JPH08133919A - Solid substance having antimicrobial action, its production and antimicrobial action on liquid and its flow channel - Google Patents

Solid substance having antimicrobial action, its production and antimicrobial action on liquid and its flow channel

Info

Publication number
JPH08133919A
JPH08133919A JP6312309A JP31230994A JPH08133919A JP H08133919 A JPH08133919 A JP H08133919A JP 6312309 A JP6312309 A JP 6312309A JP 31230994 A JP31230994 A JP 31230994A JP H08133919 A JPH08133919 A JP H08133919A
Authority
JP
Japan
Prior art keywords
silver
antibacterial
liquid
layer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6312309A
Other languages
Japanese (ja)
Other versions
JP3228035B2 (en
Inventor
Makoto Hayakawa
信 早川
Tamon Kimura
太門 木村
Toshiya Watabe
俊也 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP31230994A priority Critical patent/JP3228035B2/en
Publication of JPH08133919A publication Critical patent/JPH08133919A/en
Application granted granted Critical
Publication of JP3228035B2 publication Critical patent/JP3228035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE: To obtain a solid substance capable of minimizing the elution rate of silver and thus maintaining antimicrobial action for a long period of time. CONSTITUTION: This solid substance having antimicrobial action is obtained by forming a layer comprising silver particles on the surface of a substrate through a layer having a photocatalytic action on the substrate or forming the layer comprising the silver particles on a carrier having photocatalytic action and further making at least partially a slightly soluble silver salt (preferably silver chloride) on the surface of the layer comprising the silver particles. The antimicrobial agent comprising particles containing silver element supported through the layer having photocatalytic action on the substrate or the antimicrobial agent comprising particles containing the silver element supported on the carrier having photocatalytic action is immersed in a solution having >=30ppm and <3,000ppm chlorine concentration and the slightly soluble silver salt is formed to produce the solid substance. The antimicrobial agent is placed in a liquid or its flow channel and brought into contact with chlorine ion. Silver has high elution rate at an early stage but reduces it during the process of formation of the only slightly soluble silver salt. Silver is finally eluted in a fixed minimized elution rate to sterilize a liquid and its flow channel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、汚水等の液体又はその
流路に載置、固定する抗菌作用を有する固形物に関する
共に汚水等の液体又はその流路の抗菌方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid such as sewage or a solid substance having an antibacterial action which is placed and fixed in a channel thereof, and also relates to an antibacterial method for a liquid such as sewage or a channel thereof.

【0002】[0002]

【従来技術】汚水等の液体およびその通路の抗菌方法と
しては、従来より光触媒を利用した方法、抗菌性金属を
利用した方法およびそれらを組み合わせた方法がある。
光触媒を利用した方法は、特公平5−50294号にお
いて、光半導体微粒子を基材表面に固定化して成る光滅
菌性充填材を有することを特徴とする滅菌リアクターが
開示されており、それにより3時間で99%以上の滅菌
に成功している。
2. Description of the Related Art As antibacterial methods for liquids such as sewage and the passage thereof, there are conventionally known methods using a photocatalyst, methods using an antibacterial metal, and methods combining them.
A method utilizing a photocatalyst is disclosed in Japanese Patent Publication No. 50294/1993, which discloses a sterilization reactor characterized in that it has a photosterilizable filler formed by immobilizing photosemiconductor fine particles on the surface of a base material. Successful sterilization of 99% or more in time.

【0003】しかし、一方特公平6−7905号にはこ
の方法の欠点が指摘されている。特公平6−7905号
には、半導体からなる光触媒層と、それに対向して設け
られた紫外線灯および発熱体と、送風機からなり、光触
媒層全体が順次加熱されるように、光触媒層あるいは発
熱体、または光触媒層及び発熱体が移動する光触媒によ
る脱臭装置が開示されている。さらにこの装置を作成し
た目的として以下のことが記されている。すなわち、高
分子物質や塵芥の混合物が、光触媒反応を起こす触媒で
ある半導体表面に付着し、これを覆ってしまうため、触
媒まで紫外線が達せず、触媒がエネルギーを受けにくく
なり、光触媒反応が低下し、反応劣化を引き起こすので
ある。このような現象は抗菌に使用した場合にも生じる
と考えられ、特に汚水等の液体およびその通路、接触部
では、水がこれらの混合物のを輸送媒体として働くため
生じやすいと考えられる。したがって上記に示すような
装置でも用いない限り、光触媒を利用した方法での長期
の使用は困難であると考えられる。
On the other hand, however, Japanese Patent Publication No. 6-7905 points out a drawback of this method. Japanese Examined Patent Publication No. 6-7905 describes a photocatalyst layer made of a semiconductor, an ultraviolet lamp and a heating element provided opposite to the photocatalyst layer, and a blower. Or a photocatalyst deodorizing device in which a photocatalyst layer and a heating element move. Further, the following is stated as the purpose of making this device. That is, a mixture of polymer substances and dust adheres to the surface of the semiconductor, which is the catalyst that causes the photocatalytic reaction, and covers it, so that ultraviolet rays do not reach the catalyst, and it becomes difficult for the catalyst to receive energy, and the photocatalytic reaction deteriorates. However, it causes reaction deterioration. It is considered that such a phenomenon also occurs when it is used for antibacterial use, and particularly in a liquid such as sewage and its passages and contact portions, water is likely to occur because the mixture of these acts as a transport medium. Therefore, it is considered difficult to use the photocatalyst for a long period of time unless it is used in the above-mentioned apparatus.

【0004】抗菌性金属を利用した方法は、特開平2−
19308号等に開示されている。特開平2−1930
8号では、層状ケイ酸塩に含有されるイオン交換可能な
金属の少なくとも一部を銀、銅および亜鉛の中から選ば
れた少なくとも1種の金属で置換してなる被膜形成能を
有する抗菌性ケイ酸塩、具体的には銀モンモリロナイト
が開示されている。この銀モンモリロナイトは確かに初
期の抗菌性には優れている。また溶出する銀イオンによ
り殺菌されるので、接触を要件とする光触媒とは異な
り、効力が溶液にも及ぶ。
A method using an antibacterial metal is disclosed in JP-A-2-
No. 19308 and the like. Japanese Unexamined Patent Publication No. 2-1930
No. 8 has an antibacterial property having a film forming ability obtained by substituting at least a part of the ion-exchangeable metal contained in the layered silicate with at least one metal selected from silver, copper and zinc. Disclosed are silicates, specifically silver montmorillonite. This silver montmorillonite is certainly excellent in initial antibacterial properties. Further, since it is sterilized by the eluted silver ions, the effect extends to the solution unlike the photocatalyst which requires contact.

【0005】しかし特開平6−65012号に示されて
いるように、モンモリロナイトへの銀の担持力が弱いた
め、溶出速度が速く長期の使用に耐えない。さらに汚水
等の液体およびその通路、接触部のように、多量のアル
カリ金属イオン、アルカリ土類金属イオンの存在する環
境では、かかるイオン交換法による銀の固定では、これ
らアルカリ金属イオン、アルカリ土類金属イオンと銀と
の交換が一気に生じ、銀の溶出が加速されるので、より
短期で効力を失ってしまうと考えられる。
However, as disclosed in Japanese Patent Laid-Open No. 6-65012, since the supporting power of silver on montmorillonite is weak, the elution rate is fast and it cannot withstand long-term use. Further, in an environment where a large amount of alkali metal ions or alkaline earth metal ions are present, such as a liquid such as sewage, its passages, and contact parts, the fixation of silver by such an ion exchange method is effective in fixing these alkali metal ions and alkaline earth ions. It is considered that the exchange of metal ions with silver occurs suddenly and the dissolution of silver is accelerated, so that the effect is lost in a shorter period of time.

【0006】そこで、光触媒と銀を組み合わせた方法
が、特開平6−65012号に開示されている。特開平
6−65012号では、銀、銅、亜鉛、白金の内から選
ばれた少なくとも1種の金属イオンを含有した酸化チタ
ン膜を基板に被覆した抗菌抗カビセラミックスが開示さ
れている。その効果は基本的には、酸化チタン膜による
光触媒作用と、銀、銅、亜鉛、白金の内から選ばれた少
なくとも1種の金属イオンによる抗菌作用であるが、そ
れに加え酸化チタン膜のもう1つの役割として以下のこ
とが開示されている。すなわち酸化チタン膜の厚さおよ
び含有金属量を変化させることにより、または白金膜を
さらに酸化チタン膜上に被覆し、その厚さを変化させる
ことにより含有金属の徐放(溶出)速度あるいは寿命を
制御できるとされている。
Therefore, a method of combining a photocatalyst and silver is disclosed in JP-A-6-65012. Japanese Unexamined Patent Publication No. 6-65012 discloses an antibacterial and antifungal ceramics in which a substrate is coated with a titanium oxide film containing at least one metal ion selected from silver, copper, zinc and platinum. The effect is basically a photocatalytic action by the titanium oxide film and an antibacterial action by at least one metal ion selected from silver, copper, zinc and platinum. The following is disclosed as one role. That is, by changing the thickness of the titanium oxide film and the amount of contained metal, or by further coating the platinum film on the titanium oxide film and changing the thickness, the sustained release (elution) rate or life of the contained metal can be improved. It is said that it can be controlled.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
6−65012号に開示された方法には以下に示す問題
がある。酸化チタン膜の厚さおよび含有金属量の変化
は、いずれも膜に含まれる銀の絶対量の制御であり、確
かに抗菌抗カビセラミックスの寿命はそれにより支配さ
れる。しかし抗菌抗カビセラミックスの長寿命化を図る
には本質的には徐放(溶出)速度を効力のある範囲で最
小化すべきである。徐放(溶出)速度はむしろ銀が酸化
チタン膜へどの程度の強さで固定されるかに支配される
と解される。特開平6−65012号ではその観点が開
示されていない。ただし白金膜をさらに酸化チタン膜上
に被覆し、その厚さを変化させる方法はその1つの実施
態様ではある。しかしこの方法では白金塗布という工程
が1つ増加するとともに高価な白金膜を塗布しなければ
ならず、コスト上問題がある。そこで本発明では、白金
を塗布することなく徐放(溶出)速度を最小化して抗菌
抗カビ材の長寿命化を図ることを目的とした。
However, the method disclosed in Japanese Patent Laid-Open No. 6-65012 has the following problems. Changes in the thickness of the titanium oxide film and in the amount of contained metal are both controls of the absolute amount of silver contained in the film, and the life of the antibacterial and antifungal ceramics is certainly governed by it. However, in order to prolong the life of the antibacterial and antifungal ceramics, the sustained release (elution) rate should be minimized within an effective range. It is understood that the sustained release (elution) rate is rather controlled by how strongly silver is fixed to the titanium oxide film. Japanese Patent Laid-Open No. 6-65012 does not disclose that point of view. However, a method of further coating the platinum film on the titanium oxide film and changing the thickness thereof is one embodiment. However, in this method, the number of platinum coating steps is increased by one, and an expensive platinum film must be coated, which is a cost problem. In view of the above, the present invention has an object of extending the life of the antibacterial and antifungal material by minimizing the sustained release (elution) rate without applying platinum.

【0008】[0008]

【課題を解決するための手段】本発明では上記課題を解
決すべく、基材に光触媒作用を有する層を介して、銀粒
子からなる層を基材表面に形成し、更に、銀粒子からな
る層の表面には少なくとも部分的に難溶性の銀塩が形成
されていることを特徴とする抗菌作用を有する固形物と
した。
In order to solve the above problems, the present invention forms a layer of silver particles on the surface of a substrate through a layer having a photocatalytic action on the substrate, and further comprises silver particles. A solid substance having an antibacterial action is characterized in that a hardly soluble silver salt is formed at least partially on the surface of the layer.

【0009】また、液体及びその流路に基材に光触媒作
用を有する層を介して銀元素を含む粒子が担持されてい
る抗菌剤を配置すると共に、その抗表面に銀と難溶性の
塩を形成する陰イオンを接触させることにより、液体及
びその流路を抗菌する特徴とする抗菌方法とした。
Further, an antibacterial agent in which particles containing a silver element are carried through a layer having a photocatalytic action on a substrate is disposed in the liquid and its flow path, and silver and a sparingly soluble salt are provided on the anti-surface thereof. The antibacterial method is characterized in that the liquid and its flow path are antibacterial by contacting the formed anions.

【0010】ここで汚水等の液体とは、例えば台所、風
呂場、洗面器等の洗浄後の汚水、尿水、浴槽水、人工噴
水の循環水、プールの水、空調の冷却水などである。汚
水等の液体の流路とは、上記の水が接触する部分のこと
で、例えば流し台のシンクやトラップ、風呂場の床タイ
ル、洗面器のシンクやトラップ、便器のサナ周辺、浴槽
の加熱ガスの給気部や排気部、人工噴水の循環経路内な
どである。
Here, the liquid such as sewage is, for example, sewage after washing of kitchen, bathroom, basin, etc., urine water, bath water, circulating water of artificial fountain, pool water, cooling water for air conditioning, etc. . The flow path of liquid such as sewage is the part where the above-mentioned water comes into contact. The air supply part, the exhaust part, and the circulation path of the artificial fountain.

【0011】担体の材質は、セラミック、陶磁器材料、
金属、ガラス、熱硬化性樹脂、熱可塑性樹脂、あるいは
それらの複合物等基本的に何でもよい。ただし、光触媒
作用を有する層を酸化物半導体層から形成する場合は、
一般に300℃以上の高温で熱処理する必要があること
から、熱的安定性に優れるセラミックあるいは陶磁器材
料が好ましい。またセラミック、陶磁器材料、金属の場
合は軽量化の観点から多孔質であることが好ましい。
The material of the carrier is ceramic, ceramic material,
Basically any material such as metal, glass, thermosetting resin, thermoplastic resin, or a composite thereof may be used. However, when a layer having a photocatalytic action is formed from an oxide semiconductor layer,
Generally, it is necessary to heat-treat at a high temperature of 300 ° C. or higher, and thus ceramic or ceramic material having excellent thermal stability is preferable. In the case of ceramics, ceramic materials and metals, it is preferable that they are porous from the viewpoint of weight reduction.

【0012】担体の形状は、球状、円柱状、円筒状、角
柱状、中空の角柱状、棒状、板状、粉状、塊状などいず
れでもよいが、コーナー及びエッジ部が尖っていないほ
うが好ましい。その理由は、コーナー及びエッジ部が存
在すると、その部分への銀の付着具合が変化しやすいこ
と、および機械的に弱く優先的に剥離や溶出が生じやす
いことが挙げられる。また、円筒状、中空の角柱状で
は、部材を軽量化できる利点がある。
The shape of the carrier may be any of spherical, cylindrical, cylindrical, prismatic, hollow prismatic, rod-like, plate-like, powdery, and lump-like, but it is preferable that the corners and edges are not sharp. The reason is that if there are corners and edges, the degree of adhesion of silver to those portions is likely to change, and mechanically weak and preferentially peeling or elution is likely to occur. Further, the cylindrical or hollow prismatic shape has an advantage that the weight of the member can be reduced.

【0013】光触媒作用を有する層とは、主として光触
媒作用を有する粒子からなる層である。主として光触媒
作用を有する粒子が含まれていれば、他に少量の光触媒
作用を生じない粒子が含まれていてもよい。このような
粒子としては、層の強度を向上させるために加える焼結
助剤等が挙げられる。
The layer having photocatalytic action is a layer mainly composed of particles having photocatalytic action. If the particles mainly having the photocatalytic action are included, a small amount of particles that do not cause the photocatalytic action may be included. Examples of such particles include a sintering aid added to improve the strength of the layer.

【0014】光触媒作用を有する層は担体の全面に塗布
してもよいし、一部に塗布してもよい。ただし全面塗布
のほうが、強固に担体に担持される銀の絶対量を増加さ
せることができ、また終端が存在しないのでその部分か
ら優先的に剥離や溶出が生じることがないので好まし
い。光触媒作用を有する層の担体への担持は直接担持さ
せてもよいし、接着層を介してもよい。ただし特に形状
が板状のときは接着層を介したほうが接合強度が向上す
るので好ましい。ここで接着層の材質としては、釉薬等
の無機質の熱可塑性材料、シリコン樹脂等の無機質の熱
硬化性材料、アクリル樹脂等の有機質の熱可塑性材料、
エポキシ樹脂等の有機質の熱硬化性材料のいずれでもよ
い。ただし、光触媒作用により分解されないこと、およ
び300℃以上の高温で熱処理可能であることから釉薬
等の無機質の熱可塑性材料またはシリコン樹脂等の無機
質の熱硬化性材料のほうがより好ましい。
The layer having a photocatalytic action may be applied to the entire surface of the carrier or a part thereof. However, it is preferable to apply the entire surface because the absolute amount of silver firmly supported on the carrier can be increased, and since there is no terminal end, peeling or elution from the portion does not occur preferentially. The layer having the photocatalytic action may be directly supported on the carrier, or may be through an adhesive layer. However, especially when the shape is plate-like, it is preferable to interpose an adhesive layer because the bonding strength is improved. Here, as the material of the adhesive layer, an inorganic thermoplastic material such as glaze, an inorganic thermosetting material such as silicon resin, an organic thermoplastic material such as acrylic resin,
Any organic thermosetting material such as epoxy resin may be used. However, an inorganic thermoplastic material such as a glaze or an inorganic thermosetting material such as a silicone resin is more preferable because it is not decomposed by a photocatalytic action and can be heat-treated at a high temperature of 300 ° C. or higher.

【0015】光触媒作用を有する粒子は、基本的に光照
射時に銀塩から銀を析出しうる程度のバンド・ギャップ
があれば足りるが、より好ましくは自らも抗菌作用を有
するほうがよい。光触媒作用を有する半導体が抗菌作用
を有する理由は、所定以上の電圧が印加され感電死する
という説(特公平4−29393号)もあるが、一般に
は光照射時に生じる活性酸素のためと考えられている。
活性酸素を生成するためには、半導体の伝導帯の位置が
バンドモデルで表すとき水素発生電位より上方にあり、
かつ価電子帯の上端が酸素発生電位より下方にあること
を要する。この条件を満たす半導体には、TiO2、S
rTiO3、ZnO、SiC、GaP、CdS、CdS
e、MoS3等がある。また微粒化すると伝導帯の位置
は上方に移行するので、1〜10nm程度の微粒子で層
を構成できれば、SnO2、Fe2O3、WO3、Bi
2O3等も抗菌性を有する可能性がある。なお光触媒作
用を有する層を構成する光触媒作用を有する粒子は1種
の物質から構成してもよいし、2種以上の物質で構成し
てもよい。
The particles having a photocatalytic action are basically sufficient if they have a band gap to the extent that silver can be precipitated from a silver salt upon irradiation with light, but it is more preferable that the particles themselves also have an antibacterial action. There is also a theory that a semiconductor having a photocatalytic action has an antibacterial action, which causes electrocution when a voltage higher than a predetermined voltage is applied (Japanese Patent Publication No. 4-29393), but it is generally considered to be due to active oxygen generated during light irradiation. ing.
In order to generate active oxygen, the position of the semiconductor conduction band is above the hydrogen generation potential when represented by a band model,
In addition, the upper end of the valence band needs to be below the oxygen generation potential. For semiconductors that meet this condition, TiO2, S
rTiO3, ZnO, SiC, GaP, CdS, CdS
e, MoS3, etc. When atomized, the position of the conduction band shifts upward. Therefore, if the layer can be composed of fine particles of about 1 to 10 nm, SnO2, Fe2O3, WO3, Bi
2O3 and the like may also have antibacterial properties. Note that the particles having a photocatalytic action which form the layer having a photocatalytic action may be made of one kind of substance or may be made of two or more kinds of substances.

【0016】銀元素を含む粒子の粒径は、基本的には問
わないが、平均粒径10nm以下のほうが表面活性が高
く、そのため下層および隣接する銀に強固に担持される
ので好ましい。
The particle size of the particles containing the elemental silver is not particularly limited, but an average particle size of 10 nm or less is preferable because the surface activity is high and therefore it is firmly supported on the lower layer and the adjacent silver.

【0017】銀元素を含む粒子の担持方法は、熱処理に
よる方法、光還元による方法等があるが、基本的にどの
ような方法を用いてもよい。ただし銀元素を含む粒子を
担体または基材にある程度強固に結合するほうが好まし
く、そのためには光還元による方法のほうが好ましい。
The method of supporting the particles containing the silver element includes a method of heat treatment, a method of photoreduction, etc., but basically any method may be used. However, it is preferable that the particles containing the elemental silver are firmly bonded to the carrier or the substrate to some extent, and for that purpose, the method by photoreduction is more preferable.

【0018】銀元素を含む粒子を基材にある程度強固に
結合する一態様を以下に示す。まず基材に光触媒作用を
有する粒子の前駆体を塗布し、焼成して複合部材を得
る。この複合部材を銀イオンを含む金属塩溶液中で、回
転させながら光照射して10nm以下の超微粒の銀粒子
を基材表面に固定させる。その後超音波をかける等の方
法により、基材表面に多層に弱く吸着された部分を取り
除く。
An embodiment in which the particles containing the elemental silver are firmly bonded to the substrate to some extent is shown below. First, a precursor of particles having a photocatalytic action is applied to a base material and baked to obtain a composite member. This composite member is irradiated with light while rotating in a metal salt solution containing silver ions to fix ultrafine silver particles of 10 nm or less on the surface of the base material. After that, a portion weakly adsorbed in multiple layers on the substrate surface is removed by a method such as applying ultrasonic waves.

【0019】更に、銀元素を含む粒子の層上に、銀と陰
イオンを反応させて難溶性の銀塩を生成させる。その陰
イオンとしては、例えば、塩素イオン、炭酸イオン、リ
ン酸イオン、ヨウ素イオン、臭素イオン、シュウ酸イオ
ン、酸素イオンなどが挙げられる。
Further, silver and anions are reacted with each other to form a sparingly soluble silver salt on the layer of particles containing silver element. Examples of the anion include chlorine ion, carbonate ion, phosphate ion, iodine ion, bromine ion, oxalate ion, and oxygen ion.

【0020】銀元素を含む粒子の層上に難溶性の銀塩を
生成させる方法は、予め銀元素を含む粒子が基材表面に
固定された部材に、上記陰イオンを含む溶液に浸漬させ
て抗菌剤表面に難溶性の銀塩を生成させてもよいし、銀
元素を含む粒子が基材表面に固定された抗菌剤を液体お
よびその流路に配置し、前記液体に上記陰イオンを含む
溶液を供給することにより銀と上記陰イオンを接触させ
てもよい。
The method of forming the sparingly soluble silver salt on the layer of particles containing silver element is as follows: The member containing particles of silver element fixed on the surface of the substrate is immersed in the solution containing the above anion. A sparingly soluble silver salt may be produced on the surface of the antibacterial agent, or an antibacterial agent in which particles containing a silver element are fixed to the surface of the base material is arranged in the liquid and its flow path, and the liquid contains the anion. You may make silver contact the said anion by supplying a solution.

【0021】銀元素を含む粒子の層上に難溶性の銀塩を
生成させる方法は、予め銀元素を含む粒子が基材表面に
固定された部材に、上記陰イオンを含む溶液に浸漬させ
て抗菌剤表面に難溶性の銀塩を生成させる方法では、初
期から銀の溶出速度を最小化しうると共に、安定的に制
御しうる点で優れている。
The method of forming the sparingly soluble silver salt on the layer of particles containing silver element is as follows. The member in which the particles containing silver element are fixed on the surface of the substrate is immersed in the solution containing the above anion. The method of producing a sparingly soluble silver salt on the surface of the antibacterial agent is excellent in that the elution rate of silver can be minimized from the initial stage and stable control can be performed.

【0022】また、銀元素を含む粒子が基材表面に固定
された抗菌剤を、液体およびその流路に配置し、前記液
体に上記陰イオンを含む溶液を供給することにより、銀
と上記陰イオンを接触させる方法では、初期の溶出速度
は大きく殺菌力に優れ、その後難溶性の銀塩が形成され
ていく過程で溶出速度が減少していき、難溶性の銀塩で
抗菌剤表面が覆われると、その後、最小化された一定の
溶出速度で制御されることになる。したがって、初期段
階で流路に菌が著しく繁殖している場合や、プールの水
等の静置した水の場合などのように、初期に菌数を減少
させることで菌の繁殖速度を著しく抑えることができる
状況では、むしろこのタイプの方が有利である。
Further, the antibacterial agent in which particles containing silver element are fixed on the surface of the base material is placed in the liquid and the flow path thereof, and the solution containing the anion is supplied to the liquid to supply silver and the anion. In the method of contacting with ions, the initial elution rate is large and the bactericidal power is excellent, and then the elution rate decreases in the process of forming the sparingly soluble silver salt, and the surface of the antibacterial agent is covered with the sparingly soluble silver salt. Control will then be controlled with a minimized constant elution rate. Therefore, by reducing the number of bacteria in the initial stage, such as when the bacteria are proliferating remarkably in the flow path at the initial stage or in the case of static water such as pool water, the reproduction speed of the bacteria is significantly suppressed. This type is rather advantageous in situations where it is possible.

【0023】上記抗菌剤に紫外線を含む光が照射されて
いてもよい。それにより下層に存在する光触媒作用も活
用することができ、抗菌力が増すからである。陰イオン
が塩素イオンならば、数ppm以上あれば銀の溶出速度
を抑制する効果がある。したがって水道水によっても効
果が生じるので、銀元素を含む粒子が基材表面に固定さ
れた抗菌剤を、液体およびその流路に配置し、前記液体
に上記陰イオンを含む溶液を供給することにより、銀と
上記陰イオンを接触させる方法において、山間部地域を
除き、水道以外の塩素供給手段を特に設けなくてもよい
ことになる。また銀の溶出速度抑制効果は、フッ化イオ
ンを除くハロゲン化イオンにおいて特に大きく、その中
で塩素イオンは最も安価に得られることからも好まし
い。
The antibacterial agent may be irradiated with light including ultraviolet rays. This is because the photocatalytic action existing in the lower layer can be utilized and the antibacterial activity is increased. If the anion is chlorine ion, if it is several ppm or more, it has an effect of suppressing the elution rate of silver. Therefore, since the effect is produced also by tap water, the antibacterial agent in which the particles containing the silver element are fixed to the surface of the base material is arranged in the liquid and the flow path thereof, and the solution containing the anion is supplied to the liquid. In the method of bringing silver into contact with the above-mentioned anions, it is not necessary to provide chlorine supply means other than water supply except for the mountainous region. Further, the effect of suppressing the elution rate of silver is particularly large in halide ions other than fluoride ions, and among them, chloride ions are preferable because they can be obtained at the lowest cost.

【0024】陰イオン量は多いほど抗菌剤表面を完全に
覆うことになるので、銀の溶出速度を最小かつ一定にで
き好ましい。ただしあまり多く添加すると抗菌剤表面が
白色化し、かつ透光性を失うので光触媒作用を有する下
地層による抗菌効果を活用しにくくなり、好ましくな
い。例えば、塩素イオンの場合には30ppm添加すれ
ば、抗菌剤表面は塩素イオンで覆われるようになり、銀
の溶出速度は一定となる。ただし3000ppm以上添
加すると、抗菌剤表面は透光性を失うことになる。
The larger the amount of anions, the more completely the surface of the antibacterial agent is covered, so that the elution rate of silver can be minimized and kept constant, which is preferable. However, if too much is added, the surface of the antibacterial agent becomes white and the translucency is lost, so that it becomes difficult to utilize the antibacterial effect of the underlying layer having a photocatalytic action, which is not preferable. For example, in the case of chlorine ions, if 30 ppm is added, the surface of the antibacterial agent will be covered with chlorine ions, and the elution rate of silver will be constant. However, if 3000 ppm or more is added, the antibacterial agent surface loses its light-transmitting property.

【0025】[0025]

【作用】最外層の銀が陰イオンと反応して難溶性の銀塩
を形成することにより、銀の溶出速度を最小化させるこ
とができる。それにより抗菌性が長期に亘り維持され
る。
The silver in the outermost layer reacts with anions to form a sparingly soluble silver salt, whereby the elution rate of silver can be minimized. Thereby, the antibacterial property is maintained for a long time.

【0026】[0026]

【実施例】【Example】

実施例1 直径5mmのアルミナ製の多孔体ボールに平
均粒径0.01μmのTiO2ゾルのアンモニア解膠懸
濁液をスプレー・コーティング法により塗布し、700
℃で1時間焼成する工程を2回くりかえした後、硝酸銀
水溶液に浸漬させ、ボールをよく回転させながらBLB
ランプを20分照射する工程により銀粒子をボール全面
に固定させた後、超音波分散することにより過剰に付着
した銀を除去し、よく水洗することにより抗菌剤試料を
得た。このときのTiO2の結晶型はアナターゼであっ
た。また担持された銀粒子の粒径は数nm〜10nm程
度であった。得られた試料について以下に示す方法によ
り、銀の溶出速度および抗菌性を評価した。
Example 1 Ammonia deflocculating suspension of TiO 2 sol having an average particle diameter of 0.01 μm was applied to a porous alumina ball having a diameter of 5 mm by a spray coating method to give 700
After repeating the process of firing for 1 hour at ℃ twice, soak it in an aqueous solution of silver nitrate and rotate the ball well to make BLB
After the silver particles were fixed on the entire surface of the ball by the step of irradiating the lamp for 20 minutes, the silver excessively adhered was removed by ultrasonic dispersion and washed thoroughly with water to obtain an antibacterial agent sample. The crystal form of TiO2 at this time was anatase. The particle size of the supported silver particles was about several nm to 10 nm. The elution rate of silver and the antibacterial property of the obtained samples were evaluated by the following methods.

【0027】銀の溶出速度は以下の方法により評価し
た。まず予め80体積%エタノールに2時間浸漬後、5
0℃で2時間乾燥した抗菌剤試料5個を種々の溶媒10
mlとともに滅菌試験管に入れ、30℃ふらん器で24
時間放置した。その後0.45μmのメンブランフィル
タでろ過し、原子吸光(日立6000フレーム式)によ
り分析した。
The elution rate of silver was evaluated by the following method. First, after preliminarily immersing in 80 vol% ethanol for 2 hours,
Five antibacterial agent samples dried at 0 ° C. for 2 hours were mixed with various solvents 10
Put it in a sterilization test tube together with ml, and use a 30 ° C incubator for 24
Left for hours. Then, it was filtered with a 0.45 μm membrane filter and analyzed by atomic absorption (Hitachi 6000 flame type).

【0028】抗菌性の評価は以下の方法により評価し
た。まず予め80体積%エタノールに2時間浸漬後、5
0℃で2時間乾燥した抗菌剤試料5個を種々の溶媒10
mlとともに滅菌試験管に入れ、30℃ふらん器で3時
間放置した。その後抗菌剤試料を取り出し、オートクレ
ーブ中121℃で20分洗浄し、80体積%エタノール
に2時間浸漬後、50℃で乾燥させて表面を洗浄した。
次いで大腸菌(Escherichia Coli
3110株)の菌液を種々の培地で105CFU/ml
に調整したものを、滅菌した1ml試料瓶に採取し、そ
こに抗菌剤試料を1個入れ、30℃ふらん器で数時間放
置した後の菌数を調べた。なおここで用いた溶媒中の含
有塩素量は人工尿では約10%、ブイヨンでは約10p
pm、超純水では1ppm未満である。
The antibacterial property was evaluated by the following method. First, after preliminarily immersing in 80 vol% ethanol for 2 hours,
Five antibacterial agent samples dried at 0 ° C. for 2 hours were mixed with various solvents 10
It was put in a sterilized test tube together with ml and left for 3 hours in a 30 ° C. incubator. Thereafter, the antibacterial agent sample was taken out, washed in an autoclave at 121 ° C. for 20 minutes, immersed in 80 vol% ethanol for 2 hours, and then dried at 50 ° C. to wash the surface.
Next, E. coli ( Escherichia coli W
3110 strain) in various media at 105 CFU / ml
What was adjusted to 1 was sampled in a sterilized 1 ml sample bottle, one antibacterial agent sample was put therein, and the number of bacteria was examined after left for several hours in a 30 ° C. shaker. The chlorine content in the solvent used here was about 10% for artificial urine and about 10 p for broth.
It is less than 1 ppm in pm and ultrapure water.

【0029】その結果、銀の溶出量は超純水で16.7
ppm、ブイヨン培地では9.13ppm、人工尿で
1.84ppmであり、含有塩素量の多いものほど銀の
溶出量が小さくなった。また種々の溶媒中に抗菌剤試料
を放置したときの初期の抗菌性を表1に示す。その結
果、銀の溶出速度の小さな人工尿中に放置したものでも
残留菌数は10cells/ml未満と良好な結果を示
した。
As a result, the elution amount of silver was 16.7 with ultrapure water.
ppm, 9.13 ppm in broth medium and 1.84 ppm in artificial urine. The larger the chlorine content, the smaller the elution amount of silver. Table 1 shows the initial antibacterial properties when the antibacterial agent samples were allowed to stand in various solvents. As a result, the number of residual bacteria was less than 10 cells / ml, which was a good result even when left in artificial urine with a low dissolution rate of silver.

【0030】[0030]

【表1】 [Table 1]

【0031】また、種々の溶媒中に抗菌剤試料を放置し
たときの2か月後の抗菌性を表1に示す。その結果、銀
の溶出速度の人工尿中に放置したものでも残留菌数は1
0cells/ml未満と変化が認められず、充分な抗
菌性を示した。以上の結果から含有塩素量の多いものほ
ど銀の溶出量が小さく、かつかかる少量の溶出量あるに
もかかわらず、長期にわたり充分な抗菌性を示すことが
判明した。
Table 1 shows the antibacterial properties after 2 months when the antibacterial agent samples were left in various solvents. As a result, the number of residual bacteria was 1 even when left in artificial urine with the dissolution rate of silver.
No change was observed at less than 0 cells / ml, indicating sufficient antibacterial properties. From the above results, it was found that the higher the chlorine content is, the smaller the silver elution amount is, and the sufficient antibacterial property is exhibited for a long period of time despite the small elution amount.

【0032】比較例 直径5mmのアルミナ製の多孔体
ボールに直接1重量%硝酸銀水溶液をスプレー・コーテ
ィング法にて塗布し乾燥させて得た固形物を作製した。
得られた固形物の上に固定された銀粒子の大きさは実施
例のものよりもやや大きく数nm〜100nmぐらいで
あった。この試料について、実施例1と同様の手法(ブ
イヨン培地にて)で24時間後の銀の溶出量、初期抗菌
性および1か月後の抗菌性を評価した。その結果、24
時間後の銀の溶出量は>100ppmと大きかった。ま
た初期抗菌性は101cells/mlと良好だが、1
か月後の抗菌性は103〜104cells/mlでほ
とんど効果を失っていることが判明した。
Comparative Example A 1% by weight silver nitrate aqueous solution was directly applied to an alumina porous ball having a diameter of 5 mm by a spray coating method and dried to prepare a solid product.
The size of the silver particles fixed on the obtained solid was slightly larger than that of the example and was about several nm to 100 nm. With respect to this sample, the elution amount of silver after 24 hours, the initial antibacterial property, and the antibacterial property after 1 month were evaluated by the same method as in Example 1 (in a broth medium). As a result, 24
The elution amount of silver after the lapse of time was as large as> 100 ppm. The initial antibacterial property is as good as 101 cells / ml, but 1
It was found that the antibacterial activity after 10 months was 103 to 104 cells / ml, and the effect was almost lost.

【0033】実施例2 実施例1で形成した抗菌剤試料
を用いて、塩素イオンの濃度による銀の溶出量を評価し
た。尚、塩素濃度は、塩化アンモニウム水溶液を作製
し、塩化アンモニウムの濃度を変化させることにより評
価した。その結果を表2に示す。
Example 2 The antibacterial agent sample formed in Example 1 was used to evaluate the amount of silver eluted depending on the concentration of chloride ions. The chlorine concentration was evaluated by preparing an ammonium chloride aqueous solution and changing the concentration of ammonium chloride. The results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】その結果、概念図1に示すように塩素イオ
ン濃度が30ppmまでは溶出速度は急激に減少し、3
0ppm以上ではほぼ一定になることが観察された。こ
の現象はつぎのように説明できる。まず30ppmまで
(図1の 領域)は図2に示すようにAg層からの速い
溶出とAgClが形成された部分からの遅い溶出が同時
に生じる。そして塩素イオン濃度の増加に伴い、AgC
lの形成部分が増加し、Ag層からの速い溶出の生じる
割合が減少する。したがって塩素イオン濃度が増加する
と溶出速度は減少していく。それに対し、図3のように
30ppm以上(図1の の領域)ではAg層はAgC
lに完全に覆われることになる。したがってAgClか
らの遅い溶出しか生じなくなるので、銀の溶出速度は一
定となる。
As a result, as shown in the conceptual diagram 1, the elution rate rapidly decreased until the chloride ion concentration reached 30 ppm.
It was observed that above 0 ppm, it became almost constant. This phenomenon can be explained as follows. First, up to 30 ppm (region of FIG. 1), as shown in FIG. 2, fast elution from the Ag layer and slow elution from the part where AgCl is formed simultaneously occur. And as the chloride ion concentration increases, AgC
The forming part of 1 increases, and the rate of rapid elution from the Ag layer decreases. Therefore, as the chloride ion concentration increases, the elution rate decreases. On the other hand, as shown in FIG. 3, the Ag layer is AgC at 30 ppm or more (region of FIG. 1).
l will be completely covered. Therefore, only the slow elution from AgCl occurs, and the elution rate of silver becomes constant.

【0036】30ppm以上で、銀の溶出量が少なくな
るのは、光触媒作用を有する層上に形成された銀元素粒
子を含む層上に塩化銀が膜上に形成され、その膜上塩化
銀からの溶出によると思われる。また、多少の変動は、
最表層の塩化銀の脱離により、銀元素粒子を含む層から
の溶出が多少起きているものと思われる。
The amount of elution of silver decreases at 30 ppm or more because silver chloride is formed on the film containing silver element particles formed on the photocatalyst layer, and the silver chloride on the film is reduced. It seems that this is due to the elution of. Also, some fluctuations
It is considered that desorption of silver chloride in the outermost layer causes some elution from the layer containing silver element particles.

【0037】[0037]

【発明の効果】基材に光触媒作用を有する層を介して銀
元素を含む粒子が担持されている抗菌剤と、銀と難溶性
の塩を形成する陰イオンとを接触させて難溶性の銀塩を
抗菌剤表面に形成することにより、前記抗菌剤上の銀の
溶出速度を抑えることができ、それにより前記抗菌剤の
長寿命化を図ることができる。
[Effects of the Invention] An antibacterial agent in which particles containing a silver element are supported on a substrate through a layer having a photocatalytic action, and an anion forming a sparingly soluble salt with silver are brought into contact with each other to make the sparingly soluble silver. By forming a salt on the surface of the antibacterial agent, the elution rate of silver on the antibacterial agent can be suppressed, whereby the life of the antibacterial agent can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】塩素濃度と銀の溶出速度との関係を表す図。FIG. 1 is a graph showing the relationship between chlorine concentration and silver elution rate.

【図2】塩素濃度30ppmまでの銀の溶出状態を示す
図。
FIG. 2 is a diagram showing the elution state of silver up to a chlorine concentration of 30 ppm.

【図3】塩素濃度30ppm以上での銀の溶出状態を示
す図。
FIG. 3 is a diagram showing a silver elution state at a chlorine concentration of 30 ppm or more.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 基材に光触媒作用を有する層を介して、
銀粒子からなる層を基材表面に形成し、更に、銀粒子か
らなる層の表面には少なくとも部分的に難溶性の銀塩が
形成されていることを特徴とする抗菌作用を有する固形
物。
1. A substrate is provided with a layer having a photocatalytic action,
A solid substance having an antibacterial action, characterized in that a layer made of silver particles is formed on the surface of a base material, and a hardly soluble silver salt is formed at least partially on the surface of the layer made of silver particles.
【請求項2】 光触媒作用を有する担体に、銀粒子から
なる層を担体表面に形成し、更に、銀粒子からなる層の
表面には少なくとも部分的に難溶性の銀塩が形成されて
いることを特徴とする抗菌作用を有する固形物。
2. A carrier having a photocatalytic action, wherein a layer composed of silver particles is formed on the surface of the carrier, and further, a sparingly soluble silver salt is formed at least partially on the surface of the layer composed of silver particles. A solid substance having an antibacterial action characterized by:
【請求項3】 前記難溶性の銀塩は、塩化銀であること
を特徴とする請求項1または2に記載の抗菌作用を有す
る固形物。
3. The solid substance having an antibacterial action according to claim 1, wherein the hardly soluble silver salt is silver chloride.
【請求項4】 基材に光触媒作用を有する層を介して銀
元素を含む粒子が担持されている抗菌剤を塩素濃度30
ppm以上3000ppm未満の溶液に浸漬させること
を特徴とする抗菌性を有する固形物の製造方法。
4. An antibacterial agent in which particles containing a silver element are supported on a substrate through a layer having a photocatalytic action, and a chlorine concentration of 30 is used.
A method for producing a solid substance having antibacterial properties, which comprises immersing in a solution having a concentration of not less than 3000 ppm and less than 3000 ppm.
【請求項5】 光触媒作用を有する担体に銀元素を含む
粒子が担持されている抗菌剤を塩素濃度30ppm以上
3000ppm未満の溶液に浸漬させることを特徴とす
る抗菌性を有する固形物の製造方法。
5. A method for producing a solid substance having antibacterial properties, which comprises immersing an antibacterial agent in which particles containing a silver element are supported on a carrier having a photocatalytic action in a solution having a chlorine concentration of 30 ppm or more and less than 3000 ppm.
【請求項6】 液体及びその流路に基材に光触媒作用を
有する層を介して銀元素を含む粒子が担持されている抗
菌剤を配置すると共に、その抗菌剤表面に銀イオンと難
溶性の塩を形成する陰イオンを接触させることを特徴と
する液体およびその流路の抗菌方法。
6. An antibacterial agent in which particles containing a silver element are carried on a liquid and a channel thereof through a layer having a photocatalytic action on a substrate, and the surface of the antibacterial agent is hardly soluble with silver ions. An antibacterial method for a liquid and its flow path, which comprises contacting salt-forming anions.
【請求項7】 液体及びその流路に光触媒作用を有する
担体に銀元素を含む粒子が担持されている抗菌剤を配置
すると共に、その抗菌剤表面に銀イオンと難溶性の塩を
形成する陰イオンを接触させることを特徴とする液体お
よびその流路の抗菌方法。
7. An anion which forms an antibacterial agent in which a particle having a silver element is carried on a carrier having a photocatalytic action in a liquid and a channel thereof, and forms a sparingly soluble salt with silver ions on the surface of the antibacterial agent. An antibacterial method for a liquid and its flow path, which comprises contacting ions.
【請求項8】 液体及びその流路に基材上に光触媒作用
を有する層を介して銀元素を含む粒子が担持されている
抗菌剤を配置すると共に、その抗菌剤表面に銀イオンと
難溶性の銀塩を形成する陰イオンを接触させると共に紫
外線を含む光を照射することを特徴とする抗菌方法。
8. An antibacterial agent, in which a particle containing a silver element is carried on a liquid and its flow path on a substrate through a layer having a photocatalytic action, and the surface of the antibacterial agent is sparingly soluble in silver ions. An antibacterial method comprising contacting with anions that form a silver salt and irradiating with light including ultraviolet rays.
【請求項9】 液体及びその流路に光触媒作用を有する
担体に銀元素を含む粒子が担持されている抗菌剤を配置
すると共に、その抗菌剤表面に銀イオンと難溶性の銀塩
を形成する陰イオンを接触させると共に紫外線を含む光
を照射することを特徴とする抗菌方法
9. A liquid and an antibacterial agent in which particles containing a silver element are carried on a carrier having a photocatalytic action are disposed in a flow path of the liquid, and a silver ion hardly soluble with silver ions is formed on the surface of the antibacterial agent. Antibacterial method characterized by contacting with anions and irradiating with light including ultraviolet rays
【請求項10】 前記陰イオンが塩素イオンであること
を特徴とする請求項6乃至9に記載の液体およびその流
路の抗菌方法。
10. The antibacterial method for a liquid and its flow path according to claim 6, wherein the anion is chloride ion.
【請求項11】 前記塩素イオンの液体中の濃度を30
ppm以上3000ppm未満とすることを特徴とする
請求項10に記載の液体およびその流路の抗菌方法。
11. The concentration of the chloride ion in the liquid is 30.
The antibacterial method for the liquid and the flow path thereof according to claim 10, wherein the content is at least ppm and less than 3000 ppm.
JP31230994A 1994-11-10 1994-11-10 Manufacturing method of antibacterial material Expired - Fee Related JP3228035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31230994A JP3228035B2 (en) 1994-11-10 1994-11-10 Manufacturing method of antibacterial material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31230994A JP3228035B2 (en) 1994-11-10 1994-11-10 Manufacturing method of antibacterial material

Publications (2)

Publication Number Publication Date
JPH08133919A true JPH08133919A (en) 1996-05-28
JP3228035B2 JP3228035B2 (en) 2001-11-12

Family

ID=18027701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31230994A Expired - Fee Related JP3228035B2 (en) 1994-11-10 1994-11-10 Manufacturing method of antibacterial material

Country Status (1)

Country Link
JP (1) JP3228035B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147609A (en) * 1997-08-01 1999-02-23 Sharp Corp Photocatalyst body and its preparation
US6303183B1 (en) 1999-11-08 2001-10-16 Aos Holding Company Anti-microbial porcelain enamel coating
JP2006231150A (en) * 2005-02-23 2006-09-07 Ebara Corp Photocatalyst, method for manufacturing the same and method and apparatus for treating water by using the same
US7422121B2 (en) * 2002-04-19 2008-09-09 Pasta Aktiengesellschaft Process for producing a sterilization system
WO2009154903A3 (en) * 2008-06-20 2010-09-16 Baxter International Inc Methods for processing substrates having an antimicrobial coating
WO2010104806A1 (en) * 2009-03-09 2010-09-16 Baxter International Inc. Methods for processing substrates having an antimicrobial coating
US8277826B2 (en) 2008-06-25 2012-10-02 Baxter International Inc. Methods for making antimicrobial resins
WO2013007289A1 (en) * 2011-07-08 2013-01-17 Cardpool Silver containing antimicrobial material and uses thereof
CN103566954A (en) * 2012-07-31 2014-02-12 华中科技大学 Preparation method of magnetic titanium dioxide composite material for visible-light response
CN103709858A (en) * 2013-11-28 2014-04-09 内蒙古伊晨环境材料有限公司 Environment protection-type interior wall paint with formaldehyde purification function and preparation method therefor
JP2016059878A (en) * 2014-09-18 2016-04-25 国立大学法人 筑波大学 Photocatalyst, coating and sterilization device
CN106270479A (en) * 2015-05-21 2017-01-04 中国石油化工股份有限公司 A kind of attapulgite-nanometer silver composite inorganic powder and preparation method
US9650265B2 (en) 2015-03-04 2017-05-16 Claire Technologies, Llc Disinfection compositions and methods

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147609A (en) * 1997-08-01 1999-02-23 Sharp Corp Photocatalyst body and its preparation
US6303183B1 (en) 1999-11-08 2001-10-16 Aos Holding Company Anti-microbial porcelain enamel coating
US7422121B2 (en) * 2002-04-19 2008-09-09 Pasta Aktiengesellschaft Process for producing a sterilization system
JP2006231150A (en) * 2005-02-23 2006-09-07 Ebara Corp Photocatalyst, method for manufacturing the same and method and apparatus for treating water by using the same
WO2009154903A3 (en) * 2008-06-20 2010-09-16 Baxter International Inc Methods for processing substrates having an antimicrobial coating
US8277826B2 (en) 2008-06-25 2012-10-02 Baxter International Inc. Methods for making antimicrobial resins
WO2010104806A1 (en) * 2009-03-09 2010-09-16 Baxter International Inc. Methods for processing substrates having an antimicrobial coating
CN103997890A (en) * 2011-07-08 2014-08-20 卡池公司 Silver containing antimicrobial material and uses thereof
WO2013007289A1 (en) * 2011-07-08 2013-01-17 Cardpool Silver containing antimicrobial material and uses thereof
US10238115B2 (en) 2011-07-08 2019-03-26 Claire Technologies, Llc Antimicrobial material and uses thereof
CN103566954A (en) * 2012-07-31 2014-02-12 华中科技大学 Preparation method of magnetic titanium dioxide composite material for visible-light response
CN103709858A (en) * 2013-11-28 2014-04-09 内蒙古伊晨环境材料有限公司 Environment protection-type interior wall paint with formaldehyde purification function and preparation method therefor
JP2016059878A (en) * 2014-09-18 2016-04-25 国立大学法人 筑波大学 Photocatalyst, coating and sterilization device
US9650265B2 (en) 2015-03-04 2017-05-16 Claire Technologies, Llc Disinfection compositions and methods
CN106270479A (en) * 2015-05-21 2017-01-04 中国石油化工股份有限公司 A kind of attapulgite-nanometer silver composite inorganic powder and preparation method
CN106270479B (en) * 2015-05-21 2018-12-28 中国石油化工股份有限公司 A kind of attapulgite-nano silver composite inorganic powder and preparation method

Also Published As

Publication number Publication date
JP3228035B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
JP3109101B2 (en) Antimicrobial solid, method for producing the same, and method for using the same
JP3228035B2 (en) Manufacturing method of antibacterial material
JP4695700B2 (en) Photocatalyst and method for producing the same
US5780380A (en) Photocatalyst composition and process for its production, and photocatalyst composition-attached substrate
JP5916645B2 (en) Method for producing interior material having photocatalytic function
JPS6397234A (en) Fixation photocatalyst
WO2008072612A1 (en) Process for production of sensitive glass film for ion electrode, sensitive glass film for ion electrode, and ion electrode
EP3452216A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
JP2001070802A (en) Photocatalyst film and its production
JP3261959B2 (en) Photocatalytic material
CN109225212A (en) A kind of preparation method of the perforated membrane of silver oxide load
JP2000218161A (en) Photo-catalyst body
JP3987395B2 (en) Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
JP3261909B2 (en) Member having catalyst containing fine metal particles and method for producing the same
JPH091724A (en) Product having silica film containing titanium dioxide
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JPH09613A (en) Article with silica film containing powder of functional substance
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
KR100482649B1 (en) Direct adhesion method of photocatalyst on substrate
TWI630029B (en) Photocatalytic filter, method for manufacturing the same, and method for reactivating the same
JP2000237597A (en) Photocatalyst composite material
JP3952238B2 (en) Removal method of harmful substances by photocatalyst
JPH11157966A (en) Pottery with photocataytic function and its production
JP4347925B2 (en) Photocatalyst and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371