sum of the spring force that biases the valve portion in the valve opening direction becomes larger than the pressure that the second pressure receiving portion in the pressure receiving chamber receives from the discharge pressure guided to the pressure receiving chamber in the valve closing direction of the throttle portion, The pilot member moves in the direction in which the valve opens, and the back pressure chamber communicates with the outflow port via the second flow path formed inside the main valve. As a result, the pressure oil guided from the inflow port to the back pressure chamber via the first flow path flows out to the outflow port via the second flow path, but the back pressure is reduced by the throttle provided in the first flow path. Since the pressure in the pressure chamber decreases and the main valve moves toward the back pressure chamber, the inflow port and the outflow port are in direct communication. That is, by the above operation, the discharge pressure of the hydraulic pump detected by the discharge pressure detection pipeline,
That is, it is possible to realize a constant pressure differential type pressure compensator that controls the pressure on the upstream side of the variable throttle so as to be higher than the pressure on the inflow port connected to the downstream side by the spring force.

【0016】そして、以上のように圧力補償部を可変差
圧式として用いる場合の構成と一定差圧式として用いる
場合の構成とにおいて、受圧室と負荷圧検出回路若しく
は吐出圧検出回路とを接続する信号管路及び受圧室内の
ばね以外、大部分が同一構造となるので、圧力補償部の
共通化を図ることができる。またこのとき、絞り部の開
弁方向に作用する信号管路である貫通孔を圧力補償部内
に備え、かつ、絞り部の閉弁方向に作用する信号管路を
受圧室へ選択的に接続しばねによって選択的に付勢する
ことで可変・一定差圧式の圧力補償機能を選択的に得る
構造であるので、圧力補償部に係わる制御信号圧管路を
簡素化することができる。よって、油圧弁装置全体の構
造の共通化を図ることができる。
In the configuration using the pressure compensator as a variable differential pressure type and the configuration using a constant differential pressure type as described above, a signal for connecting the pressure receiving chamber to the load pressure detecting circuit or the discharge pressure detecting circuit. Most of the structure other than the pipe and the spring in the pressure receiving chamber have the same structure, so that the pressure compensator can be shared. Further, at this time, a through hole which is a signal pipe line acting in the valve opening direction of the throttle part is provided in the pressure compensating part, and a signal pipe line acting in the valve closing direction of the throttle part is selectively connected to the pressure receiving chamber. Since the structure is such that a variable / constant differential pressure type pressure compensation function is selectively obtained by selectively energizing with a spring, it is possible to simplify the control signal pressure line related to the pressure compensation unit. Therefore, the structure of the entire hydraulic valve device can be made common.

【0017】また、方向制御弁は、中立位置において流
入ポート及び流出ポートのいづれかをタンクポートへ連
通させることにより、操作中立時において圧力補償部は
ロードセンシング制御にかかわることがなく、必要以上
のエネルギ損失を防止することができる。
Further, the directional control valve allows either the inflow port or the outflow port to communicate with the tank port at the neutral position, so that the pressure compensating unit is not involved in the load sensing control when the operation is in the neutral position and the energy more than necessary is supplied. Loss can be prevented.

【0018】[0018]

【実施例】以下、本発明の一実施例を図1〜図4により
説明する。本実施例による油圧弁装置100,200が
設けられた油圧回路の回路図を図2に示す。油圧弁装置
100は可変差圧式の圧力補償部を備えた油圧弁装置で
あり、油圧弁装置200は一定差圧式の圧力補償部を備
えた油圧弁装置である。油圧弁装置100,200にお
いて互いに同一の部材には同一の符号を付す。図2にお
いて、油圧回路は、可変容量型の油圧ポンプ1と、油圧
ポンプ1に接続された吐出管路3と、吐出管路3から分
岐管路4を介して分岐された並列管路5,5と、並列管
路5,5の下流側にそれぞれ接続された油圧弁装置10
0,200と、負荷管路6a,6bを介して油圧弁装置1
00,200にそれぞれ駆動制御されるアクチュエータ
7a,7bと、アクチュエータ7a,7bの最高負荷圧を
検出するための検出路13と、検出路13から分岐して
タンクへ連通する管路に設けられた絞り50と、油圧ポ
ンプ1の吐出圧を検出するための信号管路12,14
と、検出路13及び信号管路12に接続され油圧ポンプ
1の吐出圧が最高負荷圧よりも所定値(後述)だけ高く
なるように油圧ポンプ1の吐出容量を制御するいわゆる
ロードセンシング制御を行う傾転制御部2とを備えてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. A circuit diagram of a hydraulic circuit provided with the hydraulic valve devices 100 and 200 according to the present embodiment is shown in FIG. The hydraulic valve device 100 is a hydraulic valve device having a variable differential pressure type pressure compensating unit, and the hydraulic valve device 200 is a hydraulic valve device having a constant differential pressure type pressure compensating unit. In the hydraulic valve devices 100 and 200, the same members are designated by the same reference numerals. In FIG. 2, the hydraulic circuit includes a variable displacement hydraulic pump 1, a discharge pipeline 3 connected to the hydraulic pump 1, and a parallel pipeline 5 branched from the discharge pipeline 3 via a branch pipeline 4. 5 and a hydraulic valve device 10 connected to the downstream sides of the parallel pipelines 5, 5, respectively.
0,200 and the hydraulic valve device 1 via the load pipes 6a, 6b
The actuators 7a and 7b, which are driven and controlled to 00 and 200, the detection path 13 for detecting the maximum load pressure of the actuators 7a and 7b, and the pipeline that branches from the detection path 13 and communicates with the tank The throttle 50 and the signal lines 12 and 14 for detecting the discharge pressure of the hydraulic pump 1.
And so-called load sensing control for controlling the discharge capacity of the hydraulic pump 1 so that the discharge pressure of the hydraulic pump 1 connected to the detection path 13 and the signal conduit 12 becomes higher than the maximum load pressure by a predetermined value (described later). The tilt control unit 2 is provided.

【0019】油圧弁装置100は、方向制御弁8と、そ
の下流側に設けられ方向制御弁8の前後差圧を所定値
(後述)に制御する圧力補償部30とを有している。圧
力補償部30の詳細構造を図1に示す。図1及び図2に
おいて、圧力補償部30のケーシング本体50内には、
方向制御弁8の下流側に接続される流入ポート10及び
流出ポート11と、流出ポート11に接続する分岐ポー
ト11a,11bと、主弁60が嵌合されるシリンダ室
53とが形成されるとともに、プレート52及びカバー
51が固定されており、主弁60上部面とプレート52
との間には背圧室54が形成され、プレート52とカバ
ー51との間には受圧室56が形成されている。またケ
ーシング本体50内には、前述したアクチュエータ7
a,7bの負荷圧のうち最高負荷圧を検出するための検
出路13と、油圧ポンプ1の吐出圧を検出するための信
号管路14とが設けられており、流出ポート11は、分
岐ポート11a、信号管路21、チェック弁20、信号
管路22を介して検出路13に接続されている。そして
この検出路13はケーシング50内を貫通し後述する他
の油圧弁装置200のケーシング本体50内で連通接続
されるとともに、信号管路32bを介し受圧室56に接
続されている。また信号管路14もケーシング50内を
貫通し後述する他の油圧弁装置200のケーシング本体
50内で連通接続されている。主弁60の弁体内には、
流入ポート10と背圧室54とを絞り63を介して連通
させる第1流路62と、流入ポート10と背圧室54と
を連結する方向に主弁60を貫通する貫通孔65と、背
圧室54と流出ポート11とを貫通孔65の一部を介し
連通可能な第2流路64とが形成されている。この主弁
60は、後述するパイロット弁61とともに圧力補償弁
31を構成し、端部に設けられたシート部55により、
流入ポート10及び流出ポート11を互いに連通・遮断
する。
The hydraulic valve device 100 has a directional control valve 8 and a pressure compensator 30 which is provided on the downstream side of the directional control valve 8 and controls the differential pressure across the directional control valve 8 to a predetermined value (described later). The detailed structure of the pressure compensator 30 is shown in FIG. 1 and 2, in the casing body 50 of the pressure compensator 30,
An inflow port 10 and an outflow port 11 connected to the downstream side of the directional control valve 8, branch ports 11a and 11b connected to the outflow port 11, and a cylinder chamber 53 into which the main valve 60 is fitted are formed. , The plate 52 and the cover 51 are fixed, and the upper surface of the main valve 60 and the plate 52 are fixed.
A back pressure chamber 54 is formed between and, and a pressure receiving chamber 56 is formed between the plate 52 and the cover 51. Further, in the casing body 50, the actuator 7 described above is provided.
A detection path 13 for detecting the maximum load pressure of the load pressures a and 7b and a signal conduit 14 for detecting the discharge pressure of the hydraulic pump 1 are provided, and the outflow port 11 is a branch port. 11a, the signal conduit 21, the check valve 20, and the signal conduit 22 are connected to the detection conduit 13. The detection path 13 penetrates through the casing 50 and is communicatively connected to the inside of a casing body 50 of another hydraulic valve device 200, which will be described later, and is also connected to the pressure receiving chamber 56 via the signal conduit 32b. The signal line 14 also penetrates through the casing 50 and is communicatively connected within the casing body 50 of another hydraulic valve device 200 described later. In the valve body of the main valve 60,
A first flow path 62 that connects the inflow port 10 and the back pressure chamber 54 to each other through a throttle 63, a through hole 65 that penetrates the main valve 60 in a direction that connects the inflow port 10 and the back pressure chamber 54, A second flow path 64 is formed that allows the pressure chamber 54 and the outflow port 11 to communicate with each other through a part of the through hole 65. The main valve 60 constitutes a pressure compensating valve 31 together with a pilot valve 61 which will be described later, and a seat portion 55 provided at the end portion
The inflow port 10 and the outflow port 11 are communicated / blocked with each other.

【0020】また圧力補償部30は、一端(図示下端)
が貫通孔65に挿入されるとともに他端(図示上端)が
受圧室56内に配置され、背圧室54内の圧力を制御し
て主弁60を動作させるパイロット弁61を有する。こ
のパイロット弁61は、主弁60の貫通孔65上端部と
シート可能であるとともに第2流路64を介し背圧室5
4と流出ポート11とを連通・遮断する弁を構成する絞
り部61aと、貫通孔65内で流入ポート10と第2流
路64とを遮断するとともに信号管路32aを介し流入
ポート10の圧力を絞り部61aの開弁方向(図示上方
向)に受圧する第1受圧部61bと、受圧室56内にお
いて信号管路32bを介し検出路13から受圧室56に
導かれた最高負荷圧を絞り部61aの閉弁方向(図示下
方向)に受圧する第2受圧部61cとを備えており、ま
たこの第2受圧部61cは、パイロット弁61を絞り部
61aの閉弁方向(図示下方向)に付勢するばね32s
に当接されている。但しこのばね3sのばね力は微小で
あり、受圧室56と信号管路32aとの圧力差がない場
合に、パイロット弁61の絞り部61aが主弁60の貫
通孔65上端にシートさせることができる程度の力であ
れば足りる。
The pressure compensator 30 has one end (lower end in the drawing).
Is inserted into the through hole 65 and the other end (upper end in the drawing) is arranged in the pressure receiving chamber 56, and has a pilot valve 61 that controls the pressure in the back pressure chamber 54 to operate the main valve 60. The pilot valve 61 is seatable with the upper end portion of the through hole 65 of the main valve 60, and the back pressure chamber 5 is provided via the second flow path 64.
No. 4 and the outflow port 11 are connected to each other, and the inflow port 10 and the second flow path 64 are cut off in the through hole 65 and the pressure of the inflow port 10 is cut through the signal pipe 32a. And a first pressure receiving portion 61b that receives pressure in the valve opening direction (upward direction in the drawing) of the throttle portion 61a, and the maximum load pressure introduced from the detection path 13 to the pressure receiving chamber 56 via the signal conduit 32b in the pressure receiving chamber 56. The second pressure receiving portion 61c receives pressure in the valve closing direction of the portion 61a (downward in the drawing), and the second pressure receiving portion 61c connects the pilot valve 61 to the closing direction of the throttle portion 61a (downward in the drawing). 32s for biasing to
Is in contact with However, the spring force of the spring 3s is so small that the throttle portion 61a of the pilot valve 61 can be seated on the upper end of the through hole 65 of the main valve 60 when there is no pressure difference between the pressure receiving chamber 56 and the signal conduit 32a. All you need is enough power.

【0021】図2に戻り、方向制御弁8には、並列管路
5、タンクポート15、圧力補償弁31への流入ポート
10、流出ポート11に接続する分岐ポート11a,1
1b、及びアクチュエータ7aと接続する負荷管路6
a,6bが接続されるとともに、アクチュエータ7aの
それぞれの方向制御に対応した流入用可変絞り部80
a,80b、方向制御部81a,81b、及び流出部82
a,82bと、中立位置において圧力補償弁31の流入
ポート10をタンクポート15に連通させるドレン管路
83cと、流出ポート11を分岐ポート11a,11b
を介してタンクポート15に連通するドレン管路83
a,83bとが備えられている。
Returning to FIG. 2, the directional control valve 8 has branch ports 11a, 1 connected to the parallel line 5, the tank port 15, the inflow port 10 to the pressure compensation valve 31, and the outflow port 11.
1b and the load pipe 6 connected to the actuator 7a
a, 6b are connected, and the inflow variable throttle unit 80 corresponding to the direction control of the actuator 7a is connected.
a, 80b, direction control units 81a, 81b, and outflow unit 82
a, 82b, a drain conduit 83c for communicating the inflow port 10 of the pressure compensation valve 31 with the tank port 15 in the neutral position, and the outflow port 11 with branch ports 11a, 11b.
Drain line 83 communicating with the tank port 15 via
a and 83b are provided.

【0022】一方、油圧弁装置200は、方向制御弁8
と、その下流側に設けられ方向制御弁8の前後差圧を所
定値(後述)に制御する圧力補償部40とを有してい
る。
On the other hand, the hydraulic valve device 200 includes the directional control valve 8
And a pressure compensator 40 provided on the downstream side thereof to control the differential pressure across the directional control valve 8 to a predetermined value (described later).

【0023】圧力補償弁40の詳細構造を図3に示す。
図1の圧力補償部30と同一の部材には同一の符号を付
す。図2及び図3において、圧力補償部40が、前述し
た圧力補償部30と異なる主要な点は、最高負荷圧を検
出するための検出路13に代わって、油圧ポンプ1の吐
出圧を検出するための信号管路14が信号管路42bを
介し受圧室56に接続され、受圧室56に吐出圧が導か
れていることと、受圧室56に配置された第2受圧部6
1cが、パイロット弁61を絞り部61aの開弁方向
(図示上方向)に付勢するばね42sに当接されている
ことと、このばね42sが方向制御弁8の前後差圧を設
定するためのものであることからばね力が微小でなく比
較的大きいこととである。その他の構成は、圧力補償部
30とほぼ同様である。
The detailed structure of the pressure compensation valve 40 is shown in FIG.
The same members as those of the pressure compensation unit 30 of FIG. 1 are designated by the same reference numerals. 2 and 3, the pressure compensator 40 differs from the pressure compensator 30 described above in that the main difference is that instead of the detection path 13 for detecting the maximum load pressure, the discharge pressure of the hydraulic pump 1 is detected. Is connected to the pressure receiving chamber 56 via the signal pipe 42b, the discharge pressure is guided to the pressure receiving chamber 56, and the second pressure receiving portion 6 disposed in the pressure receiving chamber 56.
1c is in contact with a spring 42s that biases the pilot valve 61 in the valve opening direction (upward direction in the drawing) of the throttle portion 61a, and this spring 42s sets the differential pressure across the direction control valve 8. Therefore, the spring force is relatively small and not minute. The other configuration is almost the same as that of the pressure compensation unit 30.

【0024】また、油圧弁装置200の方向制御弁8
は、油圧弁装置100の方向制御弁8とほぼ同一構造で
あるので、説明を省略する。
Further, the directional control valve 8 of the hydraulic valve device 200
Has almost the same structure as the directional control valve 8 of the hydraulic valve device 100, and therefore the description thereof will be omitted.

【0025】上記構成の油圧回路において、例えば、オ
ペレータにより方向制御弁8が図2中右方に(左側位置
に)切換操作されると、油圧ポンプ1の圧油は、油圧弁
装置100については、方向制御弁8の可変絞り部80
aから、流入ポート10、圧力補償弁31、流出ポート
11及び分岐ポート11a、方向制御弁8の方向制御部
81a、負荷管路6aを経てアクチュエータ7aに流入
し、負荷管路6b、方向制御弁8の流出部82aを経て
タンクポート15を介しタンクに戻される。また油圧弁
装置200については、方向制御弁8の可変絞り部80
aから、流入ポート10、圧力補償弁41、流出ポート
11及び分岐ポート11a、方向制御弁8の方向制御部
81a、負荷管路6aを経てアクチュエータ7bに流入
し、負荷管路6b、方向制御弁8の流出部82aを経て
タンクポート15を介しタンクに戻される。
In the hydraulic circuit configured as described above, for example, when the directional control valve 8 is switched to the right side (to the left side position) in FIG. , The variable throttle portion 80 of the direction control valve 8
a through the inflow port 10, the pressure compensating valve 31, the outflow port 11 and the branch port 11a, the direction control section 81a of the direction control valve 8 and the load pipe 6a, and then the load pipe 6b and the direction control valve. It is returned to the tank via the tank port 15 via the outflow portion 82a of No. 8 of FIG. Further, regarding the hydraulic valve device 200, the variable throttle portion 80 of the directional control valve 8 is provided.
a from the inlet port 10, the pressure compensating valve 41, the outlet port 11 and the branch port 11a, the direction control portion 81a of the direction control valve 8 and the load pipe 6a to flow into the actuator 7b, and then the load pipe 6b and the direction control valve. It is returned to the tank via the tank port 15 via the outflow portion 82a of No. 8 of FIG.

【0026】そしてこのとき、油圧弁装置100,20
0それぞれの方向制御弁8の前後差圧が圧力補償部30
若しくは圧力補償部40によって所定値に制御され、ま
た、それぞれ信号管路21、チェック弁20、信号管路
22を介して導かれるアクチュエータ7a,7bの負荷
圧のうち、ロードセンシング制御に係る最高負荷圧が検
出路13を介して傾転制御部2に導かれ、油圧ポンプ1
の吐出圧があらかじめ傾転制御部2内において設定され
た所定値だけ最高負荷圧よりも高くなるように油圧ポン
プ1の吐出容量が制御される、いわゆるロードセンシン
グ制御が行われている。
At this time, the hydraulic valve devices 100, 20
0 The differential pressure across the directional control valve 8 is equal to the pressure compensation unit 30.
Alternatively, of the load pressures of the actuators 7a and 7b, which are controlled to a predetermined value by the pressure compensator 40 and are guided via the signal line 21, the check valve 20, and the signal line 22, respectively, the highest load related to the load sensing control. The pressure is guided to the tilt control unit 2 via the detection path 13, and the hydraulic pump 1
The so-called load sensing control is performed in which the discharge capacity of the hydraulic pump 1 is controlled such that the discharge pressure of the hydraulic pump 1 becomes higher than the maximum load pressure by a predetermined value set in advance in the tilt control unit 2.

【0027】このときの油圧弁装置100の圧力補償部
30における圧力補償動作を以下に詳細に説明する。図
1に示す圧力補償部30において、貫通孔65内にある
パイロット弁61の第1受圧部61bが流入ポート10
から絞り部61aの開弁方向(図示上方向)に受圧する
圧力が、受圧室56内にある第2受圧部61cが受圧室
56に導かれた最高負荷圧から絞り部61aの閉弁方向
(図示下方向)に受圧する圧力と、第2受圧部61cに
当接して絞り部61aの閉弁方向(図示下方向)に付勢
するばね32sのばね力(但しこれは微小である)との
和よりも小さいときは、パイロット弁61は図示下方に
押圧され、これによりパイロット弁61の絞り部61a
が主弁60の上部面にシートし、背圧室54と第2流路
64とが遮断される。またこのとき、流入ポート10内
の圧油は、主弁60の内部に形成された第1流路62及
び絞り63を介して背圧室54内に導かれており、この
背圧室54内の流体圧によって主弁60は図示下方へ押
圧されてシート部55でシートし、流入ポート10と流
入ポート11とが遮断される。
The pressure compensating operation in the pressure compensating section 30 of the hydraulic valve device 100 at this time will be described in detail below. In the pressure compensating portion 30 shown in FIG. 1, the first pressure receiving portion 61 b of the pilot valve 61 located in the through hole 65 has the inflow port 10
From the maximum load pressure introduced by the second pressure receiving portion 61c in the pressure receiving chamber 56 to the pressure receiving chamber 56 from the maximum load pressure in the valve opening direction of the throttle portion 61a (upward in the drawing). (A downward pressure in the drawing) and a spring force (however, this is minute) of the spring 32s that abuts the second pressure receiving portion 61c and urges the throttle portion 61a in the valve closing direction (downward direction in the drawing). When it is smaller than the sum, the pilot valve 61 is pressed downward in the drawing, whereby the throttle portion 61a of the pilot valve 61 is pressed.
Seats on the upper surface of the main valve 60, and the back pressure chamber 54 and the second flow path 64 are shut off. At this time, the pressure oil in the inflow port 10 is introduced into the back pressure chamber 54 via the first flow passage 62 and the throttle 63 formed inside the main valve 60. The main valve 60 is pressed downward in the drawing by the fluid pressure of (1) to seat at the seat portion 55, and the inflow port 10 and the inflow port 11 are shut off.

【0028】また、流入ポート10の圧力が上昇し、パ
イロット弁61の第1受圧部61bが絞り部61aの開
弁方向(図示上方向)に受圧する圧力が、第2受圧部6
1cが絞り部61aの閉弁方向(図示下方向)に受圧す
る圧力と絞り部61aの閉弁方向(図示下方向)に付勢
するばね32sのばね力との和より大きくなると、パイ
ロット弁61が図示上方へ移動してパイロット弁61の
絞り部61aと主弁60上部面とのシートが開放され、
主弁60の内部に形成された第2流路64と背圧室54
とが絞り部61aを介し連通する。これによって流入ポ
ート10から第1流路62を介し背圧室54に導かれて
いる圧油が第2流路64を介して流出ポート11へ流出
するが、この際第1流路62に設けられた絞り63によ
る圧力降下で背圧室54内の圧力が低下し、その結果主
弁60が図示上方へ動かされるので、主弁60のシート
部55も開放されて流入ポート10と流出ポート11と
が直接連通する。
The pressure in the inflow port 10 rises, and the pressure received by the first pressure receiving portion 61b of the pilot valve 61 in the valve opening direction (upward direction in the drawing) of the throttle portion 61a is the second pressure receiving portion 6.
When 1c becomes larger than the sum of the pressure received in the valve closing direction of the throttle portion 61a (downward in the drawing) and the spring force of the spring 32s urging in the valve closing direction of the throttle portion 61a (downward in the drawing), the pilot valve 61 Moves upward in the drawing to open the seats of the throttle portion 61a of the pilot valve 61 and the upper surface of the main valve 60,
The second flow path 64 and the back pressure chamber 54 formed inside the main valve 60.
And communicate with each other via the throttle portion 61a. As a result, the pressure oil guided from the inflow port 10 to the back pressure chamber 54 via the first flow path 62 flows out to the outflow port 11 via the second flow path 64. At this time, the pressure oil is provided in the first flow path 62. The pressure in the back pressure chamber 54 decreases due to the pressure drop caused by the throttle 63, and as a result, the main valve 60 is moved upward in the drawing, so that the seat portion 55 of the main valve 60 is also opened and the inflow port 10 and the outflow port 11 are opened. And communicate directly.

【0029】すなわち、流入ポート10内の圧力が上昇
したり、あるいは検出路13から導かれる最高負荷圧が
低下した時には、パイロット弁61の絞り部61aが開
弁方向(図示上方向)へ移動し、これに追従するように
主弁60も上方向へ移動し、これによって流入ポート1
0内の圧力の上昇を防ぐように動作する。また、流入ポ
ート10内の圧力が低下したり最高負荷圧が上昇した時
には、パイロット弁61の絞り部61aが閉弁方向(図
示下方向)へ移動し、これに追従するように主弁60も
下方向へ移動し、これによって流入ポート10内の圧力
の低下を防ぐように動作する。このように、第2受圧部
61cの受圧力とばね32sのばね力とによる閉弁方向
の制御力と、第1受圧部61bの受圧力による開弁方向
の制御力とが平衡するように、パイロット弁60とこれ
に追従する主弁60とが調整動作することにより、方向
制御弁8の可変絞り部80aの下流側に接続された流入
ポート10内の圧力を、検出路13から導かれる最高負
荷圧よりもばね32sのばね力分だけ高くなるように、
すなわち流入ポート10内の圧力を概ね最高負荷圧と等
しくするように制御する、可変差圧方式の圧力補償部を
実現することができる。
That is, when the pressure in the inflow port 10 increases or the maximum load pressure introduced from the detection path 13 decreases, the throttle portion 61a of the pilot valve 61 moves in the valve opening direction (upward direction in the drawing). , The main valve 60 also moves upward so as to follow this, which causes the inflow port 1
It operates to prevent pressure buildup within zero. Further, when the pressure in the inflow port 10 decreases or the maximum load pressure increases, the throttle portion 61a of the pilot valve 61 moves in the valve closing direction (downward in the drawing), and the main valve 60 also follows so as to follow this. It moves downwards and thereby acts to prevent a pressure drop in the inlet port 10. In this manner, the control force in the valve closing direction due to the pressure receiving force of the second pressure receiving portion 61c and the spring force of the spring 32s and the control force in the valve opening direction due to the pressure receiving force of the first pressure receiving portion 61b are balanced. By adjusting the pilot valve 60 and the main valve 60 that follows the pilot valve 60, the pressure in the inflow port 10 connected to the downstream side of the variable throttle portion 80a of the directional control valve 8 is guided to the maximum through the detection path 13. To be higher than the load pressure by the spring force of the spring 32s,
That is, it is possible to realize the pressure compensating unit of the variable differential pressure system, which controls the pressure in the inflow port 10 to be substantially equal to the maximum load pressure.

【0030】一方、このときの油圧弁装置200の圧力
補償部40における圧力補償動作を以下に詳細に説明す
る。図3に示す圧力補償部40において、貫通孔65内
にあるパイロット弁61の第1受圧部61bが流入ポー
ト10から絞り部61aの開弁方向(図示上方向)に受
圧する圧力と、第2受圧部61cに当接して絞り部61
aの開弁方向(図示上方向)に付勢するばね42sのば
ね力との和が、受圧室56内にある第2受圧部61cが
受圧室56に導かれたポンプ吐出圧から絞り部61aの
閉弁方向(図示下方向)に受圧する圧力よりも小さいと
きは、パイロット弁61は図示下方に押圧され、これに
よりパイロット弁61の絞り部61aが主弁60の上部
面にシートし、背圧室54と第2流路64とが遮断され
る。またこのとき、流入ポート10内の圧油は、主弁6
0の内部に形成された第1流路62及び絞り63を介し
て背圧室54内に導かれており、この背圧室54内の流
体圧によって主弁60は図示下方へ押圧されてシート部
55でシートし、流入ポート10と流入ポート11とが
遮断される。
On the other hand, the pressure compensating operation in the pressure compensating section 40 of the hydraulic valve device 200 at this time will be described in detail below. In the pressure compensator 40 shown in FIG. 3, the pressure received by the first pressure receiver 61b of the pilot valve 61 in the through hole 65 from the inflow port 10 in the valve opening direction of the throttle 61a (upward in the drawing) and the second Abutting against the pressure receiving portion 61c, the throttle portion 61
The sum of the spring force of the spring 42s that urges the valve opening direction a in the valve opening direction (upward direction in the drawing) causes the second pressure receiving portion 61c in the pressure receiving chamber 56 to move from the pump discharge pressure introduced into the pressure receiving chamber 56 to the throttle portion 61a. When the pressure is smaller than the pressure received in the valve closing direction (downward in the drawing), the pilot valve 61 is pressed downward in the drawing, whereby the throttle portion 61a of the pilot valve 61 seats on the upper surface of the main valve 60, and The pressure chamber 54 and the second flow path 64 are shut off. At this time, the pressure oil in the inflow port 10 is the main valve 6
0 is guided into the back pressure chamber 54 via the first flow passage 62 and the throttle 63 formed inside the back pressure chamber 54, and the fluid pressure in the back pressure chamber 54 pushes the main valve 60 downward in the drawing. The seat is formed at the portion 55, and the inflow port 10 and the inflow port 11 are blocked.

【0031】また、流入ポート10の圧力が上昇し、パ
イロット弁61の第1受圧部61bが絞り部61aの開
弁方向(図示上方向)に受圧する圧力と、絞り部61a
の開弁方向(図示上方向)に付勢するばね42sのばね
力との和が、第2受圧部61cが絞り部61aの閉弁方
向(図示下方向)に受圧する圧力よりも大きくなると、
パイロット弁61が図示上方へ移動してパイロット弁6
1の絞り部61aと主弁60上部面とのシートが開放さ
れ、主弁60の内部に形成された第2流路64と背圧室
54とが絞り部61aを介し連通する。これによって流
入ポート10から第1流路62を介し背圧室54に導か
れている圧油が第2流路64を介して流出ポート11へ
流出するが、この際第1流路62に設けられた絞り63
による圧力降下で背圧室54内の圧力が低下し、その結
果主弁60が図示上方へ動かされるので、主弁60のシ
ート部55も開放されて流入ポート10と流出ポート1
1とが直接連通する。
Further, the pressure of the inflow port 10 rises, the pressure received by the first pressure receiving portion 61b of the pilot valve 61 in the valve opening direction (upward direction in the drawing) of the throttle portion 61a, and the throttle portion 61a.
When the sum of the spring force of the spring 42s biasing in the valve opening direction (upward in the drawing) of the above is larger than the pressure received by the second pressure receiving portion 61c in the valve closing direction (downward in the drawing) of the throttle portion 61a,
The pilot valve 61 moves upward in the drawing to move the pilot valve 6
The seat between the first throttle portion 61a and the upper surface of the main valve 60 is opened, and the second flow passage 64 formed inside the main valve 60 and the back pressure chamber 54 communicate with each other via the throttle portion 61a. As a result, the pressure oil guided from the inflow port 10 to the back pressure chamber 54 via the first flow path 62 flows out to the outflow port 11 via the second flow path 64. At this time, the pressure oil is provided in the first flow path 62. Aperture 63
The pressure in the back pressure chamber 54 is reduced by the pressure drop due to, and as a result, the main valve 60 is moved upward in the figure, so that the seat portion 55 of the main valve 60 is also opened and the inflow port 10 and the outflow port 1
Direct communication with 1.

【0032】すなわち、流入ポート10内の圧力が上昇
したり、あるいは信号管路14から導かれる吐出圧が低
下した時には、パイロット弁61の絞り部61aが開弁
方向(図示上方向)へ移動し、これに追従するように主
弁60も上方向へ移動し、これによって流入ポート10
内の圧力の上昇を防ぐように動作する。また、流入ポー
ト10内の圧力が低下したり吐出圧が上昇した時には、
パイロット弁61の絞り部61aが閉弁方向(図示下方
向)へ移動し、これに追従するように主弁60も下方向
へ移動し、これによって流入ポート10内の圧力の低下
を防ぐように動作する。このように、第2受圧部61c
の受圧力による閉弁方向の制御力と、第1受圧部61b
の受圧力とばね42sのばね力とによる開弁方向の制御
力とが平衡するように、パイロット弁61とこれに追従
する主弁60とが調整動作することにより、方向制御弁
8の可変絞り部80aの上流側の圧力すなわちポンプ吐
出圧を、可変絞り部80aの下流側に接続された流入ポ
ート10内の圧力よりもばね42sの初期付勢力相当分
だけ高くなるように制御する、言い換えればポンプ吐出
圧と流入ポート10内の圧力との差圧を一定値に保つよ
うに制御する、一定差圧方式の圧力補償部を実現するこ
とができる。
That is, when the pressure in the inflow port 10 increases or the discharge pressure introduced from the signal line 14 decreases, the throttle portion 61a of the pilot valve 61 moves in the valve opening direction (upward direction in the drawing). , The main valve 60 also moves upward so as to follow this, whereby the inflow port 10
It works to prevent the rise of pressure inside. Further, when the pressure in the inflow port 10 decreases or the discharge pressure increases,
The throttle portion 61a of the pilot valve 61 moves in the valve closing direction (downward in the drawing), and the main valve 60 also moves downward so as to follow this, thereby preventing the pressure in the inflow port 10 from decreasing. Operate. Thus, the second pressure receiving portion 61c
Control force in the valve closing direction due to the pressure received by the first pressure receiving portion 61b
The pilot valve 61 and the main valve 60 following the pilot valve 61 adjust so that the control force in the valve opening direction caused by the spring force of the spring 42s and the received pressure of the valve 42s are balanced, whereby the variable throttle of the directional control valve 8 is adjusted. The pressure on the upstream side of the portion 80a, that is, the pump discharge pressure is controlled to be higher than the pressure in the inflow port 10 connected to the downstream side of the variable throttle portion 80a by an amount corresponding to the initial biasing force of the spring 42s, in other words. It is possible to realize a pressure compensation unit of a constant pressure difference type, which controls the pressure difference between the pump discharge pressure and the pressure in the inflow port 10 to be maintained at a constant value.

【0033】図2に戻り、また一方、上記油圧弁装置1
00及び200を備えた油圧回路において、オペレータ
により方向制御弁8が図示左方に(右側位置に)切換操
作されると、上記同様、油圧ポンプ1の圧油は、方向制
御弁8の可変絞り部80bから、流入ポート10、圧力
補償弁31若しくは41、流出ポート11及び分岐ポー
ト11b、方向制御弁8の方向制御部81b、負荷管路
6bを経てアクチュエータ7a若しくは7bに流入し、
負荷管路6a、方向制御弁8の流出部82bを経てタン
クポート15を介しタンクに戻される。このとき、前述
したのと同様の動作で、方向制御弁8の前後差圧が圧力
補償部30又は40によって所定値に制御されるととも
に、ロードセンシング制御に係る最高負荷圧が傾転制御
部2に導かれ、油圧ポンプ1の吐出容量がロードセンシ
ング制御される。
Returning to FIG. 2, on the other hand, the above hydraulic valve device 1
In the hydraulic circuit including 00 and 200, when the directional control valve 8 is switched to the left side (the right side position) in the drawing by the operator, the pressure oil of the hydraulic pump 1 is the variable throttle of the directional control valve 8 similarly to the above. From the portion 80b to the actuator 7a or 7b through the inflow port 10, the pressure compensation valve 31 or 41, the outflow port 11 and the branch port 11b, the direction control unit 81b of the directional control valve 8 and the load pipe line 6b,
It is returned to the tank via the load port 6a and the outflow portion 82b of the direction control valve 8 and the tank port 15. At this time, in the same operation as described above, the differential pressure across the directional control valve 8 is controlled to a predetermined value by the pressure compensating unit 30 or 40, and the maximum load pressure related to the load sensing control is set to the tilt control unit 2. The discharge capacity of the hydraulic pump 1 is subjected to load sensing control.

【0034】さらに、この方向制御弁8が操作されない
中立位置(図2に示す位置)にあるときには、方向制御
弁8にドレン管路83a,83b,83cのいづれかを形
成されることによって、流出ポート11及び分岐ポート
11a,11bがタンクポート15に連通されることに
より、圧力補償部30,40の信号管路21、流出ポー
ト11、分岐ポート11a,11b内のこもり圧は、当
該ドレン管路を介しタンクポート15を介しタンクにド
レンされる。よって、圧力補償部30,40はロードセ
ンシング制御に関わることはなく、必要以上のエネルギ
損失を防止することができる。なお、このとき検出路1
3内の圧力は、絞り50を介し速やかにタンクへドレン
される。これによって、傾転制御部2は油圧ポンプ1の
傾転角を最小傾転角とする。ここにおいて、例えば油圧
ショベルに本実施例の油圧弁装置100,200を適用
する場合には、可変差圧式の圧力補償部30で制御され
るアクチュエータ7aを旋回モータとし、一定差圧式の
圧力補償部40で制御されるアクチュエータ7bをブー
ムシリンダとすることによって、例えばバケットにすく
いこんだ土砂をダンプトラックに積み込む作業を行うと
きに、フロント作業部のブームを上昇させると同時にこ
のフロント作業部の備わる上部旋回体を旋回動作させる
複合操作を行うときであっても、低負荷側のブーム上げ
速度の低下を防止することができる。
Further, when the directional control valve 8 is in the neutral position (the position shown in FIG. 2) in which the directional control valve 8 is not operated, the directional control valve 8 is formed with one of the drain conduits 83a, 83b, 83c, so that the outflow port is formed. 11 and the branch ports 11a and 11b are communicated with the tank port 15, so that the signal line 21 of the pressure compensating unit 30 and 40, the outflow port 11, and the withdrawal pressure in the branch ports 11a and 11b can flow through the drain line. Through the tank port 15 to the tank. Therefore, the pressure compensating units 30 and 40 are not involved in the load sensing control, and it is possible to prevent unnecessary energy loss. At this time, the detection path 1
The pressure in 3 is quickly drained to the tank via the throttle 50. As a result, the tilt control unit 2 sets the tilt angle of the hydraulic pump 1 to the minimum tilt angle. Here, for example, when the hydraulic valve devices 100 and 200 of the present embodiment are applied to a hydraulic excavator, the actuator 7a controlled by the variable differential pressure type pressure compensating unit 30 is a swing motor, and the constant differential pressure type pressure compensating unit is used. By using the boom cylinder as the actuator 7b controlled by 40, the boom of the front working unit is raised at the same time as the boom of the front working unit is lifted when loading the dump truck with the soil and sand scooped in the bucket. It is possible to prevent the boom raising speed on the low load side from decreasing even when performing a combined operation of swinging the swing structure.

【0035】以上のような構成及び動作の油圧弁装置1
00及び油圧弁装置200における作用を以下に説明す
る。本実施例の比較例として、一方の並列管路に一定差
圧式の圧力補償弁を備えた油圧弁装置600を設け、他
方の並列管路に可変差圧式の圧力補償弁を備えた油圧弁
装置500を設けた油圧回路の基本回路図を図4に示
す。図2に示した本実施例の油圧回路と同等の部材には
同一の符号を付す。なお、本比較例では、説明の便宜等
のために、アクチュエータの一方向のみの作動を制御す
る油圧弁装置500,600を備えた油圧回路を例にと
っているので、本実施例の油圧回路の油圧弁装置10
0,200における方向制御弁8に対応するものとして
は、よりシンプルな可変絞り80が設けられており、ま
た油圧弁装置100,200における負荷管路6a,6b
は、1本の負荷管路6となっている。図4において、本
比較例の油圧回路は、可変容量型の油圧ポンプ1と、油
圧ポンプ1に接続された吐出管路3と、吐出管路3から
分岐管路4を介して分岐された並列管路5,5と、並列
管路5,5の下流側にそれぞれ接続された油圧弁装置5
00,600と、負荷管路6,6を介して油圧弁装置50
0,600にそれぞれ駆動制御されるアクチュエータ7
a,7bと、アクチュエータ7a,7bの最高負荷圧を検
出するための検出路13と、油圧ポンプ1の吐出圧を検
出するための信号管路12と、検出路13及び信号管路
12に接続され油圧ポンプ1の吐出圧が最高負荷圧より
も所定値だけ高くなるように油圧ポンプ1の吐出容量を
制御するいわゆるロードセンシング制御を行う傾転制御
部2とを備えている。
The hydraulic valve device 1 having the above-mentioned structure and operation
00 and the operation of the hydraulic valve device 200 will be described below. As a comparative example of the present embodiment, a hydraulic valve device 600 having a constant differential pressure type pressure compensating valve in one parallel pipeline, and a hydraulic valve device having a variable differential pressure type pressure compensating valve in the other parallel pipeline. A basic circuit diagram of a hydraulic circuit provided with 500 is shown in FIG. The same members as those of the hydraulic circuit of this embodiment shown in FIG. 2 are designated by the same reference numerals. In addition, in this comparative example, for convenience of description, the hydraulic circuit including the hydraulic valve devices 500 and 600 for controlling the operation of the actuator in only one direction is taken as an example. Valve device 10
A simpler variable throttle 80 is provided to correspond to the directional control valve 8 in the 0, 200, and the load pipes 6a, 6b in the hydraulic valve device 100, 200 are provided.
Is one load pipe 6. In FIG. 4, the hydraulic circuit of this comparative example includes a variable displacement hydraulic pump 1, a discharge pipe line 3 connected to the hydraulic pump 1, and a parallel pipe branched from the discharge pipe line 3 via a branch pipe line 4. Pipe lines 5 and 5 and hydraulic valve devices 5 connected to the downstream sides of the parallel pipe lines 5 and 5, respectively.
00, 600 and the hydraulic valve device 50 via the load pipes 6, 6.
Actuator 7 whose drive is controlled to 0,600 respectively
a, 7b, a detection path 13 for detecting the maximum load pressure of the actuators 7a, 7b, a signal conduit 12 for detecting the discharge pressure of the hydraulic pump 1, and a connection to the detection conduit 13 and the signal conduit 12. The tilting control unit 2 performs so-called load sensing control for controlling the discharge capacity of the hydraulic pump 1 so that the discharge pressure of the hydraulic pump 1 becomes higher than the maximum load pressure by a predetermined value.

【0036】油圧弁装置500は、可変絞り80と、そ
の下流側に設けられ可変絞り80の前後差圧を所定値に
制御する圧力補償弁31とを有している。この圧力補償
弁31においては、信号管路21、チェック弁20、及
び信号管路22を介してアクチュエータ7a,7bの負
荷圧のうちの最高負荷圧が検出される検出路13に接続
された信号管路32bを介し、圧力補償弁31の閉弁方
向に最高負荷圧が導かれることにより、ばね32sとと
もに閉弁方向の制御力を付与する一方、可変絞り80下
流側の流入ポート10に接続された信号管路32aを介
し、可変絞り80の下流側圧力が圧力補償弁31の開弁
方向に導かれてこの方向の制御力を付与している。これ
によって、圧力補償弁31は、可変絞り80の下流側に
接続された流入ポート10内の圧力を、検出路13から
導かれる最高負荷圧よりもばね32sのばね力分だけ高
くなるように、すなわち概ね最高負荷圧と等しくするよ
うに制御する、可変差圧方式の圧力補償を可能としてい
る。
The hydraulic valve device 500 has a variable throttle 80 and a pressure compensating valve 31 provided on the downstream side thereof to control the differential pressure across the variable throttle 80 to a predetermined value. In the pressure compensating valve 31, a signal connected to the detection path 13 for detecting the maximum load pressure of the load pressures of the actuators 7a and 7b via the signal conduit 21, the check valve 20, and the signal conduit 22. The maximum load pressure is introduced in the valve closing direction of the pressure compensating valve 31 via the conduit 32b, so that the control force in the valve closing direction is applied together with the spring 32s, while the variable throttle 80 is connected to the inflow port 10 on the downstream side. The pressure on the downstream side of the variable throttle 80 is guided in the valve opening direction of the pressure compensating valve 31 via the signal line 32a and imparts a control force in this direction. As a result, the pressure compensating valve 31 makes the pressure in the inflow port 10 connected to the downstream side of the variable throttle 80 higher than the maximum load pressure introduced from the detection path 13 by the spring force of the spring 32s. That is, it is possible to perform pressure compensation by a variable differential pressure system, which is controlled so as to be approximately equal to the maximum load pressure.

【0037】一方油圧弁装置600は、可変絞り80
と、その上流側に設けられ可変絞り80の前後差圧を所
定値に制御する圧力補償弁41とを有している。この圧
力補償弁41においては、可変絞り部80上流側の管路
9に接続された信号管路42bを介し、可変絞り80の
上流側圧力が圧力補償弁41の閉弁方向に導かれてこの
方向の制御力を付与する一方、可変絞り80下流側の流
入ポート10に接続された信号管路42aを介し、アク
チュエータ7bの負荷圧すなわち可変絞り部80の下流
圧が圧力補償弁41の開弁方向に導かれることにより、
ばね42sとともに開弁方向の制御力を付与している。
これによって、圧力補償弁41は、可変絞り80の上流
側に接続された管路9の圧力を、アクチュエータ7bの
負荷圧よりもばね42sのばね力分だけ高くなるように
制御する、一定差圧方式の圧力補償を可能としている。
On the other hand, the hydraulic valve device 600 includes a variable throttle 80.
And a pressure compensating valve 41 provided on the upstream side thereof to control the differential pressure across the variable throttle 80 to a predetermined value. In the pressure compensating valve 41, the upstream pressure of the variable throttle 80 is guided in the valve closing direction of the pressure compensating valve 41 via the signal conduit 42b connected to the conduit 9 on the upstream side of the variable throttle 80. Direction control force is applied, the load pressure of the actuator 7b, that is, the downstream pressure of the variable throttle portion 80 is opened by the pressure compensating valve 41 via the signal conduit 42a connected to the inflow port 10 on the downstream side of the variable throttle 80. By being guided in the direction,
A control force in the valve opening direction is applied together with the spring 42s.
As a result, the pressure compensating valve 41 controls the pressure of the pipe line 9 connected to the upstream side of the variable throttle 80 so as to be higher than the load pressure of the actuator 7b by the spring force of the spring 42s. It enables system pressure compensation.

【0038】本比較例による油圧回路は、上記構成とす
ることにより、例えば油圧ショベルに適用する場合に
は、本実施例と同様、可変差圧式の圧力補償弁31で制
御されるアクチュエータ7aを旋回モータとし、一定差
圧式の圧力補償弁41で制御されるアクチュエータ7b
をブームシリンダとすることによって、例えばバケット
にすくい込んだ土砂をダンプトラックに積み込む作業を
行うときに、フロント作業部のブームを上昇させると同
時にこのフロント作業部の備わる上部旋回体を旋回動作
させる複合操作を行うときであっても、低負荷側のブー
ム上げ速度の低下を防止することができる。
The hydraulic circuit according to the present comparative example has the above-described structure. When it is applied to a hydraulic excavator, for example, the actuator 7a controlled by the variable differential pressure type pressure compensating valve 31 is swung like the present embodiment. Actuator 7b that is a motor and is controlled by a constant pressure difference type pressure compensation valve 41
By using the boom cylinder as a boom cylinder, for example, when carrying out the work of loading earth and sand scooped into a bucket into a dump truck, the boom of the front working unit is raised and at the same time the upper swing body equipped with this front working unit is swung. Even when the operation is performed, it is possible to prevent the boom raising speed on the low load side from decreasing.

【0039】しかしながら、一定差圧式の圧力補償弁3
1及び可変差圧式の圧力補償弁41はそれぞれ独立した
完全別構造の弁であってこれらの弁の共通化には配慮さ
れておらず、共通化は困難である。また圧力補償弁41
が可変絞り80の上流側に配置されているのに対して圧
力補償弁31は可変絞り80の下流側に配置されている
ので、これらが備えられる油圧弁装置600,500全
体の構造の共通化を図ることができず、圧力補償弁に係
る制御信号圧管路が複雑化する。そして、これらにより
油圧弁装置の小型化・製造コストの低減が困難となる。
However, the constant pressure differential type pressure compensation valve 3
The 1 and variable differential pressure type pressure compensating valves 41 are independent valves having completely different structures, and no consideration is given to the common use of these valves, and it is difficult to make them common. Also, the pressure compensation valve 41
Are arranged on the upstream side of the variable throttle 80, whereas the pressure compensating valve 31 is arranged on the downstream side of the variable throttle 80. Therefore, the structure of the entire hydraulic valve device 600, 500 including them is made common. However, the control signal pressure line related to the pressure compensating valve becomes complicated. These make it difficult to reduce the size and manufacturing cost of the hydraulic valve device.

【0040】これに対し、本実施例の油圧弁装置200
に備えられた可変差圧式の圧力補償弁30と、本実施例
の油圧弁装置100に備えられた一定差圧式の圧力補償
弁40とは、図1と図3とを比較すれば明らかなよう
に、受圧室56と検出路13若しくは信号管路14とを
接続する信号管路32b及び42b、及び受圧室56内
のばね32s及び42s以外、大部分が同一構造となる
ので、圧力補償部30,40の共通化を図ることができ
る。またこのとき、絞り部61aの開弁方向に作用する
信号管路42aを圧力補償部30,40内に備え、か
つ、信号管路32b,42bを受圧室56へ選択的に接
続しばね32s,42sで選択的に付勢することで可変
・一定差圧式の圧力補償機能を選択的に得る構造である
ので、圧力補償部30,40に係わる制御信号圧管路を
簡素化することができる。さらに、可変差圧式・一定差
圧式のどちらの場合であっても圧力補償部30,40が
方向制御弁8の可変絞り部80の下流側に配置されてお
り、油圧弁装置100,200全体の構造の共通化を図
ることができる。よってこれらによって、油圧弁装置の
小型化・製造コストの低減を図ることができる。
On the other hand, the hydraulic valve device 200 of this embodiment
The variable differential pressure type pressure compensating valve 30 provided in the above and the constant differential pressure type pressure compensating valve 40 provided in the hydraulic valve device 100 of the present embodiment are apparent from a comparison between FIG. 1 and FIG. In addition, since most of the structure is the same except for the signal conduits 32b and 42b connecting the pressure receiving chamber 56 and the detection path 13 or the signal conduit 14 and the springs 32s and 42s in the pressure receiving chamber 56, the pressure compensator 30 , 40 can be shared. Further, at this time, the signal conduit 42a acting in the valve opening direction of the throttle portion 61a is provided in the pressure compensating parts 30, 40, and the signal conduits 32b, 42b are selectively connected to the pressure receiving chamber 56 so that the spring 32s, Since the pressure compensation function of the variable / constant differential pressure type is selectively obtained by selectively energizing at 42 s, the control signal pressure lines related to the pressure compensating units 30 and 40 can be simplified. Further, in either the case of the variable differential pressure type or the constant differential pressure type, the pressure compensating units 30 and 40 are arranged on the downstream side of the variable throttle unit 80 of the directional control valve 8, and the hydraulic valve devices 100 and 200 as a whole. The structure can be shared. Therefore, these can reduce the size of the hydraulic valve device and reduce the manufacturing cost.

【0041】なお、上記実施例においては、1つの油圧
弁装置100と、1つの油圧弁装置200の2つの油圧
弁装置を備えた油圧回路を例にとって説明したが、これ
に限られず、3つ以上の油圧弁装置を備えていても良
い。すなわち、分岐管路4を延長して並列管路5を設け
るとともに、検出路13と信号管路14を延長し、この
並列管路5,検出路13,信号管路14に接続する形で、
さらに油圧弁装置100又は200を設けても良く、こ
の場合も同様の効果を得る。
In the above embodiment, the hydraulic circuit provided with two hydraulic valve devices, one hydraulic valve device 100 and one hydraulic valve device 200, has been described as an example, but the present invention is not limited to this. The above hydraulic valve device may be provided. That is, while extending the branch pipeline 4 to provide the parallel pipeline 5, the detection pipeline 13 and the signal pipeline 14 are extended and connected to the parallel pipeline 5, the detection pipeline 13, and the signal pipeline 14,
Further, the hydraulic valve device 100 or 200 may be provided, and in this case, the same effect is obtained.

【0042】[0042]

【発明の効果】本発明によれば、圧力補償部を可変差圧
式として用いる場合の構成と一定差圧式として用いる場
合の構成とにおいて、受圧室と負荷圧検出回路若しくは
吐出圧検出回路とを接続する信号管路以外、大部分が同
一構造となるので、圧力補償部の共通化を図ることがで
きる。またこのとき、圧力補償部に係わる制御信号圧管
路を簡素化することができる。よって、油圧弁装置全体
の構造の共通化を図ることができる。これらによって、
油圧弁装置の小型化・製造コストの低減を図ることがで
きる。
According to the present invention, the pressure receiving chamber is connected to the load pressure detection circuit or the discharge pressure detection circuit in the configuration using the pressure compensating unit as the variable differential pressure type and the configuration using the constant pressure differential type. Most of the components except the signal conduits that have the same structure have the same structure, so that the pressure compensator can be shared. Further, at this time, the control signal pressure line related to the pressure compensator can be simplified. Therefore, the structure of the entire hydraulic valve device can be made common. By these,
The hydraulic valve device can be downsized and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による油圧弁装置に備えられ
た可変差圧方式の圧力補償部の詳細構造を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing a detailed structure of a variable differential pressure type pressure compensator included in a hydraulic valve device according to an embodiment of the present invention.

【図2】油圧弁装置が備えられた油圧回路の回路図であ
る。
FIG. 2 is a circuit diagram of a hydraulic circuit provided with a hydraulic valve device.

【図3】本発明の一実施例による油圧弁装置に備えられ
た一定差圧方式の圧力補償部の詳細構造を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a detailed structure of a constant pressure difference type pressure compensator included in a hydraulic valve device according to an embodiment of the present invention.

【図4】本発明の一実施例の比較例による油圧弁装置が
備えられた油圧回路の回路図である。
FIG. 4 is a circuit diagram of a hydraulic circuit provided with a hydraulic valve device according to a comparative example of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 油圧ポンプ 2 傾転制御部(ポンプ制御手段) 7a アクチュエータ 7b アクチュエータ 8 方向制御弁 10 流入ポート 11 流出ポート 12 信号管路(吐出圧検出管路) 13 検出路(負荷圧検出管路) 14 信号管路(吐出圧検出管路) 15 タンクポート 21 信号管路 22 信号管路 30 圧力補償部 31 圧力補償弁 32a 信号管路 32b 信号管路 32s ばね 40 圧力補償部 41 圧力補償弁 42a 信号管路 42b 信号管路 42s ばね 50 ケーシング本体 54 背圧室 56 受圧室 60 主弁 61 パイロット弁(パイロット部材) 61a 絞り部 61b 第1受圧部 61c 第2受圧部 62 第1流路 63 絞り 64 第2流路 65 貫通孔 80a 可変絞り部 80b 可変絞り部 83a ドレン管路 83b ドレン管路 83c ドレン管路 100 油圧弁装置 200 油圧弁装置 DESCRIPTION OF SYMBOLS 1 Hydraulic pump 2 Tilt control part (pump control means) 7a Actuator 7b Actuator 8 Directional control valve 10 Inflow port 11 Outflow port 12 Signal line (discharge pressure detection line) 13 Detection line (load pressure detection line) 14 Signal Pipe line (discharge pressure detection pipe line) 15 Tank port 21 Signal pipe line 22 Signal pipe line 30 Pressure compensating part 31 Pressure compensating valve 32a Signal pipe line 32b Signal pipe line 32s Spring 40 Pressure compensating part 41 Pressure compensating valve 42a Signal pipe line 42b Signal pipe 42s Spring 50 Casing body 54 Back pressure chamber 56 Pressure receiving chamber 60 Main valve 61 Pilot valve (pilot member) 61a Throttling portion 61b First pressure receiving portion 61c Second pressure receiving portion 62 First flow passage 63 Throttling 64 Second flow Line 65 Through-hole 80a Variable throttle part 80b Variable throttle part 83a Drain pipe line 83b Drain pipe line 83c Drain pipe 100 Hydraulic valve device 200 Hydraulic valve device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 可変容量型の油圧ポンプ、この油圧ポン
プの圧油により駆動される複数のアクチュエータの最高
負荷圧を検出する負荷圧検出管路、前記油圧ポンプの吐
出圧を検出する吐出圧検出管路、前記負荷圧検出管路及
び前記吐出圧検出管路に接続され前記吐出圧が前記最高
負荷圧よりも所定値だけ高くなるように前記油圧ポンプ
の吐出容量を制御するポンプ制御手段を備えた油圧回路
に複数個設けられ、その複数個のそれぞれが、可変絞り
を備えた方向制御弁と、前記可変絞りの前後差圧を所定
の値に制御する圧力補償部とを有し、対応する1つのア
クチュエータの駆動を制御する油圧弁装置において、 前記圧力補償部は、ケーシングに形成され前記可変絞り
の下流側に接続された流入ポート及び流出ポートを互い
に連通・遮断する主弁と、前記ケーシングの内壁と前記
主弁の背面とにより形成される背圧室と、前記主弁の内
部に形成され前記背圧室と前記流入ポートとを絞りを介
し連通する第1流路と、前記主弁の内部に形成され前記
背圧室と前記流出ポートとを連通可能な第2流路と、前
記負荷圧検出管路及び前記吐出圧検出管路のいずれか一
方に接続され前記最高負荷圧及び前記吐出圧のいずれか
一方が導かれる受圧室と、一端が前記主弁に形成された
貫通孔に挿入されるとともに他端が前記受圧室内に配置
され、前記背圧室の流体圧力を制御して前記主弁を動作
させるパイロット部材と、を有しており、 前記パイロット部材は、前記第2流路を介し前記背圧室
と前記流出ポートとを連通・遮断する弁を構成する絞り
部と、前記パイロット部材の一端に設けられ前記貫通孔
内において前記流入ポートと第2流路とを遮断するとと
もに該流入ポートの圧力を前記絞り部の開弁方向に受圧
する第1受圧部と、前記パイロット部材の他端に設けら
れ前記受圧室内において該受圧室に導かれた前記最高負
荷圧及び吐出圧のいずれか一方を前記絞り部の閉弁方向
に受圧する第2受圧部とを備え、この第2受圧部は、前
記パイロット部材を前記絞り部の閉弁方向及び開弁方向
のいずれか一方に付勢するばねに当接されていることを
特徴とする油圧弁装置。
1. A variable displacement hydraulic pump, a load pressure detection conduit for detecting the maximum load pressure of a plurality of actuators driven by the pressure oil of the hydraulic pump, and a discharge pressure detection for detecting the discharge pressure of the hydraulic pump. A pump control means connected to the pipeline, the load pressure detection pipeline, and the discharge pressure detection pipeline to control the discharge capacity of the hydraulic pump so that the discharge pressure becomes higher than the maximum load pressure by a predetermined value. A plurality of hydraulic circuits are provided, each of which has a directional control valve having a variable throttle and a pressure compensator for controlling the differential pressure across the variable throttle to a predetermined value. In the hydraulic valve device for controlling the drive of one actuator, the pressure compensating portion is configured to connect and disconnect an inflow port and an outflow port, which are formed in a casing and connected to a downstream side of the variable throttle, from each other. And a back pressure chamber formed by the inner wall of the casing and the back surface of the main valve, and a first flow path formed inside the main valve and communicating the back pressure chamber with the inflow port via a throttle. A second flow path formed inside the main valve and capable of communicating the back pressure chamber with the outflow port; and the second flow path connected to one of the load pressure detection conduit and the discharge pressure detection conduit A pressure receiving chamber into which either one of the load pressure and the discharge pressure is guided, one end of which is inserted into a through hole formed in the main valve and the other end of which is arranged in the pressure receiving chamber, and the fluid pressure of the back pressure chamber. And a pilot member that operates the main valve by operating the pilot valve, and the pilot member constitutes a valve that connects and disconnects the back pressure chamber and the outflow port via the second flow path. The throttle portion and the penetrating portion provided at one end of the pilot member. A first pressure receiving portion for blocking the inflow port and the second flow path in the hole and receiving the pressure of the inflow port in the valve opening direction of the throttle portion; and the pressure receiving chamber provided at the other end of the pilot member. In the pressure receiving chamber, a second pressure receiving portion for receiving one of the maximum load pressure and the discharge pressure in the valve closing direction of the throttle portion, the second pressure receiving portion including the pilot member A hydraulic valve device, wherein the hydraulic valve device is in contact with a spring that urges the throttle portion in one of a valve closing direction and a valve opening direction.
【請求項2】 請求項1記載の油圧弁装置において、前
記受圧室は、前記負荷圧検出管路に接続されて前記最高
負荷圧が導かれており、前記第2受圧部に当接するばね
は、前記パイロット部材を前記絞り部の閉弁方向に付勢
していることを特徴とする油圧弁装置。
2. The hydraulic valve device according to claim 1, wherein the pressure receiving chamber is connected to the load pressure detecting conduit to guide the maximum load pressure, and the spring abutting the second pressure receiving portion is A hydraulic valve device, wherein the pilot member is urged in a valve closing direction of the throttle portion.
【請求項3】 請求項1記載の油圧弁装置において、前
記受圧室は、前記吐出圧検出管路に接続されて前記吐出
圧が導かれており、前記第2受圧部に当接するばねは、
前記パイロット部材を前記絞り部の開弁方向に付勢して
いることを特徴とする油圧弁装置。
3. The hydraulic valve device according to claim 1, wherein the pressure receiving chamber is connected to the discharge pressure detecting conduit to guide the discharge pressure, and the spring abutting on the second pressure receiving portion comprises:
A hydraulic valve device, wherein the pilot member is biased in a valve opening direction of the throttle portion.
【請求項4】 請求項1記載の油圧弁装置において、前
記方向制御弁は、中立位置において前記流入ポート及び
流出ポートのいづれかをタンクポートへ連通させること
を特徴とする油圧弁装置。
4. The hydraulic valve device according to claim 1, wherein the directional control valve communicates either the inflow port or the outflow port with a tank port at a neutral position.
JP27645994A 1994-11-10 1994-11-10 Oil pressure valve device Pending JPH08135604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27645994A JPH08135604A (en) 1994-11-10 1994-11-10 Oil pressure valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27645994A JPH08135604A (en) 1994-11-10 1994-11-10 Oil pressure valve device

Publications (1)

Publication Number Publication Date
JPH08135604A true JPH08135604A (en) 1996-05-31

Family

ID=17569742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27645994A Pending JPH08135604A (en) 1994-11-10 1994-11-10 Oil pressure valve device

Country Status (1)

Country Link
JP (1) JPH08135604A (en)

Similar Documents

Publication Publication Date Title
EP1672128B1 (en) Hydraulic control device of an excavator with improved loading performance on a slope
JP5297187B2 (en) Hydraulic system with pressure compensator
JP6514522B2 (en) Hydraulic drive system of unloading valve and hydraulic shovel
JP4890147B2 (en) Load holding device for hydraulic actuator circuit
US6378302B1 (en) Hydraulic circuit system
JPH09235756A (en) Hydraulic remote control circuit
JP3625149B2 (en) Hydraulic control circuit for construction machinery
JP2002206508A (en) Hydraulic driving device
US6761027B2 (en) Pressure-compensated hydraulic circuit with regeneration
JP4685542B2 (en) Hydraulic drive
US10072396B2 (en) Working machine control system
EP0440801B2 (en) Hydraulic circuit
JP3142170B2 (en) Pressure relief device in hydraulic circuit
KR101773732B1 (en) Working machine control system
JP2799045B2 (en) Hydraulic circuit for crane
JP7304776B2 (en) CONTROL VALVE GEAR AND HYDRAULIC DRIVING SYSTEM INCLUDING THE SAME
JPH08135604A (en) Oil pressure valve device
JP2002005109A (en) Operation control device
JP3083152B2 (en) Hydraulic drive for construction machinery
JP2003343511A (en) Hydrodynamic drive apparatus for construction machine
JP3730739B2 (en) Directional switching valve device with load compensation
JP3240286B2 (en) Hydraulic system
JPH07167105A (en) Unload valve structure for hydraulic control valve device
KR0184788B1 (en) Oil pressure control apparatus for excavator
JPH08200308A (en) Hydraulic circuit