JPH08135519A - Control method and control device for engine exhaust gas reflux device - Google Patents

Control method and control device for engine exhaust gas reflux device

Info

Publication number
JPH08135519A
JPH08135519A JP6279002A JP27900294A JPH08135519A JP H08135519 A JPH08135519 A JP H08135519A JP 6279002 A JP6279002 A JP 6279002A JP 27900294 A JP27900294 A JP 27900294A JP H08135519 A JPH08135519 A JP H08135519A
Authority
JP
Japan
Prior art keywords
aftercooler
partial pressure
outlet temperature
egr
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6279002A
Other languages
Japanese (ja)
Other versions
JP3393630B2 (en
Inventor
Fumihide Sato
文秀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Komatsu Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Komatsu Ltd filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP27900294A priority Critical patent/JP3393630B2/en
Publication of JPH08135519A publication Critical patent/JPH08135519A/en
Application granted granted Critical
Publication of JP3393630B2 publication Critical patent/JP3393630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers

Abstract

PURPOSE: To prevent dewing from occurring inside an after-cooler by setting the sum of a saturated water vapor partial pressure at an EGR cooler and the water vapor partial pressure in air below the saturated water vapor partial pressure at the outlet of the after-cooler. CONSTITUTION: An outlet temperature at an after-cooler 11 installed in an intake system 7 is set at the required after-cooler outlet temperature determined according to the speed and load of an engine. Also the outlet temperature of an EGR cooler 16 is controlled by a saturated water vapor partial pressure at that required after-cooler outlet temperature and a water vapor partial pressure in air so that the sum of the saturated water vapor partial pressure at the EGR cooler and the water vapor partial pressure in air is below the saturated water vapor partial pressure at the outlet of the after-cooler. Thus sucked gas is not cooled below dew point inside the after-cooler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの排気ガスの
一部を吸気系に還流する排気ガス還流装置の制御方法及
び制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method and a control device for an exhaust gas recirculation device for recirculating a part of engine exhaust gas to an intake system.

【0002】[0002]

【従来の技術】エンジンの排気ガス還流装置としては、
特開平4−175453号公報や特開平4−30117
2号公報に示すように、アフタクーラを備えた吸気系と
排気系をEGR通路で連通し、そのEGR通路にEGR
フィルタとEGR冷却器を設けたものがある。
2. Description of the Related Art As an engine exhaust gas recirculation device,
JP-A-4-175453 and JP-A-4-30117
As shown in Japanese Patent Laid-Open No. 2 (1994), an intake system and an exhaust system equipped with an aftercooler communicate with each other through an EGR passage, and the EGR passage is connected to the EGR passage.
Some have a filter and an EGR cooler.

【0003】この排気ガス還流装置であれば、排気ガス
の一部を吸気系に還流して排気ガス中のNOX を低減で
きるし、エンジンの入口ガス温度が上がらないように還
流ガスの温度を制御して高出力が得られる。
With this exhaust gas recirculation device, a portion of the exhaust gas can be recirculated to the intake system to reduce NO X in the exhaust gas, and the temperature of the recirculation gas can be controlled so that the temperature of the gas at the inlet of the engine does not rise. High output can be obtained by controlling.

【0004】[0004]

【発明が解決しようとする課題】かかる排気ガス還流装
置であると、還流ガス中のSO3 、NO4 はEGR冷却
器やアフタクーラによって結露した水に解け込み酸性水
溶液を生成する、この酸性水溶がエンジンに入るとエン
ジン本体内部を腐食させ、エンジン寿命を短くする。
In such an exhaust gas recirculation system, SO 3 and NO 4 in the recirculation gas are dissolved into water condensed by the EGR cooler and the aftercooler to form an acidic aqueous solution. Entering the engine will corrode the inside of the engine and shorten the engine life.

【0005】EGR冷却器で生成する酸性水溶液はドレ
ーンパイプ等によって排出することは容易であるが、ア
フタクーラ出口で生成する酸性水溶液をドレーンすると
空気もモレて過給圧力が低下し、エンジン内部にも入り
やすい。そこで本発明は、アフタクーラ出口において酸
性水溶液を生成させないエンジンの排気ガス還流装置の
制御方法及び制御装置を提供することを目的とする。
Although the acidic aqueous solution generated in the EGR cooler can be easily discharged through a drain pipe or the like, if the acidic aqueous solution generated at the outlet of the aftercooler is drained, the air also leaks and the supercharging pressure is lowered, so that the inside of the engine is also discharged. Easy to enter. Therefore, it is an object of the present invention to provide a control method and a control device for an exhaust gas recirculation device for an engine that does not generate an acidic aqueous solution at the aftercooler outlet.

【0006】[0006]

【課題を解決するための手段】エンジン本体1の燃焼室
2に接続しアフタクーラ11を有する吸気系7における
アフタクーラ11入口側と、エンジン本体1の燃焼室2
に接続した排気系8をEGR通路13で連通し、そのE
GR通路13にEGR冷却器16を設けたエンジンの排
気ガス還流装置において、前記アフタクーラ11の冷却
能力を調整してそのアフタクーラ出口温度を、エンジン
回転速度と負荷により決定された必要なアフタクーラ出
口温度とし、その必要なアフタクーラ出口温度の飽和水
蒸気分圧と大気中の水蒸気分圧によりEGR出口飽和水
蒸気分圧を演算し、前記EGR冷却器16の冷却能力を
制御してそのEGR出口温度を前記演算したEGR出口
飽和水蒸気分圧に見合う必要温度以下とすることを特徴
とするエンジンの排気ガス還流装置の制御方法。エンジ
ン本体1の燃焼室2に接続しアフタクーラ11を有する
吸気系7におけるアフタクーラ11入口側と、エンジン
本体1の燃焼室2に接続した排気系8をEGR通路13
で連通し、そのEGR通路13にEGR冷却器16を設
けたエンジンの排気ガス還流装置において、前記アフタ
クーラ11の冷却能力を制御する第1の手段と、前記E
GR冷却器16の冷却能力を制御する第2の手段と、エ
ンジン回転速度と負荷により必要なアフタクーラ出口温
度を算出する第3の手段と、アフタクーラ11の出口温
度を必要なアフタクーラ出口温度とすべく第1の手段を
コントロールする第4の手段と、大気中の水蒸気分圧と
前記演算した必要なアフタクーラ出口温度による飽和水
蒸気分圧によりEGR冷却器出口飽和水蒸気分圧を演算
する第5の手段と、EGR冷却器出口温度を前記EGR
冷却器出口飽和水蒸気分圧に見合う必要温度とすべき前
記第2の手段をコントロールする第6の手段より構成し
たエンジンの排気ガス還流装置の制御装置。
[Means for Solving the Problems] An inlet side of an aftercooler 11 in an intake system 7 having an aftercooler 11 connected to a combustion chamber 2 of an engine body 1 and a combustion chamber 2 of the engine body 1.
The exhaust system 8 connected to the
In an exhaust gas recirculation system for an engine in which an EGR cooler 16 is provided in the GR passage 13, the cooling capacity of the aftercooler 11 is adjusted so that the aftercooler outlet temperature is set to a required aftercooler outlet temperature determined by the engine speed and load. The EGR outlet saturated water vapor partial pressure is calculated from the required saturated water vapor partial pressure of the aftercooler outlet temperature and the water vapor partial pressure in the atmosphere, and the EGR outlet temperature is calculated by controlling the cooling capacity of the EGR cooler 16. A method for controlling an exhaust gas recirculation system for an engine, comprising setting a temperature equal to or lower than a required temperature commensurate with a saturated steam partial pressure at an EGR outlet. The aftercooler 11 inlet side of the intake system 7 having the aftercooler 11 connected to the combustion chamber 2 of the engine body 1 and the exhaust system 8 connected to the combustion chamber 2 of the engine body 1 are connected to the EGR passage 13
In the exhaust gas recirculation device for an engine, which is in communication with the EGR passage 13 and is provided with an EGR cooler 16 in the EGR passage 13, first means for controlling the cooling capacity of the aftercooler 11;
A second means for controlling the cooling capacity of the GR cooler 16, a third means for calculating a necessary aftercooler outlet temperature according to the engine speed and a load, and an outlet temperature of the aftercooler 11 for a required aftercooler outlet temperature. Fourth means for controlling the first means, and fifth means for calculating the EGR cooler outlet saturated water vapor partial pressure by the saturated water vapor partial pressure depending on the atmospheric water vapor partial pressure and the calculated necessary aftercooler outlet temperature. , EGR cooler outlet temperature to EGR
A control device for an exhaust gas recirculation device for an engine, comprising: a sixth means for controlling the second means, which should be at a necessary temperature that corresponds to the saturated steam partial pressure at the cooler outlet.

【0007】[0007]

【作 用】大気中の水蒸気分圧とEGR冷却器出口飽
和水蒸気分圧の和が、アフタクーラ出口飽和水蒸気分圧
以下となるので、アフタクーラ11内で吸気ガスが露点
以下に冷却されることがないから結露が発生しない。こ
れにより、EGRガス中のSO3 、SO4 が吸気ガス中
に混入してもそのSO3 、SO4 がエンジン本体内部を
腐食させる腐食液となることがなく、エンジン本体内部
を腐食することを防止できる。
[Operation] Since the sum of the partial pressure of water vapor in the atmosphere and the saturated water vapor partial pressure at the outlet of the EGR cooler is less than or equal to the saturated water vapor partial pressure at the aftercooler outlet, the intake gas is not cooled below the dew point in the aftercooler 11. Condensation does not occur. Thus, SO 3 in the EGR gas, SO 4 its SO 3 be mixed in the intake gas, SO 4 is without the etchant corrode internal engine body, to corrode the inside of the engine body It can be prevented.

【0008】[0008]

【実 施 例】図1に示すように、エンジン本体1の燃
焼室2は吸気バルブ3により吸気ポート4に開閉される
と共に、排気バルブ5で排気ポート6に開閉され、その
吸気ポート4は吸気系7に接続し、排気ポート6は排気
系8に接続している。
[Example] As shown in FIG. 1, the combustion chamber 2 of the engine body 1 is opened and closed by an intake valve 3 to an intake port 4 and is also opened and closed by an exhaust valve 5 to an exhaust port 6, which intake port 4 is The exhaust port 6 is connected to the system 7, and the exhaust port 6 is connected to the exhaust system 8.

【0009】前記吸気系7は、吸気フィルタ9、過給機
10のコンプレッサ10a、アフタクーラ11を有し、
排気系8には前記過給機10の排気タービン10b、排
気マフラ12を有し、排気系8の排気タービン10b入
口側と排気系7のコンプレッサ10a入口側とがEGR
通路13で短絡されて排気ガスの一部を吸気系7に還流
するようにしてあり、このEGR通路13にはEGR率
調量用バルブ14、EGRフィルタ15、EGR冷却器
16が設けてある。
The intake system 7 has an intake filter 9, a compressor 10a of the supercharger 10, and an aftercooler 11,
The exhaust system 8 has the exhaust turbine 10b of the supercharger 10 and the exhaust muffler 12, and the exhaust turbine 8b inlet side of the exhaust system 8 and the compressor 10a inlet side of the exhaust system 7 are EGR.
The passage 13 is short-circuited so that a part of the exhaust gas is recirculated to the intake system 7. The EGR passage 13 is provided with an EGR rate adjustment valve 14, an EGR filter 15, and an EGR cooler 16.

【0010】前記アフタクーラ11は冷却水により過給
機10からの過給空気を冷却するものであり、その冷却
水の供給量を開度調整用バルブ17により制御すること
でアフタクーラ11の冷却能力を調整できるようにして
ある。
The aftercooler 11 cools the supercharged air from the supercharger 10 with cooling water, and the cooling capacity of the aftercooler 11 is controlled by controlling the supply amount of the cooling water with an opening adjustment valve 17. It can be adjusted.

【0011】前記EGR冷却器16は冷却水によりEG
Rガスを冷却するものであり、その冷却水の供給量を開
度調整用バルブ18により制御することでEGR冷却器
16の冷却能力を調整できるようにしてある。
The EGR cooler 16 uses EG to cool the EG.
The R gas is cooled, and the cooling capacity of the EGR cooler 16 can be adjusted by controlling the supply amount of the cooling water by the opening adjustment valve 18.

【0012】前記アフタクーラ11の出口側にはアフタ
クーラ出口温度検出器19が設けられ、EGR冷却器1
6の出口側にはEGR冷却器出口温度検出器20が設け
てある。
An aftercooler outlet temperature detector 19 is provided on the outlet side of the aftercooler 11, and the EGR cooler 1
An EGR cooler outlet temperature detector 20 is provided on the outlet side of 6.

【0013】図2は制御回路図を示し、前記アフタクー
ラ出口温度検出器19により検出したアフタクーラ出口
温度tAC、前記EGR冷却器出口温度検出器20により
検出したEGR冷却器出口温度t1 、大気温度検出器2
1により検出した大気温度t0 、大気湿度検出器22に
より検出した大気湿度d0 はコントローラ23にそれぞ
れ入力される。
FIG. 2 is a control circuit diagram showing the aftercooler outlet temperature t AC detected by the aftercooler outlet temperature detector 19, the EGR cooler outlet temperature t 1 detected by the EGR cooler outlet temperature detector 20, and the atmospheric temperature. Detector 2
The atmospheric temperature t 0 detected by 1 and the atmospheric humidity d 0 detected by the atmospheric humidity detector 22 are input to the controller 23, respectively.

【0014】エンジン回転速度とエンジンに作用する負
荷により必要なアフタクーラ出口温度TACが設定器24
にあらかじめ設定され、エンジン回転速度検出器25よ
りのエンジン回転速度と負荷検出手段26よりの負荷に
よって必要なアフタクーラ出口温度TACを算出してコン
トローラ23に入力する。
The aftercooler outlet temperature T AC required by the engine speed and the load acting on the engine is set by the setter 24.
Is set in advance, and the required aftercooler outlet temperature T AC is calculated and input to the controller 23 according to the engine rotation speed from the engine rotation speed detector 25 and the load from the load detection means 26.

【0015】つまり、エンジン回転速度と負荷によって
最適なる吸気温度がエンジン本体1の性能によって決定
されるので、エンジン回転速度と負荷を検出して必要と
するアフタクーラ出口温度TACを算出するようにしてあ
る。
That is, since the optimum intake air temperature is determined by the performance of the engine body 1 depending on the engine rotation speed and the load, the required aftercooler outlet temperature T AC is calculated by detecting the engine rotation speed and the load. is there.

【0016】前記エンジンに作用する負荷が大きくなれ
ば燃料噴射ポンプの燃料噴射量が多くなり、小さくなれ
ば少なくなるので、燃料噴射ポンプの燃料噴射量をコン
トロールするコントロールラックの位置をストロークセ
ンサ等で検出して負荷とし、図3に示すメモリマップに
基づいてコントロールラック位置とエンジン回転速度に
より必要なアフタクーラ出口温度TACを算出する。
The larger the load acting on the engine, the larger the fuel injection amount of the fuel injection pump, and the smaller the load, the smaller the fuel injection amount. Therefore, the position of the control rack for controlling the fuel injection amount of the fuel injection pump is set by a stroke sensor or the like. The detected temperature is used as a load, and the required aftercooler outlet temperature T AC is calculated based on the control rack position and the engine speed based on the memory map shown in FIG.

【0017】前記コントローラ23は各入力値に基づい
て開度調整用バルブ17,18の開度を調整する信号を
出力する。
The controller 23 outputs a signal for adjusting the opening of the opening adjusting valves 17, 18 based on each input value.

【0018】次に作動を説明する。エンジン回転速度と
コントロールラック位置に基づいて必要なアフタクーラ
出口温度TACを算出し、その温度TACとアフタクーラ出
口温度検出器19で検出したアフタクーラ出口温度tAC
をコントローラ23で比較し、その比較結果により開度
調整用バルブ17の開度を制御してアフタクーラ11の
供給冷却水量を増減してアフタクーラ出口温度tACを必
要なアフタクーラ出口温度TACとする。
Next, the operation will be described. The required aftercooler outlet temperature T AC is calculated based on the engine rotation speed and the control rack position, and the temperature T AC and the aftercooler outlet temperature t AC detected by the aftercooler outlet temperature detector 19 are calculated.
Are compared by the controller 23, and the opening degree of the opening adjustment valve 17 is controlled according to the comparison result to increase or decrease the amount of cooling water supplied to the aftercooler 11 to make the aftercooler outlet temperature t AC the required aftercooler outlet temperature T AC .

【0019】前述の必要なアフタクーラ出口温度TAC
よりアフタクーラ出口の飽和水蒸気分圧HACをコントロ
ーラ23で演算する。
The saturated steam partial pressure H AC at the aftercooler outlet is calculated by the controller 23 based on the required aftercooler outlet temperature T AC described above.

【0020】大気温度検出器21で検出した大気温度t
0 、大気湿度検出器22で検出した大気湿度d0 より吸
気系7の吸気フィルタ9に最も近い大気中の水蒸気分圧
0をコントローラ23で演算する。
Atmospheric temperature t detected by the atmospheric temperature detector 21
0 , the controller 23 calculates the water vapor partial pressure H 0 in the atmosphere closest to the intake filter 9 of the intake system 7 based on the atmospheric humidity d 0 detected by the atmospheric humidity detector 22.

【0021】前述のようにして演算したアフタクーラ出
口水蒸気分圧HACと大気中の水蒸気分圧H0 に基づいて
EGR冷却器出口飽和水蒸気分圧H1 をコントローラ2
3で演算する
Based on the aftercooler outlet water vapor partial pressure H AC and the atmospheric water vapor partial pressure H 0 calculated as described above, the controller 2 determines the EGR cooler outlet saturated water vapor partial pressure H 1.
Calculate with 3

【0022】ここで、EGR冷却器出口飽和水蒸気分圧
1 +大気中の水蒸気分圧H0 =アフタクーラ出口飽和
水蒸気分圧HACとなるようにEGR冷却器出口飽和水蒸
気分圧H1 を演算する。
The EGR cooler outlet saturated steam partial pressure H 1 is calculated so that the EGR cooler outlet saturated steam partial pressure H 1 + the atmospheric steam partial pressure H 0 = the aftercooler outlet saturated steam partial pressure H AC. To do.

【0023】前述のようにして演算した必要温度T1
EGR冷却器出口温度検出器18で検出したEGR冷却
器出口温度t1 を比較し、その比較結果によって開度調
整用バルブ18の開度を制御してEGR冷却器16の供
給冷却水量をコントロールしてEGR冷却器出口温度t
1 を必要温度T1 以下とする。
The required temperature T 1 calculated as described above is compared with the EGR cooler outlet temperature t 1 detected by the EGR cooler outlet temperature detector 18, and the opening degree of the opening adjusting valve 18 is determined by the comparison result. To control the amount of cooling water supplied to the EGR cooler 16 to control the EGR cooler outlet temperature t.
1 is set to the required temperature T 1 or lower.

【0024】以上のようにすることで、吸気ガスがアフ
タクーラ11内で露点以下に冷却されることがないか
ら、アフラクーラ11内で結露が生じることがない。
By doing so, the intake gas is not cooled below the dew point in the aftercooler 11, so that no condensation occurs in the aftercooler 11.

【0025】[0025]

【発明の効果】大気中の水蒸気分圧とEGR冷却器出口
飽和水蒸気分圧の和が、アフタクーラ出口飽和水蒸気分
圧以下となるので、アフタクーラ11内で吸気ガスが露
点以下に冷却されることがないから結露が発生しない。
これにより、EGRガス中のSO3 、SO4 が吸気ガス
中に混入してもそのSO3 、SO4 がエンジン本体内部
を腐食させる腐食液(酸性水溶液)となることがなく、
エンジン本体内部を腐食することを防止できる。
Since the sum of the partial pressure of water vapor in the atmosphere and the partial pressure of saturated steam at the outlet of the EGR cooler becomes equal to or lower than the saturated steam partial pressure at the outlet of the aftercooler, the intake gas in the aftercooler 11 may be cooled below the dew point. Condensation does not occur because it does not exist.
Thus, SO 3 in the EGR gas, SO 4 is without also contaminating its SO 3, SO 4 the etchant corrode internal engine body (acidic aqueous solution) during the intake gas,
It is possible to prevent corrosion inside the engine body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】制御回路図である。FIG. 2 is a control circuit diagram.

【図3】エンジン回転速度とコントロールラック位置と
必要なアフタクーラ出口温度の関係を示す図表である。
FIG. 3 is a table showing the relationship between engine rotation speed, control rack position, and required aftercooler outlet temperature.

【符号の説明】[Explanation of symbols]

1…エンジン本体 2…燃焼室 7…吸気系 8…排気系 11…アフタクーラ 13…EGR通路 16…EGR冷却器 17…開度調整用バルブ 18…開度調整用バルブ 19…アフタクーラ出口温度検出器 20…EGR冷却器出口温度検出器。 DESCRIPTION OF SYMBOLS 1 ... Engine body 2 ... Combustion chamber 7 ... Intake system 8 ... Exhaust system 11 ... Aftercooler 13 ... EGR passage 16 ... EGR cooler 17 ... Opening adjustment valve 18 ... Opening adjustment valve 19 ... Aftercooler outlet temperature detector 20 ... EGR cooler outlet temperature detector.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 29/04 S F02D 45/00 360 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F02B 29/04 S F02D 45/00 360 C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エンジン本体1の燃焼室2に接続しアフ
タクーラ11を有する吸気系7におけるアフタクーラ1
1入口側と、エンジン本体1の燃焼室2に接続した排気
系8をEGR通路13で連通し、そのEGR通路13に
EGR冷却器16を設けたエンジンの排気ガス還流装置
において、 前記アフタクーラ11の冷却能力を調整してそのアフタ
クーラ出口温度を、エンジン回転速度と負荷により決定
された必要なアフタクーラ出口温度とし、その必要なア
フタクーラ出口温度の飽和水蒸気分圧と大気中の水蒸気
分圧によりEGR出口飽和水蒸気分圧を演算し、前記E
GR冷却器16の冷却能力を制御してそのEGR出口温
度を前記演算したEGR出口飽和水蒸気分圧に見合う必
要温度以下とすることを特徴とするエンジンの排気ガス
還流装置の制御方法。
1. An aftercooler 1 in an intake system 7 connected to a combustion chamber 2 of an engine body 1 and having an aftercooler 11.
In the exhaust gas recirculation device for an engine, the exhaust system 8 connected to the combustion chamber 2 of the engine body 1 is connected to the inlet 1 side by an EGR passage 13, and an EGR cooler 16 is provided in the EGR passage 13. Adjust the cooling capacity to make the aftercooler outlet temperature the required aftercooler outlet temperature determined by the engine speed and load, and saturate the EGR outlet with the required aftercooler outlet temperature saturated steam partial pressure and atmospheric water vapor partial pressure. Calculate the partial pressure of water vapor and
A method for controlling an exhaust gas recirculation device for an engine, characterized in that the cooling capacity of the GR cooler 16 is controlled so that the EGR outlet temperature is equal to or lower than a necessary temperature commensurate with the calculated EGR outlet saturated steam partial pressure.
【請求項2】 エンジン本体1の燃焼室2に接続しアフ
タクーラ11を有する吸気系7におけるアフタクーラ1
1入口側と、エンジン本体1の燃焼室2に接続した排気
系8をEGR通路13で連通し、そのEGR通路13に
EGR冷却器16を設けたエンジンの排気ガス還流装置
において、 前記アフタクーラ11の冷却能力を制御する第1の手段
と、前記EGR冷却器16の冷却能力を制御する第2の
手段と、エンジン回転速度と負荷により必要なアフタク
ーラ出口温度を算出する第3の手段と、アフタクーラ1
1の出口温度を必要なアフタクーラ出口温度とすべく第
1の手段をコントロールする第4の手段と、大気中の水
蒸気分圧と前記演算した必要なアフタクーラ出口温度に
よる飽和水蒸気分圧によりEGR冷却器出口飽和水蒸気
分圧を演算する第5の手段と、EGR冷却器出口温度を
前記EGR冷却器出口飽和水蒸気分圧に見合う必要温度
とすべき前記第2の手段をコントロールする第6の手段
より構成したエンジンの排気ガス還流装置の制御装置。
2. An aftercooler 1 in an intake system 7 connected to a combustion chamber 2 of an engine body 1 and having an aftercooler 11.
In the exhaust gas recirculation device for an engine, the exhaust system 8 connected to the combustion chamber 2 of the engine body 1 is connected to the inlet 1 side by an EGR passage 13, and an EGR cooler 16 is provided in the EGR passage 13. A first means for controlling the cooling capacity, a second means for controlling the cooling capacity of the EGR cooler 16, a third means for calculating a necessary aftercooler outlet temperature according to an engine speed and a load, and an aftercooler 1.
The fourth means for controlling the first means to bring the outlet temperature of 1 to the required aftercooler outlet temperature, and the saturated water vapor partial pressure according to the above-calculated required aftercooler outlet temperature in the atmosphere and the EGR cooler It is composed of a fifth means for calculating the outlet saturated water vapor partial pressure and a sixth means for controlling the second means for making the EGR cooler outlet temperature a necessary temperature commensurate with the EGR cooler outlet saturated water vapor partial pressure. Control device for exhaust gas recirculation system of engine.
JP27900294A 1994-11-14 1994-11-14 Control method and control device for engine exhaust gas recirculation device Expired - Fee Related JP3393630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27900294A JP3393630B2 (en) 1994-11-14 1994-11-14 Control method and control device for engine exhaust gas recirculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27900294A JP3393630B2 (en) 1994-11-14 1994-11-14 Control method and control device for engine exhaust gas recirculation device

Publications (2)

Publication Number Publication Date
JPH08135519A true JPH08135519A (en) 1996-05-28
JP3393630B2 JP3393630B2 (en) 2003-04-07

Family

ID=17605038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27900294A Expired - Fee Related JP3393630B2 (en) 1994-11-14 1994-11-14 Control method and control device for engine exhaust gas recirculation device

Country Status (1)

Country Link
JP (1) JP3393630B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059432A3 (en) * 1999-06-07 2001-07-11 Mitsubishi Heavy Industries, Ltd. Cooling apparatus for vehicular engine
JP2003013765A (en) * 2001-06-29 2003-01-15 Mitsubishi Heavy Ind Ltd Hydrogen engine, and operation method for, hydrogen engine
GB2402972A (en) * 2003-06-05 2004-12-22 Detroit Diesel Corp Supercharged, eg turbocharged, i.c. engine with by-passable charge air cooler
WO2007067793A1 (en) * 2005-12-09 2007-06-14 Borgwarner Inc. Exhaust gas recirculation cooler bypass
EP1832735A2 (en) * 2006-03-06 2007-09-12 Nissan Motor Company Limited Vehicle Control
JP2009052486A (en) * 2007-08-28 2009-03-12 Toyota Motor Corp Exhaust gas recirculation system for internal combustion engine
JP2012132364A (en) * 2010-12-21 2012-07-12 Mitsubishi Motors Corp Control system of engine
KR101227178B1 (en) * 2010-10-12 2013-01-28 한국기계연구원 Strucrure for removing the condensation water of Exhaust Gas Recirculation in diesel engine system and method thereof
JP2013036452A (en) * 2011-08-11 2013-02-21 Mitsubishi Motors Corp Internal combustion engine
CN104956044A (en) * 2013-01-29 2015-09-30 三菱重工业株式会社 Multi-stage supercharging system, and device and method for controlling same
WO2016178302A1 (en) * 2015-05-07 2016-11-10 株式会社デンソー Low-water heating/cooling device for internal-combustion engine
JP2017057788A (en) * 2015-09-16 2017-03-23 株式会社デンソー Supercharging system for internal combustion engine with egr device
WO2017130527A1 (en) * 2016-01-27 2017-08-03 日立オートモティブシステムズ株式会社 Internal combustion engine control device
EP3244055A1 (en) 2014-04-02 2017-11-15 Denso Corporation Egr system for internal-combustion engine

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059432A3 (en) * 1999-06-07 2001-07-11 Mitsubishi Heavy Industries, Ltd. Cooling apparatus for vehicular engine
JP2003013765A (en) * 2001-06-29 2003-01-15 Mitsubishi Heavy Ind Ltd Hydrogen engine, and operation method for, hydrogen engine
GB2402972A (en) * 2003-06-05 2004-12-22 Detroit Diesel Corp Supercharged, eg turbocharged, i.c. engine with by-passable charge air cooler
WO2007067793A1 (en) * 2005-12-09 2007-06-14 Borgwarner Inc. Exhaust gas recirculation cooler bypass
US7469691B2 (en) 2005-12-09 2008-12-30 Borgwarner Inc. Exhaust gas recirculation cooler bypass
EP1832735A2 (en) * 2006-03-06 2007-09-12 Nissan Motor Company Limited Vehicle Control
JP2007239480A (en) * 2006-03-06 2007-09-20 Nissan Motor Co Ltd Method and device for controlling vehicle
EP1832735A3 (en) * 2006-03-06 2014-01-15 Nissan Motor Company Limited Vehicle Control
JP2009052486A (en) * 2007-08-28 2009-03-12 Toyota Motor Corp Exhaust gas recirculation system for internal combustion engine
KR101227178B1 (en) * 2010-10-12 2013-01-28 한국기계연구원 Strucrure for removing the condensation water of Exhaust Gas Recirculation in diesel engine system and method thereof
JP2012132364A (en) * 2010-12-21 2012-07-12 Mitsubishi Motors Corp Control system of engine
JP2013036452A (en) * 2011-08-11 2013-02-21 Mitsubishi Motors Corp Internal combustion engine
CN104956044A (en) * 2013-01-29 2015-09-30 三菱重工业株式会社 Multi-stage supercharging system, and device and method for controlling same
US20150361869A1 (en) * 2013-01-29 2015-12-17 Mitsubishi Heavy Industries, Ltd. Multi-stage supercharging system and device and method for controlling the same
US10557405B2 (en) 2013-01-29 2020-02-11 Mitsubishi Heavy Industries, Ltd. Multi-stage supercharging system and device and method for controlling the same
EP3244055A1 (en) 2014-04-02 2017-11-15 Denso Corporation Egr system for internal-combustion engine
US10107235B2 (en) 2014-04-02 2018-10-23 Denso Corporation EGR system for internal-combustion engine
US10473063B2 (en) 2014-04-02 2019-11-12 Denso Corporation EGR system for internal-combustion engine
WO2016178302A1 (en) * 2015-05-07 2016-11-10 株式会社デンソー Low-water heating/cooling device for internal-combustion engine
JP2016211408A (en) * 2015-05-07 2016-12-15 株式会社デンソー Low-water temperature cooling device of internal combustion engine
CN107850016A (en) * 2015-05-07 2018-03-27 株式会社电装 The low water temperature cooling device of internal combustion engine
JP2017057788A (en) * 2015-09-16 2017-03-23 株式会社デンソー Supercharging system for internal combustion engine with egr device
WO2017130527A1 (en) * 2016-01-27 2017-08-03 日立オートモティブシステムズ株式会社 Internal combustion engine control device
JPWO2017130527A1 (en) * 2016-01-27 2018-09-27 日立オートモティブシステムズ株式会社 Internal combustion engine control device
US10677183B2 (en) 2016-01-27 2020-06-09 Hitachi Automotive Systems, Ltd. Internal combustion engine control apparatus

Also Published As

Publication number Publication date
JP3393630B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
JP3393630B2 (en) Control method and control device for engine exhaust gas recirculation device
JP5831790B2 (en) Internal combustion engine
CN100591899C (en) System and method for operating a turbocharged engine
EP1754879A1 (en) Exhaust gas recirculation system
JP3038512B2 (en) Exhaust gas recirculation system for diesel engine
GB960524A (en) Method and apparatus for refrigerating combustion air for internal combustion engines
US6655141B1 (en) Airflow system for engine with series turbochargers
KR20180053102A (en) Engine system for removing condensed water
US20090320465A1 (en) Method and device for producing ammonia for treating exhaust gas in internal combustion engines in a motor vehicle
JPH08232771A (en) Exhaust gas recirculation device
JP2000130266A (en) Exhaust gas recirculation device
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP2002147291A (en) Exhaust gas recirculation device with cooler
JP3783527B2 (en) Two-stage turbocharging system
JPS59141718A (en) Apparatus for controlling temperature of scavenging air in internal-combustion engine
JPS6093118A (en) Intake air cooling device of engine with supercharger
WO2011152827A1 (en) Engine with coolant throttle and method for controlling the same
JP4061443B2 (en) Variable turbocharger control device
JPH0510116A (en) Engine having water injection device
JP2020041435A (en) Operation control method for exhaust gas recirculation device, and exhaust gas recirculation device
JP3706424B2 (en) Gas turbine intake air cooling system
KR20010057650A (en) Temperature down system for turbo charger engine and method
CN215213736U (en) Engine low pressure EGR control system and vehicle
JP3395782B2 (en) Intake system pressure estimation device for internal combustion engine
JPH0480208B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees