JPH08133838A - Diamond sintered compact, its production and diamond sintered compact tool and abrasive grain - Google Patents

Diamond sintered compact, its production and diamond sintered compact tool and abrasive grain

Info

Publication number
JPH08133838A
JPH08133838A JP7221546A JP22154695A JPH08133838A JP H08133838 A JPH08133838 A JP H08133838A JP 7221546 A JP7221546 A JP 7221546A JP 22154695 A JP22154695 A JP 22154695A JP H08133838 A JPH08133838 A JP H08133838A
Authority
JP
Japan
Prior art keywords
diamond
powder
elements
compound
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7221546A
Other languages
Japanese (ja)
Other versions
JP3893631B2 (en
Inventor
Hitoshi Sumiya
均 角谷
Shuichi Sato
周一 佐藤
Takeshi Nakajima
猛 中島
Yasuyuki Kaneda
泰幸 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22154695A priority Critical patent/JP3893631B2/en
Priority to DE69533769T priority patent/DE69533769T2/en
Priority to EP95306515A priority patent/EP0701861B1/en
Priority to US08/529,158 priority patent/US5912217A/en
Priority to RU95115972A priority patent/RU2113531C1/en
Publication of JPH08133838A publication Critical patent/JPH08133838A/en
Application granted granted Critical
Publication of JP3893631B2 publication Critical patent/JP3893631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE: To improve the fracture, heat and abrasion resistances by sintering a mixture of a compound powder containing a specific element with a phosphorus (compound) powder, a diamond powder or a graphite powder under specific conditions. CONSTITUTION: (A) One or more powders selected from rare earth elements, alkaline earth elements, group IIIB or IVB elements of the periodic table, sulfur or oxides thereof or compounds containing the elements are mixed with (B) a phosphorus compound and a diamond powder or a graphite powder to provide a mixture, which is then kept under conditions of pressure and temperature in a thermodynamically stable region of the diamond and sintered to afford this diamond sintered compact, containing the diamond at 50-99.99% expressed in terms of volume ratio and the residual binding phase comprising a complex or the oxides of the components (A) with (B) and having 0.01-200μm grain diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はダイヤモンド焼結体
とその製造方法並びに該ダイヤモンド焼結体を用いた切
削又は掘削用工具に関する。本発明のダイヤモンド焼結
体は非鉄金属やセラミックス等の切削又は研削工具用素
材及び石油堀削用等のドリルビットの刃先素材として、
あるいは粉砕したものを砥粒として好適に使用できる。
TECHNICAL FIELD The present invention relates to a diamond sintered body, a method for producing the same, and a cutting or excavating tool using the diamond sintered body. The diamond sintered body of the present invention is used as a material for cutting or grinding tools such as non-ferrous metals and ceramics and as a cutting edge material for drill bits for oil excavation, etc.
Alternatively, the crushed product can be preferably used as an abrasive grain.

【0002】[0002]

【従来の技術】従来の合成ダイヤモンド焼結体を用いら
れた焼結材により大別すると、焼結結合材として溶媒
作用のある鉄族金属(Fe,Ni,Co)及び又はその
合金を用いたもの、焼結結合材として炭化ケイ素(S
iC)を用いたもの、焼結結合材として触媒として作
用する炭酸塩を用いたもの、の3種類になる。このうち
は、に比較して、高温高圧による焼結が必要とな
り、製造コストがかなり割高となるため、工業的に利用
されているものは、前記、の鉄系金属又はその合
金、並びに炭化ケイ素を用いたものが殆どである。上記
の他、天然のダイヤモンド焼結体(カルボナード)があ
るが、成因が明確ではなく、産出量も極く少量の為、工
業用途としては事実上使用されていない。
2. Description of the Related Art The conventional synthetic diamond sintered body is roughly classified according to a sintered material, and an iron group metal (Fe, Ni, Co) having a solvent action and / or an alloy thereof is used as a sintered binder. Thing, as a sintered binder silicon carbide (S
iC) is used, and a carbonate that acts as a catalyst is used as a sintering binder. Among these, since the sintering at high temperature and high pressure is required as compared with, and the manufacturing cost is considerably high, those industrially used are iron-based metals or alloys thereof, and silicon carbide described above. Most are using. In addition to the above, there is a natural diamond sintered body (carbonate), but the cause is not clear and the production amount is extremely small, so it is not actually used for industrial purposes.

【0003】[0003]

【発明が解決しようとする課題】上記の従来の合成ダイ
ヤモンド焼結体については、それぞれ以下のような問題
点がある。まず、の鉄族金属又はその合金を焼結結合
材とするダイヤモンド焼結体の場合、700℃以上の高
温にすると、結合材とダイヤモンドが反応し強度が低下
すること、焼結結合材に金属を用いている為、耐摩耗性
や強度が低下することが挙げられる。の炭化ケイ素を
焼結結合材とする場合は、破壊し易い炭化物を結合材に
用いているため耐欠損性に劣ること、ダイヤモンドに対
する溶媒及び触媒作用の無い炭化ケイ素を用いているた
めダイヤ同士の結合が少なく耐摩耗性に劣ることが挙げ
られる。の炭酸塩を焼結結合材とするものの場合は、
炭酸塩が触媒作用を発揮する圧力及び温度が高く、前記
、の焼結体に比較して焼結可能な体積が減少するこ
と、超高圧の焼結費用が高額のため単位体積当りの焼結
体のコストが極めて高くなること、さらに炭酸塩は触媒
作用又は溶媒作用が比較的小さいためダイヤ粒子同士の
結合強度が弱く、耐欠損性に劣ることが挙げられる。ま
た、前記の焼結体を酸等に浸けて、鉄系金属並びに鉄
系合金を除去したものがあるが、強度、耐欠損性共に低
く、高温で使用する用途に限定されている。以上述べた
様に、従来のダイヤ焼結体は、i )耐熱性に劣ること、
ii)耐欠損性に劣ること、iii)耐摩耗性に劣ること、i
v)焼結により高温高圧を必要とし、コスト高になるこ
と、の上記i)〜iv)のいずれかの問題点をそれぞれ
2つ以上有していた。本発明はこのような現状に鑑み、
上記問題点をいずれも解決できて耐熱性、耐欠損性、耐
摩耗性を有し、且つ比較的低圧低温で焼結できるダイヤ
モンド焼結体とその製造方法及び該焼結体を用いた工具
を提供することを意図したものである。
The above-mentioned conventional synthetic diamond sintered bodies have the following problems, respectively. First, in the case of a diamond sintered body using an iron group metal or an alloy thereof as a sintering binder, at a high temperature of 700 ° C. or higher, the binder and diamond react with each other to lower the strength. Since it is used, the abrasion resistance and the strength are lowered. When using silicon carbide as a sinter binder, the fracture resistance is inferior because a carbide that is easy to break is used as a binder, and because silicon carbide that does not act as a solvent and catalyst for diamond is used, It can be mentioned that there are few bonds and the wear resistance is poor. In the case of using the above carbonate as the sintering binder,
Sintering per unit volume due to the fact that the pressure and temperature at which carbonate exerts a catalytic action are high, the sinterable volume is reduced as compared with the above-mentioned sintered body, and the ultra-high pressure sintering cost is high. The cost of the body becomes extremely high, and further, since carbonate has a relatively small catalytic action or solvent action, the bond strength between diamond particles is weak and the fracture resistance is poor. Further, there is a sintered body obtained by immersing the above-mentioned sintered body in an acid or the like to remove the iron-based metal and the iron-based alloy, but both the strength and the fracture resistance are low, and it is limited to the use at high temperature. As described above, the conventional diamond sintered body is i) inferior in heat resistance,
ii) Poor fracture resistance, iii) Poor abrasion resistance, i
Each of the above problems i) to iv) has two or more problems that v) requires high temperature and high pressure due to sintering, resulting in high cost. The present invention, in view of such a current situation,
A diamond sintered body which can solve all of the above problems and has heat resistance, fracture resistance, wear resistance, and which can be sintered at a relatively low pressure and low temperature, a method for producing the same, and a tool using the sintered body. It is intended to be provided.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の手段として、本発明は下記のようなダイヤモンド焼結
体及びその製造方法、それを用いた工具、砥粒を提供す
るものである。 (1)ダイヤモンドの体積比率が50〜99.9%、好
ましくは50〜99.5%、更に好ましくは70〜99
%であり、残部結合相が希土類元素、アルカリ土類元
素、周期律表3B族元素、4B族元素、及びイオウから
なる群から選ばれる少なくとも1種の元素(A)とリン
化合物(B)との化合物(C)もしくは複合体(C′)
又は前記化合物(C)もしくは複合体(C′)と(A)
の酸化物からなる単相もしくは複合相であることを特徴
とするダイヤモンド焼結体。
As a means for solving the above-mentioned problems, the present invention provides the following diamond sintered body and its manufacturing method, a tool using the same, and abrasive grains. (1) The volume ratio of diamond is 50 to 99.9%, preferably 50 to 99.5%, more preferably 70 to 99.
%, And the remaining binder phase is at least one element (A) selected from the group consisting of rare earth elements, alkaline earth elements, periodic table 3B group elements, 4B group elements, and sulfur, and a phosphorus compound (B). Compound (C) or complex (C ′) of
Alternatively, the compound (C) or the complex (C ′) and (A)
A diamond sintered body characterized by being a single phase or a composite phase composed of the oxide of 1.

【0005】(2)ダイヤモンドの体積比率が50〜9
9.9%、好ましくは50〜99.5%、更に好ましく
は70〜99%であり、残部結合相が希土類元素とリン
化合物とから得られる物質を主体とする相からなること
を特徴とするダイヤモンド焼結体。(3)希土類元素、
アルカリ土類元素、周期律表の3B族元素、4B族元素
及びイオウからなる群から選ばれる1種又は2種以上の
元素(A)の粉末、該(A)の酸化物又は該(A)を含
有する化合物(D)の粉末、リン又はリン化合物(B)
の粉末並びにダイヤモンド粉末又は黒鉛粉末を混合し、
得られた混合粉末をダイヤモンドの熱力学的安定領域の
圧力、温度条件で保持し、焼結することを特徴とする上
記(1)又は(2)に記載のダイヤモンド焼結体の製造
方法。
(2) The volume ratio of diamond is 50 to 9
9.9%, preferably 50 to 99.5%, more preferably 70 to 99%, and the balance bonding phase is composed of a phase mainly composed of a substance obtained from a rare earth element and a phosphorus compound. Diamond sintered body. (3) rare earth elements,
Powder of one or more elements (A) selected from the group consisting of alkaline earth elements, 3B group elements of the periodic table, 4B group elements and sulfur, oxides of the (A) or the (A) Compound (D) powder containing, phosphorus or phosphorus compound (B)
Powder and diamond powder or graphite powder,
The method for producing a diamond sintered body according to the above (1) or (2), characterized in that the obtained mixed powder is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered.

【0006】(4) 希土類元素、アルカリ土類元素、
周期律表の3B族元素、4B族元素及びイオウからなる
群から選ばれる1種又は2種以上の元素(A)とリン化
合物(B)との化合物(C)、もしくは当該化合物
(C)と(A)の酸化物からなる複合物を予め合成し、
当該化合物(C)又は当該複合物の粉末とダイヤモンド
粉末又は黒鉛粉末を混合し、得られた混合粉末をダイヤ
モンドの熱力学的安定領域の圧力、温度条件で保持し、
焼結することを特徴とする上記(1)又は(2)に記載
のダイヤモンド焼結体の製造方法。 (5) 希土類元素、アルカリ土類元素、周期律表の3
B族元素、4B族元素及びイオウからなる群から選ばれ
る1種又は2種以上の元素(A)とリン化合物(B)と
の化合物(C)、もしくは当該化合物(C)と(A)の
酸化物からなる複合物の薄片、薄板又は焼結体保持板を
予め作製しておき、ダイヤモンド粉末又は黒鉛粉末と前
記薄片、薄板又は焼結体保持板とを組合せ、ダイヤモン
ドの熱力学的安定領域の圧力、温度条件で溶浸させるこ
とによりダイヤモンドを焼結させることを特徴とする上
記(1)又は(2)に記載のダイヤモンド焼結体の製造
方法。
(4) Rare earth elements, alkaline earth elements,
A compound (C) of one or more elements (A) selected from the group consisting of 3B group elements, 4B group elements and sulfur of the periodic table and a phosphorus compound (B), or the compound (C) Pre-synthesizing a composite consisting of the oxide of (A),
The powder of the compound (C) or the composite is mixed with diamond powder or graphite powder, and the obtained mixed powder is held under the pressure and temperature conditions in the thermodynamically stable region of diamond,
Sintering, The manufacturing method of the diamond sintered compact as described in said (1) or (2) characterized by the above-mentioned. (5) Rare earth elements, alkaline earth elements, 3 of the periodic table
A compound (C) of one or more elements (A) selected from the group consisting of Group B elements, Group 4B elements and sulfur and a phosphorus compound (B), or the compounds (C) and (A) A thin piece, a thin plate, or a sintered body holding plate of a composite made of an oxide is prepared in advance, and the diamond powder or graphite powder is combined with the thin piece, the thin plate or the sintered body holding plate to obtain a thermodynamically stable region of diamond. The method for producing a diamond sintered body according to the above (1) or (2), characterized in that the diamond is sintered by infiltration under the pressure and temperature conditions.

【0007】(6)希土類元素粉末又は該希土類元素を
1種類以上含有する合金粉末及びリン化合物粉末並びに
ダイヤモンド粉末又は非ダイヤモンド炭素粉末又はダイ
ヤモンドと非ダイヤモンド炭素の混合粉末を混合し、得
られた混合原料をダイヤモンドの熱力学的安定領域の圧
力、温度条件で保持し、焼結することを特徴とする上記
(1)又は(2)に記載のダイヤモンド焼結体の製造方
法。 (7)希土類元素とリン化合物から形成される化合物を
あらかじめ合成しておき、当該化合物の粉末とダイヤモ
ンド粉末又は非ダイヤモンド炭素の混合粉末又はダイヤ
モンドと非ダイヤモンド炭素の混合粉末とを混合し、得
られた混合粉末をダイヤモンドの熱力学的安定領域の圧
力、温度条件で保持し、焼結することを特徴とする上記
(1)又は(2)に記載のダイヤモンド焼結体の製造方
法。
(6) Rare earth element powder or alloy powder and phosphorus compound powder containing at least one kind of the rare earth element, diamond powder or non-diamond carbon powder or mixed powder of diamond and non-diamond carbon, and the obtained mixture The method for producing a diamond sintered body according to the above (1) or (2), characterized in that the raw material is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered. (7) A compound formed from a rare earth element and a phosphorus compound is synthesized in advance, and a powder of the compound and a diamond powder or a non-diamond carbon mixed powder or a diamond and a non-diamond carbon mixed powder are mixed to obtain a product. The method for producing a diamond sintered body according to (1) or (2) above, characterized in that the mixed powder is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered.

【0008】(8)希土類元素粉末又は該希土類元素を
1種類以上含有する合金粉末及びリン化合物粉末の成形
体と、ダイヤモンド粉末の成形体又は非ダイヤモンド炭
素粉末の成形体又はダイヤモンドと非ダイヤモンド炭素
の混合粉末の成形体とを積層し、これをダイヤモンドの
熱力学的安定領域の圧力、温度条件で保持し、焼結する
ことを特徴とする上記(1)又は(2)に記載のダイヤ
モンド焼結体の製造方法。 (9)希土類元素とリン化合物から形成される化合物を
あらかじめ合成しておき、当該化合物粉末の成形体と、
ダイヤモンド粉末の成形体又は非ダイヤモンド炭素粉末
の成形体又はダイヤモンドと非ダイヤモンド炭素の混合
粉末の成形体とを積層し、これをダイヤモンドの熱力学
的安定領域の圧力、温度条件で保持し、焼結することを
特徴とする上記(1)又は(2)に記載のダイヤモンド
焼結体の製造方法。
(8) Rare earth element powders or alloy powders and phosphorus compound powder compacts containing one or more rare earth element powders, diamond powder compacts or non-diamond carbon powder compacts or diamond and non-diamond carbon compacts. A diamond sintered body according to the above (1) or (2), characterized in that a mixed powder compact is laminated and held under pressure and temperature conditions in the thermodynamically stable region of diamond and sintered. Body manufacturing method. (9) A compound formed from a rare earth element and a phosphorus compound is synthesized in advance, and a compact of the compound powder,
A diamond powder compact or a non-diamond carbon powder compact or a mixture of diamond and a non-diamond carbon powder compact is laminated, and this is held under pressure and temperature conditions in the thermodynamically stable region of diamond, and then sintered. The method for producing a diamond sintered body according to the above (1) or (2), characterized in that

【0009】又、本発明は下記の好ましい実施態様を含
むものである。 (10)前記リン化合物(B)がPa b (但しaは1
又は2、bは2,3,4,5又は7である)で表される
ものであることを特徴とする上記(1)に記載のダイヤ
モンド焼結体。 (11)前記化合物(C)もしくは複合体(C′)がM
x (Pa b y ( OH)z 〔但しMは希土類元素、
アルカリ土類金属及び周期律表の4B族元素から選ばれ
る1又は2以上の元素の単体又は固溶体であり、Nは周
期律表の3B族元素又はイオウの単体又は固溶体であ
り、x,y,zはそれぞれ1≦x≦4.5,1≦y≦
5,1≦z≦26の範囲にある〕で表されることを特徴
とする上記(1)に記載のダイヤモンド焼結体。 (12)前記結合相が、希土類元素、アルカリ土類元
素、周期律表の3B族元素、4B族元素及びイオウから
なる群から選ばれる1種又は2種以上の元素(A)とP
a b (但しaは1又は2、bは2,3,4,5又は7
である)で表されるリン化合物(B)との化合物(C)
又は複合体(C′)と希土類元素、アルカリ土類元素、
周期律表の3B族元素、4B族元素及びイオウからなる
群から選ばれる1種又は2種以上の元素(A)の酸化物
からなることを特徴とする上記(1)、(2)、(1
0)、又は(11)に記載のダイヤモンド焼結体。
The present invention also includes the following preferred embodiments. (10) The phosphorus compound (B) is P a O b (where a is 1
Or 2, b is 2, 3, 4, 5 or 7), The diamond sintered body according to (1) above. (11) The compound (C) or complex (C ′) is M
N x (P a O b ) y (OH) z [where M is a rare earth element,
X is a simple solution or a solid solution of one or more elements selected from alkaline earth metals and 4B group elements of the periodic table, N is a 3B group element of the periodic table or a simple solution of sulfur, and x, y, z is 1 ≦ x ≦ 4.5 and 1 ≦ y ≦, respectively.
5, 1 ≦ z ≦ 26]. The diamond sintered body according to (1) above. (12) The binder phase includes one or more elements (A) and P selected from the group consisting of rare earth elements, alkaline earth elements, 3B group elements of the periodic table, 4B group elements and sulfur.
a O b (where a is 1 or 2, b is 2, 3, 4, 5 or 7
A compound (C) with a phosphorus compound (B) represented by
Alternatively, the complex (C ′) and a rare earth element, an alkaline earth element,
(1), (2), () which is made of an oxide of one or more elements (A) selected from the group consisting of 3B group elements, 4B group elements and sulfur of the periodic table. 1
0) or the diamond sintered compact as described in (11).

【0010】(13)前記結合相が、MNx (P
a b y ( OH)z 〔但しMは希土類元素、アルカリ
土類金属及び周期律表の4B族元素から選ばれる1又は
2以上の元素の単体又は固溶体であり、Nは周期律表の
3B族元素又はイオウの単体又は固溶体であり、x,
y,zはそれぞれ1≦x≦4.5,1≦y≦5,1≦z
≦26の範囲にある〕で表される前記化合物(C)又は
複合体(C)及び希土類元素、アルカリ土類元素、周期
律表の3B族元素、4B族元素及びイオウからなる群か
ら選ばれる1種又は2種以上の元素(A)の酸化物から
なることを特徴とする上記(1)、(2)、(10)又
は(11)に記載のダイヤモンド焼結体。
(13) The bonded phase is MN x (P
a O b ) y (OH) z [where M is a simple substance or a solid solution of one or more elements selected from rare earth elements, alkaline earth metals and 4B group elements of the periodic table, and N is a group of the periodic table] A simple substance or a solid solution of a Group 3B element or sulfur, x,
y and z are 1 ≦ x ≦ 4.5, 1 ≦ y ≦ 5 and 1 ≦ z, respectively.
In the range of ≦ 26] and a compound (C) or complex (C) and a rare earth element, an alkaline earth element, a 3B group element of the periodic table, a 4B group element and sulfur. The diamond sintered body according to the above (1), (2), (10) or (11), which is composed of an oxide of one or more elements (A).

【0011】(14)上記各項に記載されたダイヤモン
ド焼結体又はそれらの製造方法によって得られたダイヤ
モンド焼結体を刃先として用いることを特徴とする切
削、研削又は掘削用ダイヤモンド焼結体工具。 (15)上記各項に記載されたダイヤモンド焼結体又は
それらの製造方法によって得られたダイヤモンド焼結体
を粉砕されてなることを特徴とする砥粒。
(14) A diamond sintered body tool for cutting, grinding or excavating, characterized in that the diamond sintered body described in the above items or the diamond sintered body obtained by the manufacturing method thereof is used as a cutting edge. . (15) An abrasive grain obtained by crushing the diamond sintered body described in each of the above items or the diamond sintered body obtained by the manufacturing method thereof.

【0012】[0012]

【発明の実施の形態】本発明者等は、希土類元素、アル
カリ土類元素、周期律表の3B族元素、4B族元素、及
びイオウからなる群から選ばれる1種又は2種以上の元
素(A)を含むリン化合物がダイヤモンド焼結体の焼結
結合材として非常に有効なことを見いだし本発明に至っ
た。また、ダイヤモンドの焼結作用を示すことのできる
リン化合物の形態はPa b で表され、aが1又は2、
bが2,3,4,5又は7であるa,bの組合せの場合
が特に有効であること、さらに、結合材として強く作用
する組成が、一般式MNx (Pa b y ( OH)
z 〔但しMは希土類元素,アルカリ土類金属及び周期律
表の4B族元素から選ばれる1又は2以上の元素の単体
又は固溶体であり、Nは周期律表の3B族元素又はイオ
ウの単体又は固溶体であり、x,y,zはそれぞれ1≦
x≦4.5,1≦y≦5,1≦z≦26の範囲にある〕
で表され、複数種の化合物との組合せや酸化物共存下で
も有効に作用することを見いだした。特に本発明の好ま
しい実施態様では、焼結結合材として希土類元素とリン
化合物からなる混合物又は化合物を用いた点を特徴とす
る、ダイヤモンドの体積比率が50〜99.9%、好ま
しくは50〜99.5%、特に好ましくは70〜99%
で、残部結合相が希土類元素とリン化合物とから得られ
る物質からなるダイヤモンド焼結体である。
BEST MODE FOR CARRYING OUT THE INVENTION
Potassium earth elements, 3B group elements of the periodic table, 4B group elements, and
And one or more elements selected from the group consisting of
Sintering of diamond sintered body with phosphorus compound containing element (A)
The present invention was found to be extremely effective as a binder.
Was. It can also show the sintering action of diamond.
The form of the phosphorus compound is PaO bAnd a is 1 or 2,
In the case of a combination of a and b in which b is 2, 3, 4, 5 or 7
Is particularly effective, and also acts strongly as a binder
The composition is MNx(PaOb)y(OH)
z[However, M is rare earth element, alkaline earth metal and periodic law
Simple substance of 1 or 2 or more elements selected from the group 4B elements
Or a solid solution, N is an element of Group 3B of the Periodic Table or Io
C is a simple substance or a solid solution, and x, y, and z are 1 ≦
x ≦ 4.5, 1 ≦ y ≦ 5, 1 ≦ z ≦ 26]
It is represented by, in combination with multiple types of compounds and in the presence of oxides
Has also found to work effectively. Particularly preferred of the present invention
In a preferred embodiment, rare earth elements and phosphorus are used as the sintering binder.
Characterized by the use of a mixture of compounds or compounds
Volume ratio of diamond is 50-99.9%,
50 to 99.5%, particularly preferably 70 to 99%
, The balance binder phase is obtained from rare earth elements and phosphorus compounds.
It is a diamond sintered body made of a substance.

【0013】以下本発明における希土類元素とリン化合
物の作用を説明する。 a)希土類元素の添加効果について:希土類元素は炭素
の溶解作用を有するため溶媒として作用し、ダイヤモン
ドの焼結を促進する。ただし、希土類金属単独で又は希
土類金属と鉄系金属との合金を焼結結合材として用いる
と、ダイヤモンドと反応して炭化物を形成し、該炭化物
がダイヤモンド粒子の焼結作用を妨害する。
The action of the rare earth element and the phosphorus compound in the present invention will be described below. a) Regarding the effect of adding the rare earth element: Since the rare earth element has a dissolving effect on carbon, it acts as a solvent and promotes the sintering of diamond. However, when a rare earth metal alone or an alloy of a rare earth metal and an iron-based metal is used as a sinter binder, it reacts with diamond to form a carbide, which interferes with the sintering action of diamond particles.

【0014】b)リン化合物の添加効果について:一
方、リン化合物はダイヤモンド合成の触媒又は溶媒作用
があるのに加え、希土類元素が炭化するのを防止する作
用があり、希土類金属の溶媒作用を助長する。従って、
焼結結合材中に希土類元素とリン酸とを共存させればよ
いわけであるが、希土類元素とリン化合物の混合物は、
ダイヤモンドの安定領域において溶解し、常圧下では最
終的に殆どが両者の化合物となることがX線回折により
判明した。リン化合物と希土類金属との化合物は酸やア
ルカリに対し腐食されにくく、水にも殆ど溶解しないた
め、炭酸塩を結合材として用いた場合より安定である。
また、当該希土類元素リン酸塩化合物は炭酸塩より融点
が低いので、これを焼結結合材として用いる場合には炭
酸塩の場合ほど、高い圧力、温度を必要としない点でも
有利である。ただし、ダイヤモンドの炭素が当該化合物
と一部反応して炭化物や炭酸化合物、あるいはそれらの
混合体となる場合もあるが、本質的には影響が無い。
B) Effect of addition of phosphorus compound: On the other hand, the phosphorus compound has a catalyst or solvent action for diamond synthesis, and also has an action of preventing carbonization of the rare earth element, thus promoting the solvent action of the rare earth metal. To do. Therefore,
The rare earth element and phosphoric acid may coexist in the sintered binder, but the mixture of the rare earth element and the phosphorus compound is
It was revealed by X-ray diffraction that the diamond was dissolved in the stable region and finally most of it became a compound of both under normal pressure. The compound of a phosphorus compound and a rare earth metal is less likely to be corroded by an acid or an alkali and hardly dissolved in water, so that it is more stable than when a carbonate is used as a binder.
Further, since the rare earth element phosphate compound has a lower melting point than that of the carbonate, it is advantageous in that it does not require higher pressure and temperature as in the case of using the carbonate as a sinter binder. However, although carbon of diamond may partially react with the compound to form a carbide, a carbonate compound, or a mixture thereof, there is essentially no effect.

【0015】c)アルカリ土類金属、周期律表の3B族
元素、4B族元素又はイオウの添加効果について:これ
らの元素のダイヤモンド合成に対する触媒作用は低い
が、結合材の融点を低下させ、低圧・低温でダイヤモン
ドを焼結させる効果がある。低圧・低温で製造すること
により製造費用を大幅に低減できるという大きな工業的
利点がある。
C) Regarding the effect of adding an alkaline earth metal, a 3B group element of the periodic table, a 4B group element, or sulfur: Although these elements have a low catalytic action on diamond synthesis, they lower the melting point of the binder and cause a low pressure. -It has the effect of sintering diamond at low temperatures. There is a great industrial advantage that the manufacturing cost can be significantly reduced by manufacturing at low pressure and low temperature.

【0016】d)結合相をリン化合物とすることの効
果:まず第1の効果は、当該化合物は耐薬品性に優れ、
かつ強度も高く、結合材が劣化しないという効果を奏す
る。特に腐食性の環境で用いる掘削や切削においてその
効果が高い。
D) Effects of using a phosphorus compound as the binder phase: Firstly, the compound has excellent chemical resistance,
Moreover, the strength is high, and the effect that the binder does not deteriorate is obtained. The effect is particularly high in excavation and cutting used in a corrosive environment.

【0017】また、当該化合物の熱膨張係数は5×10
-6と、鉄系金属溶媒に比較してダイヤモンドの熱膨張係
数2〜3×10-6に近く、高温で使用しても焼結体内で
熱応力が発生せず、耐熱性に優れている。第2の効果は
当該化合物とすることにより、高圧下では融点が低くな
り、低温で焼結することが可能となる。結合相を単一の
化合物にしても、複数の化合物にしても同様に効果があ
る。
The thermal expansion coefficient of the compound is 5 × 10.
-6, which is closer to the coefficient of thermal expansion of diamond of 2 to 3 × 10 -6 as compared with iron-based metal solvents, does not generate thermal stress in the sintered body even when used at high temperature, and has excellent heat resistance. . The second effect is that the compound has a low melting point under high pressure and can be sintered at a low temperature. Even if the bonding phase is a single compound or a plurality of compounds, the same effect can be obtained.

【0018】e)リン化合物の形態効果について:一般
にリン酸化物はPa b の形式で記述できる。多種存在
するリン酸のうち、下記のa,bの条件を満たす場合
が、溶媒作用を有しダイヤモンドの焼結に作用すること
を、本発明者らは見いだした。aが1又は2、bが2,
3,4,5又は7である組合せである。また本発明者ら
は、次亜リン酸(H3 PO2 )の場合も例えばCe(H
3 PO 2 3 ・H2 O等として有効に作用することを見
いだした。
E) Concerning the morphological effects of phosphorus compounds: General
Phosphorus oxide is PaObCan be described in the form of. Existence
Of the phosphoric acid to be used, if the following conditions a and b are satisfied:
Has a solvent effect and acts on the sintering of diamond.
The present inventors have found out. a is 1 or 2, b is 2,
The combination is 3, 4, 5 or 7. In addition, the present inventors
Is hypophosphorous acid (H3PO2), For example, Ce (H
3PO 2)3・ H2Seeing that it works effectively as O etc.
I started.

【0019】f)MNx (Pa b y ( OH)z の化
合物の効果について:MNx (Pa b y ( OH)z
の化合物は、MがCeでNがAlの場合CeAl3 (P
4 2 (OH)6 〔フローレンサイト〕として知られ
ている。結合相に当該化合物を用いることの第1の効果
は、当該化合物の融点が低く、従来の炭酸塩触媒に比較
して、300〜400℃近くも低温でダイヤモンドを焼
結でき、圧力も1GPa(13気圧)強低減することが
できる点である。このように低圧低温で製造できること
は、焼結体の製造コスト低減に大きく寄与し、安価な製
品を提供できる。また、当該化合物は酸やアルカリに強
く、耐蝕性に優れており、石油掘削等のドリルビットの
刃先には特に適している。本発明者等は当該化合物が形
成できる条件が以下であることを見いだした。MN
x (Pa b y ( OH)z において、Mは希土類元
素,アルカリ土類元素又は周期律表の4B族元素の単体
又は固溶体であり、Nは周期律表の3B族元素(Al,
B,Ga,In,Tl)又はイオウ(S)の単体又は固
溶体であり、かつ1≦x≦4.5,1≦y≦5,1≦z
≦26の範囲にあることが特に有効であることを見いだ
した。さらに、当該化合物は酸化物の中に分散する状態
でも、前記と同様の効果を示した。
[0019] f) Effect of the compounds of MN x (P a O b) y (OH) z: MN x (P a O b) y (OH) z
When M is Ce and N is Al, the compound of CeAl 3 (P
It is known as O 4 ) 2 (OH) 6 [Florensite]. The first effect of using the compound in the binder phase is that the melting point of the compound is low, diamond can be sintered at a low temperature as high as 300 to 400 ° C., and the pressure is 1 GPa (compared to conventional carbonate catalysts. (13 atm) can be strongly reduced. Being able to manufacture at a low pressure and a low temperature in this way greatly contributes to a reduction in the manufacturing cost of the sintered body, and an inexpensive product can be provided. Further, the compound is resistant to acids and alkalis and has excellent corrosion resistance, and is particularly suitable for the cutting edge of a drill bit for oil drilling and the like. The present inventors have found that the conditions under which the compound can be formed are as follows. MN
In x (P a O b ) y (OH) z , M is a rare earth element, an alkaline earth element or an element or a solid solution of a 4B group element of the periodic table, and N is a 3B group element (Al,
B, Ga, In, Tl) or sulfur (S) as a simple substance or solid solution, and 1 ≦ x ≦ 4.5, 1 ≦ y ≦ 5, 1 ≦ z
It has been found that the range of ≤26 is particularly effective. Furthermore, even when the compound was dispersed in the oxide, the same effect as described above was exhibited.

【0020】本発明の焼結材の各成分、化合物について
更に具体的に説明する。本発明にいう希土類元素、アル
カリ土類元素、周期律表3B族、4B族及びイオウから
なる群から選ばれる1種又は2種以上の元素(A)にお
いて、希土類元素としては、ランタノイドのLa,C
e,Pr,Nd,Pm,Sm,Eu,Gd,Tb,D
y,Ho,Er,Tm,Yb,Lu及びアクチノイドの
Ac,Th,Pa,U,Np,Pu,Am,Cm,B
k,Cf,Es,Fm,Md,No,Lrが挙げられ
る。また、希土類元素は合金に含まれていてもよく、こ
のような合金としては例えばCeTl,CeIn,Al
Ce,LaGe等の合金が挙げられる。また該(A)に
おけるアルカリ土類元素としては例えばBe,Mg,C
a,Sr,Ba,Raが挙げられ、周期律表の3B族元
素としてはAl,B,Ga,In,Tl、周期律表の4
B族元素としてはSi,Ge,Sn,Pbが挙げられ
る。また、これらは酸化物であってもよい。また該
(A)を含有する化合物(D)は、例えば(A)の水酸
化物、水素化物、水和物などであってもよい。
Each component and compound of the sintered material of the present invention will be described more specifically. In the one or more elements (A) selected from the group consisting of rare earth elements, alkaline earth elements, 3B groups, 4B groups and sulfur of the Periodic Table referred to in the present invention, the rare earth element is La, which is a lanthanoid, C
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb, Lu and actinoids Ac, Th, Pa, U, Np, Pu, Am, Cm, B
Examples include k, Cf, Es, Fm, Md, No, and Lr. The rare earth element may be contained in the alloy, and examples of such an alloy include CeTl, CeIn, Al.
Examples include alloys such as Ce and LaGe. Examples of the alkaline earth element in (A) include Be, Mg, C
a, Sr, Ba, Ra, and 3B group elements of the periodic table are Al, B, Ga, In, Tl and 4 of the periodic table.
Examples of the B-group element include Si, Ge, Sn, and Pb. Further, these may be oxides. The compound (D) containing the (A) may be, for example, the hydroxide, hydride or hydrate of the (A).

【0021】本発明にいうリン化合物(B)とは具体的
には例えば、P2 O,P2 3 ,P 2 4 ,P2 5
3 PO4 等の酸化リンやリン酸、K3 PO4 ,K2
PO 4 ,KH2 PO4 ,Na2 HPO4 ・nH2 O,B
3 (PO4 2 ,BaHPO4 ,Ca(H2 PO4
2 等のK,Na,Ba,Ca塩、さらにはLi,Rb,
Cs,Fr,Be,Mg,Sr,Ra,Re,Rn,O
s,Co,Rh,Ir,Ni,Pd,Pt等の塩でもよ
い。以上のように本発明のダイヤモンド焼結体における
結合相は、元素(A)、リン化合物(B)、(A)と
(B)との化合物(C)もしくは複合体(C′)、又は
前記化合物(C)もしくは複合体(C′)と(A)の酸
化物等からなる単相もしくは複合相である。本発明にお
ける、MNx (Pa b y ( OH)z の具体的な例と
しては、例えばCeAl3 (PO4 2 ・(OH)6
LaAl2 Ga(PO4 2 ・(OH)4 ,NdAlT
2 (PO4 2 ・(OH)5 等を挙げることができ
る。
The phosphorus compound (B) referred to in the present invention is specifically
For example, P2O, P2O3, P 2OFour, P2OFive,
H3POFourPhosphorus oxide, phosphoric acid, K, etc.3POFour, K2H
PO Four, KH2POFour, Na2HPOFour・ NH2O, B
a3(POFour)2, BaHPOFour, Ca (H2POFour)
2K, Na, Ba, Ca salts such as Li, Rb,
Cs, Fr, Be, Mg, Sr, Ra, Re, Rn, O
Salts such as s, Co, Rh, Ir, Ni, Pd and Pt may be used.
Yes. As described above, in the diamond sintered body of the present invention
The binder phase includes the element (A), the phosphorus compound (B), and (A).
A compound (C) or complex (C ') with (B), or
Acid of the compound (C) or complex (C ′) and (A)
It is a single phase or a composite phase composed of compounds. In the present invention
Kick, MNx(PaOb)y(OH)zAnd a concrete example of
For example, CeAl3(POFour)2・ (OH)6,
LaAl2Ga (POFour)2・ (OH)Four, NdAlT
l2(POFour)2・ (OH)FiveCan be mentioned
It

【0022】本発明において希土類元素とリン化合物か
ら得られる物質において、希土類元素とリンのモル比率
としては、0.01〜0.99が好ましい。本発明のダ
イヤモンド焼結体における希土類元素とリン化合物から
得られる物質とは、すなわち希土類元素、希土類元素化
合物、リン化合物、希土類元素とリンとを含む化合物、
希土類元素、リン化合物、希土類元素とリンとを含有す
る化合物の固溶体及び複合体等を含む。例えば、Ce3
(PO4 4 ,CePO4 ・nH2 O,Ce2 3 ・2
2 4 ,La2 3 ・3P2 5 ,Ce2 3 ・5P
2 5 ,Nd4 (P2 7 3・12H2 O,NdHP
2 7 ・3H2 O,NdP2 7 ・7H2 O,4LaO
2 ・3P2 5 ・26H2 O,La(H2 PO2 3
nH2 O,Ho3 (PO 4 4 ・nH2 O,3HoO2
・P2 5 ・3H2 O,LuPO4 ・nH2 O等が挙げ
られる。
In the present invention, is it a rare earth element and a phosphorus compound?
Molar ratio of rare earth element and phosphorus in the substance obtained
Is preferably 0.01 to 0.99. The present invention
From rare earth elements and phosphorus compounds in sintered earmonds
Obtained substances are rare earth elements, rare earth elements
Compound, phosphorus compound, compound containing rare earth element and phosphorus,
Contains rare earth elements, phosphorus compounds, rare earth elements and phosphorus
Including solid solution and complex of the compound. For example, Ce3
(POFour)Four, CePOFour・ NH2O, Ce2O3・ 2
P2O Four, La2O3・ 3P2OFive, Ce2O3・ 5P
2OFive, NdFour(P2O7)3・ 12H2O, NdHP
2O7・ 3H2O, NdP2O7・ 7H2O, 4LaO
2・ 3P2OFive・ 26H2O, La (H2PO2)3
nH2O, Ho3(PO Four)Four・ NH2O, 3HoO2
・ P2OFive・ 3H2O, LuPOFour・ NH2O and the like
Can be

【0023】本発明のダイヤモンド焼結体において、ダ
イヤモンドは50〜99.9体積%とするが、この理由
は50%未満では耐摩耗性に劣り、99.9%を越える
と焼結性が低下するからである。その好ましい範囲は5
0〜99.5体積%、特に70〜99体積%である。ダ
イヤモンド原料としては、単結晶ダイヤモンド粉末(砥
粒等)及び多結晶ダイヤモンドの粉末を用いることがで
きる。粉末の粒径は0.01〜200μm程度である。
また、ダイヤモンド粉末にかえて黒鉛粉末を用いること
もできる。また、焼結結合材の粉末は0.01〜30μ
m程度、好ましくは0.1〜10μm程度の粒径が普通
であるが、ダイヤモンド原料粉末と混合して焼結する場
合はダイヤモンド原料粉末より小さいのが好ましい。
In the diamond sintered body of the present invention, the diamond content is 50 to 99.9% by volume. The reason is that if it is less than 50%, the wear resistance is poor, and if it exceeds 99.9%, the sinterability decreases. Because it does. The preferred range is 5
It is from 0 to 99.5% by volume, especially from 70 to 99% by volume. As the diamond raw material, single crystal diamond powder (abrasive grains, etc.) and polycrystalline diamond powder can be used. The particle size of the powder is about 0.01 to 200 μm.
Further, graphite powder can be used instead of diamond powder. The powder of the sintering binder is 0.01 to 30 μm.
The particle size is usually about m, preferably about 0.1 to 10 μm, but when mixed with diamond raw material powder and sintered, it is preferably smaller than the diamond raw material powder.

【0024】本発明のダイヤモンド焼結体の製造方法と
しては、希土類元素、アルカリ土類元素、周期律表3B
族元素、4B族元素、及びイオウからなる群から選ばれ
る1種又は2種の元素(A)の粉末、該(A)の酸化物
又は該(A)を含有する化合物(D)の粉末、リン又は
リン化合物(B)の粉末並びにダイヤモンド粉末又は黒
鉛粉末を混合し、得られた混合粉末をダイヤモンドの安
定領域下で保持することによる方法、希土類元素、アル
カリ土類元素、周期律表の3B族元素、4B族元素及び
イオウからなる群から選ばれる1種又は2種以上の元素
(A)とリン化合物(B)との化合物(C)、もしくは
当該化合物(C)と(A)の酸化物からなる複合物を予
め合成し、当該化合物(C)又は当該複合物の粉末とダ
イヤモンド粉末又は黒鉛粉末を混合して混合原料とし、
以下同様に行う方法のいずれでもよい。さらには、当該
化合物(C)を薄片状又は薄板状にしておき、ダイヤモ
ンド粉末又は黒鉛粉末と混合するか又は該薄片状又は薄
板状の化合物(C)に接した状態にしてダイヤモンドの
安定領域に保持し、当該化合物(C)を溶浸させる方法
によっても焼結可能である。
As the method for producing the diamond sintered body of the present invention, rare earth elements, alkaline earth elements, and Periodic Table 3B are used.
A powder of one or two elements (A) selected from the group consisting of group elements, group 4B elements, and sulfur, an oxide of the (A) or a powder of a compound (D) containing the (A), Method of mixing powder of phosphorus or phosphorus compound (B) and diamond powder or graphite powder, and holding the obtained mixed powder in the stable region of diamond, rare earth element, alkaline earth element, 3B of periodic table A compound (C) of one or more elements (A) selected from the group consisting of group elements, group 4B elements and sulfur and a phosphorus compound (B), or the oxidation of the compounds (C) and (A) In advance, a compound consisting of a compound is synthesized, and the compound (C) or the powder of the compound and diamond powder or graphite powder are mixed to prepare a mixed raw material,
Any of the following methods may be used. Further, the compound (C) is made into a flaky or thin plate shape and mixed with diamond powder or graphite powder, or brought into contact with the flaky or thin plate compound (C) to form a stable region of diamond. Sintering can also be performed by a method of holding and infiltrating the compound (C).

【0025】本発明のダイヤモンド焼結体の焼結方法の
好ましい実施態様としては、希土類金属とリン化合物と
ダイヤモンド粉末とを混合したものを混合原料とし超高
圧高温下で保持する方法と、予め希土類金属とリン化合
物とを反応させて希土類元素のリン化合物を形成してお
き、これとダイヤモンド粉末を混合したものを混合原料
として以下同様に焼結する方法の二法がある。また、予
め作成した希土類元素のリン化合物を型押したものと、
ダイヤモンド又は黒鉛粉末とを組み合わせてダイヤモン
ドの安定領域に保持し、該化合物を溶浸させることによ
り本発明のダイヤモンド焼結体を合成してもよい。
As a preferred embodiment of the method for sintering a diamond sintered body of the present invention, a method in which a mixture of a rare earth metal, a phosphorus compound and diamond powder is used as a mixed raw material and held at ultrahigh pressure and high temperature, and rare earth is previously prepared. There are two methods, that is, a method of reacting a metal with a phosphorus compound to form a phosphorus compound of a rare earth element, and then using a mixture of the rare earth element phosphorus compound and a diamond powder as a mixed raw material in the same manner. In addition, the one in which a phosphorus compound of a rare earth element created in advance is embossed,
The diamond sintered body of the present invention may be synthesized by combining it with diamond or graphite powder and holding it in the stable region of diamond and infiltrating the compound.

【0026】本発明の製造方法によれば、従来の炭酸塩
溶媒より低圧低温の、例えば6GPa,1500℃程度
で焼結しても、ダイヤモンド焼結体として実用に供する
ことができる硬度8000kg/mm2 前後、好ましく
は8000〜18000kg/mm2 前後のダイヤモン
ド焼結体を得ることができる。本発明のダイヤモンド焼
結体は切削、研削用工具又は掘削用工具の刃先として、
さらには粉砕したものをダイヤモンド砥粒として、いず
れも有利に使用できる。
According to the manufacturing method of the present invention, the hardness is 8000 kg / mm, which can be put to practical use as a diamond sintered body even if it is sintered at a lower pressure and a lower temperature than conventional carbonate solvents, for example, at about 6 GPa and about 1500 ° C. It is possible to obtain a diamond sintered body of about 2 and preferably about 8000 to 18000 kg / mm 2 . The diamond sintered body of the present invention is a cutting edge of a cutting tool, a grinding tool or a drilling tool,
Further, the crushed particles can be advantageously used as diamond abrasive grains.

【0027】[0027]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるところはない。 〔実施例1−1〜1−4及び比較例1−1,1−2〕二
酸化セリウム(17.2g、0.1mol当量)とメタ
リン酸カリウム(70g、0.4mol当量)を混合
し、ルツボ内で加熱、融解させた。冷却して固化したも
のを水溶させ、塩酸処理を施し、リン酸セリウムを濾取
した。得られたリン酸セリウムをメノウ乳鉢で1〜2μ
m程度に粉砕した後、ダイヤモンド粉末(粒径30μm
の砥粒)を表1に示す割合で混合した後、ベルト型超高
圧発生装置を用い、6.5GPa,1600℃の圧力温
度条件下で30分間保持し、焼結させた。得られたダイ
ヤモンド焼結体の硬度を調べた結果も表−1に合わせて
示す。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. [Examples 1-1 to 1-4 and Comparative Examples 1-1 and 1-2] Cerium dioxide (17.2 g, 0.1 mol equivalent) and potassium metaphosphate (70 g, 0.4 mol equivalent) were mixed, and the crucible was mixed. It was heated and melted inside. What was solidified by cooling was made water-soluble, treated with hydrochloric acid, and cerium phosphate was collected by filtration. 1-2 μ of the obtained cerium phosphate in an agate mortar
After crushing to about m, diamond powder (particle size 30 μm
The abrasive grains were mixed in the proportions shown in Table 1 and then held at a pressure temperature condition of 6.5 GPa and 1600 ° C. for 30 minutes using a belt type ultrahigh pressure generator for sintering. The results of examining the hardness of the obtained diamond sintered body are also shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】また、比較例1−2として、炭酸カルシウ
ム(30体積%)とダイヤモンド粉末(70体積%)と
を混合して、前記と同一の条件で焼結したが、得られた
焼結体のビッカース硬度は3200(kg/mm2 )と
低く、工具として使用できないことが判明した。
As Comparative Example 1-2, calcium carbonate (30% by volume) and diamond powder (70% by volume) were mixed and sintered under the same conditions as above. Vickers hardness of No. 3 was as low as 3200 (kg / mm 2 ), and it was found that it cannot be used as a tool.

【0030】〔実施例2〕金属ランタン(12.6g)
と酸化リン(P2 5 、13.9g)と粒径30μmの
ダイヤモンド粉末を混合し、立方アンビル型超高圧発生
装置を用い、6GPa,1500℃の圧力温度条件下で
40分間保持し、焼結させた。不活性ガス(Ar)中で
800℃に10分間保持し、X線でダイヤモンドがグラ
ファイトに変換したかどうか調査した(耐熱性テス
ト)。また、加熱前と加熱後の硬度を比較した。
Example 2 Metal lanthanum (12.6 g)
And phosphorus oxide (P 2 O 5 , 13.9 g) and diamond powder with a particle size of 30 μm are mixed, and the mixture is held for 40 minutes under a pressure and temperature condition of 6 GPa and 1500 ° C. using a cubic anvil type ultrahigh pressure generator, and baked. Tied up. It was kept at 800 ° C. for 10 minutes in an inert gas (Ar), and it was investigated whether the diamond was converted into graphite by X-ray (heat resistance test). Further, the hardness before heating was compared with that after heating.

【0031】[0031]

【表2】 [Table 2]

【0032】〔比較例2−1〕また、実施例2−1にお
いてリン酸ランタンに代えて鉄コバルト合金セメンダイ
トを焼結結合材に用いた以外は実施例2−1と同様に行
い、同様に測定の結果を表−2に示した。
[Comparative Example 2-1] Further, the same procedure as in Example 2-1 was carried out in the same manner as in Example 2-1, except that the iron-cobalt alloy cementendite was used as the sintered binder in place of the lanthanum phosphate in Example 2-1. The measurement results are shown in Table-2.

【0033】表−2の結果から、本発明のダイヤモンド
焼結体は、耐熱性テストの結果加熱後もビッカース硬度
が高く、劣化しないことが判明した。一方、比較例2−
1のものは加熱後のビッカース硬度の低下が大きく、グ
ラファイトが検出され、本発明のものにくらべ格段に耐
熱性が劣ることがわかる。
From the results shown in Table 2, it was found that the diamond sintered body of the present invention had a high Vickers hardness and did not deteriorate even after heating as a result of a heat resistance test. On the other hand, Comparative Example 2-
No. 1 has a large decrease in Vickers hardness after heating, graphite is detected, and it can be seen that the heat resistance is far inferior to that of the present invention.

【0034】〔実施例3〕実施例2−1で得られた本発
明のダイヤモンド焼結体を、切削工具のチップ形状に加
工し、アルミニウム合金鋳物(Si含有量10重量%)
を切削した。刃先の欠損もなく加工が可能であった。
[Example 3] The diamond sintered body of the present invention obtained in Example 2-1 was processed into a chip shape of a cutting tool to cast an aluminum alloy (Si content 10% by weight).
Cut. Machining was possible without any damage to the cutting edge.

【0035】〔実施例4−1〜4−3及び比較例4−
1,4−2〕二酸化セリウム(17.2g、0.1mo
l当量)とメタリン酸カリウム(70g、0.4mol
当量)を混合し、ルツボ内で加熱、融解させた。冷却し
て固化したものを水溶させ、塩酸処理を施し、リン酸セ
リウムを濾取した。得られたリン酸セリウムをメノウ乳
鉢で1〜2μm程度に粉砕した後、ダイヤモンド粉末
(粒径4μmの砥粒)を表1に示す割合で混合した後、
ベルト型超高圧発生装置を用い、6.5GPa,160
0℃の圧力温度条件下で15分間保持し、焼結させた。
得られたダイヤモンド焼結体の硬度を調べた結果も表−
3に合わせて示す。
[Examples 4-1 to 4-3 and Comparative Example 4-
1,4-2] Cerium dioxide (17.2 g, 0.1 mo
1 equivalent) and potassium metaphosphate (70 g, 0.4 mol
(Equivalent weight) were mixed and heated in a crucible to melt. What was solidified by cooling was made water-soluble, treated with hydrochloric acid, and cerium phosphate was collected by filtration. After crushing the obtained cerium phosphate in an agate mortar to about 1 to 2 μm, diamond powder (abrasive grains with a particle size of 4 μm) was mixed at the ratio shown in Table 1,
Using a belt type ultra high pressure generator, 6.5 GPa, 160
It was held for 15 minutes under the pressure temperature condition of 0 ° C. to be sintered.
The results of examining the hardness of the obtained diamond sintered body are also shown in the table.
It shows according to 3.

【0036】[0036]

【表3】 [Table 3]

【0037】また、比較例4−2として、炭酸カルシウ
ム(30体積%)とダイヤモンド粉末(70体積%)と
を混合して、前記と同一の条件で焼結したが、得られた
焼結体のヌープ硬度は3000kg/mm2 と低く、工
具として使用できないことが判明した。
As Comparative Example 4-2, calcium carbonate (30% by volume) and diamond powder (70% by volume) were mixed and sintered under the same conditions as above. Knoop hardness was as low as 3000 kg / mm 2, and it was found that it could not be used as a tool.

【0038】〔実施例5〕金属ランタン(12.6g)
と酸化リン(P2 5 ,13.9g)と粒径4μmのダ
イヤモンド粉末を混合し、立方アンビル型超高圧発生装
置を用い、6GPa,1500℃の圧力温度条件下で1
5分間保持し、焼結させた。不活性ガス(Ar)中で8
00℃に10分間保持し、X線でダイヤモンドがグラフ
ァイトに変換したかどうか調査した(耐熱性テスト)。
また、加熱前と加熱後の硬度を比較した。
Example 5 Metal lanthanum (12.6 g)
And phosphorus oxide (P 2 O 5 , 13.9 g) were mixed with diamond powder having a particle size of 4 μm, and a cubic anvil type ultra-high pressure generator was used under a pressure temperature condition of 6 GPa and 1500 ° C.
Hold for 5 minutes to sinter. 8 in inert gas (Ar)
It was kept at 00 ° C. for 10 minutes, and it was investigated by X-ray whether diamond was converted into graphite (heat resistance test).
Further, the hardness before heating was compared with that after heating.

【0039】[0039]

【表4】 [Table 4]

【0040】〔比較例5−1〕また、実施例5−1にお
いてリン酸ランタンに代えて鉄コバルト合金セメンダイ
トを焼結結合材に用いた以外は実施例5−1と同様に行
い、同様に測定の結果を表−4に示した。
[Comparative Example 5-1] Also, in the same manner as in Example 5-1, except that the iron-cobalt alloy cementendite was used as the sintered binder in place of the lanthanum phosphate in Example 5-1, the same procedure was performed. The measurement results are shown in Table-4.

【0041】表−4の結果から、本発明のダイヤモンド
焼結体は、耐熱性テストの結果加熱後もヌープ硬度が高
く、劣化しないことが判明した。一方、比較例5−1の
ものは加熱後のヌープ硬度の低下が大きく、グラファイ
トが検出され、本発明のものにくらべ格段に耐熱性が劣
ることがわかる。
From the results shown in Table 4, it was found that the diamond sintered body of the present invention has a high Knoop hardness even after heating and is not deteriorated as a result of the heat resistance test. On the other hand, Comparative Example 5-1 has a large decrease in Knoop hardness after heating, graphite is detected, and it can be seen that the heat resistance is significantly inferior to that of the present invention.

【0042】〔実施例6〕実施例5−1で得られた本発
明のダイヤモンド焼結体を、切削工具のチップ形状に加
工し、アルミ合金鋳物(Si含有量25重量%)を切削
した。刃先の欠損もなく加工が可能であった。
Example 6 The diamond sintered body of the present invention obtained in Example 5-1 was processed into a chip shape of a cutting tool, and an aluminum alloy casting (Si content 25% by weight) was cut. Machining was possible without any damage to the cutting edge.

【0043】〔実施例7−1〕塩化第1セリウム溶液
〔0.2mol当量〕にリン酸水素ナトリウム(Na2
HPO4 )〔0.2mol当量〕を加え、加熱し、Ce
PO4 ・(H2 O)3 を沈殿させ、濾取した。該沈殿物
にAlCe合金の粉末〔0.3mol当量〕を加え加熱
したところ、CeAl3 (PO4 2 ・(OH)6 が形
成できた。該化合物を粉末にしたもの10体積%と粒径
30μmのダイヤモンド粉末90体積%とを混合し、得
られた混合粉末を原料とし、超高圧発生装置を用いて、
5.8GPa,1400℃の圧力温度で保持し、焼結し
た。得られたダイヤモンド焼結体のビッカース硬度は1
4000を示し、十分に焼結していることが判明した。
当該ダイヤモンド焼結体を切削工具の形状に加工し、ア
ルミシリコンの合金をフライス切削した(条件:切削速
度500m/min,切り込み0.1mm)ところ、十
分な切削性能が得られ、耐欠損性に優れていることが確
認できた。
[Example 7-1] Sodium hydrogen phosphate (Na 2 ) was added to a cerium chloride solution [0.2 mol equivalent].
HPO 4 ) [0.2 mol equivalent] was added and heated to Ce.
PO 4. (H 2 O) 3 was precipitated and collected by filtration. When AlCe alloy powder [0.3 mol equivalent] was added to the precipitate and heated, CeAl 3 (PO 4 ) 2. (OH) 6 could be formed. 10% by volume of the compound powder was mixed with 90% by volume of diamond powder having a particle size of 30 μm, and the resulting mixed powder was used as a raw material, using an ultrahigh pressure generator,
It was held at a pressure temperature of 5.8 GPa and 1400 ° C. and sintered. The Vickers hardness of the obtained diamond sintered body is 1
It was found to be 4000 and it was found to be sufficiently sintered.
When the diamond sintered body was processed into the shape of a cutting tool, and an aluminum-silicon alloy was milled (conditions: cutting speed 500 m / min, depth of cut 0.1 mm), sufficient cutting performance was obtained and fracture resistance was improved. It was confirmed that it was excellent.

【0044】〔実施例7−2〕実施例7−1において、
AlCe合金とCePO4 ・(H2 O)3 の混合比(モ
ル比)を種々に変え、それぞれ加熱処理したところ、下
記のx,y,zの範囲内でCeAlx (PO4 y (O
H)z が形成できた。 1≦x≦4.5,1≦y≦5,1≦z≦26。 得られた各生成物を粉末にしたもの10体積%に、粒径
30μmのダイヤモンド粉末を90体積%となるように
加えて混合粉末とし、超高圧発生装置を用いて5.8〜
6.0GPa,1400〜1450℃の圧力温度で保持
し、焼結したところ、ビッカース硬度13000〜15
000の高硬度のダイヤモンド焼結体が得られた。
[Example 7-2] In Example 7-1,
When the mixing ratio (molar ratio) of the AlCe alloy and CePO 4. (H 2 O) 3 was variously changed and heat treatment was performed, respectively, CeAl x (PO 4 ) y (O
H) z could be formed. 1 ≦ x ≦ 4.5, 1 ≦ y ≦ 5, 1 ≦ z ≦ 26. 10% by volume of each of the obtained products in powder form was mixed with 90% by volume of diamond powder having a particle size of 30 μm to prepare a mixed powder.
When it was held at a pressure temperature of 6.0 GPa and 1400 to 1450 ° C. and sintered, the Vickers hardness was 13000 to 15
000 high hardness diamond sintered bodies were obtained.

【0045】〔実施例8−1〕二酸化ランタンにメタリ
ン酸カリウムとナトリウムとを混合し、溶融させた。酸
処理によりNaLAP2 7 を除去し、LaPO4 を得
た。また、リン酸水素ランタンナトリウムNaLaH
(PO4 2 を熱分解させ、3CeO2 ・P2 5 ・3
2 Oとした。さらに、リン酸ナトリウムと硝酸ランタ
ンを反応させ、La4 (P2 7 3 ・12H2 Oとし
た。以上で得られた3種類のリン酸化ランタンの配合比
とGaLa合金の添加量を種々に変化させて、LaGa
3 (Pa b 2 (OH)6 の化合物を作成した。この
化合物が作成できたのは、aが1又は2、且つbが2,
3,4,5又は7の組成比のみで、他の比率では合成で
きなかった。これらの化合物を粉末にしたものを体積%
で20%と、粒径30μmのダイヤモンド粉末を体積%
で80%とを混合したものを原料粉末とし、超高圧発生
装置を用いて5.7GPa,1400℃の圧力温度で1
時間保持したところ、ビッカース硬度が14000kg
/mm2 のダイヤモンド焼結体が得られた。得られた焼
結体は、酸やアルカリに対してもあまり浸食されず、耐
腐食性の高いことが判明した。
Example 8-1 Metallic lanthanum dioxide
Potassium acid and sodium were mixed and melted. acid
NaLAP by treatment2O7Removed and LaPOFourGot
Was. In addition, sodium lanthanum hydrogen phosphate NaLaH
(POFour)2Pyrolyzes 3CeO2・ P2O Five・ 3
H2O. In addition, sodium phosphate and lanthanum nitrate
And react with LaFour(P2O7)3・ 12H2O
Was. Mixing ratio of the three types of lanthanum phosphate obtained above
And the amount of GaLa alloy added are variously changed to produce LaGa
3(PaOb)2(OH)6The compound was prepared. this
The compounds could be made that a is 1 or 2 and b is 2,
Only the composition ratio of 3, 4, 5 or 7 is synthetic at other ratios.
Didn't come Powder of these compounds in volume%
20% and volume% of diamond powder with a particle size of 30 μm
Ultra high pressure is generated by mixing 80% with
1 at 5.7 GPa and 1400 ° C pressure temperature
Vickers hardness of 14000 kg
/ Mm2A diamond sintered body of was obtained. Obtained grilled
The aggregate does not corrode much with acid or alkali,
It was found to be highly corrosive.

【0046】〔実施例8−2〕実施例8−1で得られた
各LaGa3 (Pa b 2 (OH)6 粉末1体積%に
ダイヤモンド粉末(平均粒度2μm)99体積%を加え
良く混合したものを混合原料としてカプセルに充填し、
6GPa,1500℃で60分間保持し、焼結したとこ
ろ、いずれもビッカース硬度が18000の粉末が得ら
れた。さらに、実施例8−1で得られた各LaGa
3 (Pa b 2 (OH)6 粉末50体積%にダイヤモ
ンド粉末(平均粒度30μm)50体積%を加えよく混
合し、円板状に型押しした後、前記と同一条件で焼結と
たところ、いずれもビッカース硬度が8000kg/m
2 の焼結体が得られた。
Example 8-2 99% by volume of diamond powder (average particle size 2 μm) was added to 1% by volume of each LaGa 3 (P a O b ) 2 (OH) 6 powder obtained in Example 8-1. Fill a capsule with a well-mixed material as a mixing raw material,
When the powder was held at 6 GPa and 1500 ° C. for 60 minutes and sintered, powders each having a Vickers hardness of 18000 were obtained. Furthermore, each LaGa obtained in Example 8-1
50% by volume of 3 (P a O b ) 2 (OH) 6 powder was added with 50% by volume of diamond powder (average particle size 30 μm), mixed well, stamped into a disk shape, and sintered under the same conditions as above. The Vickers hardness was 8000 kg / m.
A sintered body of m 2 was obtained.

【0047】〔実施例9〕実施例7で作成したCePO
4 (H2 O)3 とNdHPO4 ・3H2 Oを熱分解して
得られたNd2 3 (P2 5 2 と、CaO及びGe
Sをそれぞれ粉末にして体積比6:3:1の割合で良く
混合した。該混合粉末(1体積%)にさらに粒径30μ
mのダイヤモンド粉末(99体積%)を混合した後、円
板状に型押し、これを超高圧発生装置を用いて5.5G
Pa,1350℃の圧力温度で50分間保持したとこ
ろ、ビッカース硬度が15000kg/mm2 のダイヤ
モンド焼結体が得られ、十分に焼結していることを確認
した。得られた焼結体を真空炉内で1200℃に加熱
し、冷却後、ビッカース硬度を再び測定したがやはり1
5000kg/mm2 となり、耐熱性が高いことが判明
した。
[Embodiment 9] CePO prepared in Embodiment 7
Nd 2 O 3 (P 2 O 5 ) 2 obtained by thermally decomposing 4 (H 2 O) 3 and NdHPO 4 .3H 2 O, CaO and Ge
Each S was powdered and mixed well at a volume ratio of 6: 3: 1. The mixed powder (1% by volume) further has a particle size of 30 μ.
After mixing diamond powder of m (99% by volume), embossed into a disk shape, and using an ultra high pressure generator, 5.5 G
When held at a pressure temperature of 1350 ° C. for 50 minutes, a diamond sintered body having a Vickers hardness of 15000 kg / mm 2 was obtained, and it was confirmed that the diamond sintered body was sufficiently sintered. The obtained sintered body was heated to 1200 ° C. in a vacuum furnace, cooled, and then the Vickers hardness was measured again.
It was 5000 kg / mm 2 , and it was found that the heat resistance was high.

【0048】〔実施例10−1〕塩化第1セリウム溶液
〔0.2mol当量〕にリン酸水素ナトリウム(Na2
HPO4 )〔0.2mol当量〕を加え、加熱し、Ce
PO4 ・(H2 O)3 を沈殿させ、濾取した。該沈殿物
にAlCe合金の粉末〔0.3mol当量〕を加え加熱
したところ、CeAl3 (PO4 2 ・(OH)6 が形
成できた。該化合物を粉末にしたもの5体積%と粒径4
μmのダイヤモンド粉末95体積%とを混合し、得られ
た混合粉末を原料とし、超高圧発生装置を用いて、5.
8GPa,1400℃の圧力温度で保持し、焼結した。
得られたダイヤモンド焼結体のヌープ硬度は8200k
g/mm2 を示し、十分に焼結していることが判明し
た。当該ダイヤモンド焼結体を切削工具の形状に加工
し、アルミシリコンの合金をフライス切削した(条件:
切削速度500m/min,切り込み0.1mm)とこ
ろ、十分な切削性能が得られ、耐欠損性に優れているこ
とが確認できた。
Example 10-1 Sodium hydrogen phosphate (Na 2 ) was added to a cerium chloride solution [0.2 mol equivalent].
HPO 4 ) [0.2 mol equivalent] was added and heated to Ce.
PO 4. (H 2 O) 3 was precipitated and collected by filtration. When AlCe alloy powder [0.3 mol equivalent] was added to the precipitate and heated, CeAl 3 (PO 4 ) 2. (OH) 6 could be formed. Powder of the compound 5% by volume and particle size 4
4. 95 μ% diamond powder having a volume of μm is mixed, and the obtained mixed powder is used as a raw material and an ultrahigh pressure generator is used to
It was held at a pressure temperature of 8 GPa and 1400 ° C. and sintered.
The Knoop hardness of the obtained diamond sintered body is 8200k.
It showed g / mm 2 and was found to be sufficiently sintered. The diamond sintered body was processed into the shape of a cutting tool, and an aluminum-silicon alloy was milled (conditions:
At a cutting speed of 500 m / min and a cut depth of 0.1 mm), it was confirmed that sufficient cutting performance was obtained and the chipping resistance was excellent.

【0049】〔実施例10−2〕実施例10−1におい
て、AlCe合金とCePO4 ・(H2 O)3 の混合比
(モル比)を種々に変え、それぞれ加熱処理したとこ
ろ、下記のx,y,zの範囲内でCeAlx (PO4
y (OH)z が形成できた。 1≦x≦4.5,1≦y≦5,1≦z≦26。 得られた各生成物を粉末にしたもの5体積%に、粒径4
μmのダイヤモンド粉末を95体積%となるように加え
て混合粉末とし、超高圧発生装置を用いて5.8〜6.
0GPa,1400〜1450℃の圧力温度で保持し、
焼結したところ、ヌープ硬度8000〜9000kg/
mm2 の高硬度のダイヤモンド焼結体が得られた。
[Example 10-2] In Example 10-1, various mixing ratios (molar ratios) of the AlCe alloy and CePO 4. (H 2 O) 3 were changed, and heat treatments were carried out. , Y, z within the range CeAl x (PO 4 ).
y (OH) z could be formed. 1 ≦ x ≦ 4.5, 1 ≦ y ≦ 5, 1 ≦ z ≦ 26. The obtained products were powdered to 5% by volume, and the particle size was 4
Diamond powder of μm was added so as to be 95% by volume to form a mixed powder, which was used for 5.8 to 6.
Hold at a pressure temperature of 0GPa, 1400 to 1450 ° C,
When sintered, Knoop hardness 8000-9000 kg /
A diamond sintered body having a high hardness of mm 2 was obtained.

【0050】〔実施例11−1〕二酸化ランタンにメタ
リン酸カリウムとナトリウムとを混合し、溶融させた。
酸処理によりNaLAP2 7 を除去し、LaPO4
得た。また、リン酸水素ランタンナトリウムNaLaH
(PO4 2 を熱分解させ、3CeO2 ・P2 5 ・3
2 Oとした。さらに、リン酸ナトリウムと硝酸ランタ
ンを反応させ、La4 (P2 7 3 ・12H2 Oとし
た。以上で得られた3種類のリン酸化ランタンの配合比
とGaLa合金の添加量を種々に変化させて、LaGa
3 (Pa b 2 (OH)6 の化合物を作成した。この
化合物が作成できたのは、aが1又は2、且つbが2,
3,4,5又は7の組成比のみで、他の比率では合成で
きなかった。これらの化合物を粉末にしたものを体積%
で10%と、粒径4μmのダイヤモンド粉末を体積%で
90%とを混合したものを原料粉末とし、超高圧発生装
置を用いて5.7GPa,1400℃の圧力温度で15
分間保持したところ、ヌープ硬度が8200kg/mm
2 のダイヤモンド焼結体が得られた。得られた焼結体
は、酸やアルカリに対してもあまり浸食されず、耐腐食
性の高いことが判明した。
[Example 11-1] Lanthanum dioxide was added to meta.
Potassium phosphate and sodium were mixed and melted.
NaLAP by acid treatment2O7Removed and LaPOFourTo
Obtained. In addition, sodium lanthanum hydrogen phosphate NaLaH
(POFour)2Pyrolyzes 3CeO2・ P2O Five・ 3
H2O. In addition, sodium phosphate and lanthanum nitrate
And react with LaFour(P2O7)3・ 12H2O
Was. Mixing ratio of the three types of lanthanum phosphate obtained above
And the amount of GaLa alloy added are variously changed to produce LaGa
3(PaOb)2(OH)6The compound was prepared. this
The compounds could be made that a is 1 or 2 and b is 2,
Only the composition ratio of 3, 4, 5 or 7 is synthetic at other ratios.
Didn't come Powder of these compounds in volume%
10% and diamond powder with a particle size of 4 μm in volume%
A mixture of 90% and raw material powder is used as an ultra-high pressure generator.
At a pressure of 5.7 GPa and 1400 ° C. for 15
Knoop hardness of 8200kg / mm when held for a minute
2A diamond sintered body of was obtained. The obtained sintered body
Resists corrosion by acid and alkali
It turned out that it is highly effective.

【0051】〔実施例11−2〕実施例11−1で得ら
れた各LaGa3 (Pa b 2 (OH)6 粉末0.5
体積%にダイヤモンド粉末(平均粒度2μm)99.5
体積%を加え良く混合したものを混合原料としてカプセ
ルに充填し、6GPa,1500℃で15分間保持し、
焼結したところ、いずれもヌープ硬度が8600kg/
mm2 の粉末が得られた。さらに、実施例11−1で得
られた各LaGa3 (Pa b 2 (OH)6 粉末50
体積%にダイヤモンド粉末(平均粒度30μm)50体
積%を加えよく混合し、円板状に型押しした後、前記と
同一条件で焼結とたところ、いずれもヌープ高度が70
00kg/mm2 の焼結体が得られた。
Example 11-2 Each LaGa 3 (P a O b ) 2 (OH) 6 powder obtained in Example 11-1 0.5
Diamond powder (average particle size 2 μm) 99.5% by volume
The mixture was mixed well by adding volume% and filled in a capsule as a mixed raw material, and kept at 6 GPa and 1500 ° C. for 15 minutes,
When sintered, each had a Knoop hardness of 8600 kg /
A powder of mm 2 was obtained. Furthermore, each Laga 3 obtained in Example 11-1 (P a O b) 2 (OH) 6 Powder 50
When 50% by volume of diamond powder (average particle size: 30 μm) was added to the volume%, mixed well, embossed into a disk shape, and sintered under the same conditions as described above, both had a Knoop height of 70.
A sintered body of 00 kg / mm 2 was obtained.

【0052】〔実施例12〕実施例10で作成したCe
PO4 (H2 O)3 とNdHPO4 ・3H2 Oを熱分解
して得られたNd2 3 (P2 5 2 と、CaO及び
GeSをそれぞれ粉末にして体積比6:3:1の割合で
良く混合した。該混合粉末(1体積%)にさらに粒径4
μmのダイヤモンド粉末(99体積%)を混合した後、
円板状に型押し、これを超高圧発生装置を用いて5.5
GPa,1350℃の圧力温度で15分間保持したとこ
ろ、ヌープ硬度が8400kg/mm2 のダイヤモンド
焼結体が得られ、十分に焼結していることを確認した。
得られた焼結体を真空炉内で1200℃に加熱し、冷却
後、ヌープ硬度を再び測定したが加熱前とほとんど変化
なく、耐熱性が高いことが判明した。ヌープ高度が70
00kg/mm2 の焼結体が得られた。
[Embodiment 12] Ce prepared in Embodiment 10
Nd 2 O 3 (P 2 O 5 ) 2 obtained by thermally decomposing PO 4 (H 2 O) 3 and NdHPO 4 .3H 2 O, and CaO and GeS were made into powders and the volume ratio was 6: 3 :. Mix well at a ratio of 1. The mixed powder (1% by volume) further has a particle size of 4
After mixing μm diamond powder (99% by volume),
It is stamped into a disc shape and it is used for 5.5 with an ultra high pressure generator.
When kept at a pressure temperature of 1350 ° C. for 15 minutes, a diamond sintered body having a Knoop hardness of 8400 kg / mm 2 was obtained, and it was confirmed that the diamond sintered body was sufficiently sintered.
The obtained sintered body was heated to 1200 ° C. in a vacuum furnace, and after cooling, the Knoop hardness was measured again, but it was found that there was almost no change from that before heating and that the heat resistance was high. Knoop altitude is 70
A sintered body of 00 kg / mm 2 was obtained.

【0053】〔実施例13〕実施例8−2、および11
−2で得られたダイヤモンド焼結体を粉砕し、平均粒径
30μmの砥粒にした。この砥粒を用いて気相合成ダイ
ヤモンドの平板を研磨したところ、いずれも研磨材とし
て十分に使用できるものであった。
[Example 13] Examples 8-2 and 11
The diamond sintered body obtained in No. 2 was pulverized into abrasive grains having an average particle size of 30 μm. When a flat plate of vapor-phase synthetic diamond was polished using these abrasive grains, all of them could be sufficiently used as an abrasive.

【0054】〔実施例14〕実施例1と同様にして作製
したリン酸セリウムの粉末(1〜2μm)と平均粒径1
5μmの合成ダイヤモンド粉末をそれぞれ厚み1mm、
2mmに成形したものを交互に積層してMoカプセルに
入れ、ベルト型超高圧発生装置を用い6.5GPa、1
600℃の圧力温度条件で15分保持し焼結体して得ら
れたダイヤモンド焼結体についてX線回析により組成を
同定したところ、ダイヤモンドの他約2体積%のリン酸
セリウムが検出された。この焼結体の硬度をヌープ圧子
により評価したところ8200kg/mm2 と高硬度で
あった。なお、合成ダイヤモンドに代えて、ダイヤモン
ドと黒鉛の比率を1:5の割合で混合した粉末を用いた
場合はヌープ硬度は8000kg/mm2 であった。
Example 14 Cerium phosphate powder (1 to 2 μm) produced in the same manner as in Example 1 and average particle size 1
5 μm synthetic diamond powder with a thickness of 1 mm,
The 2 mm molded product was alternately laminated and put in a Mo capsule, and 6.5 GPa, 1 using a belt type ultra high pressure generator.
The composition of the diamond sintered body obtained by holding the sintered body under pressure and temperature conditions of 600 ° C. for 15 minutes was identified by X-ray diffraction, and about 2% by volume of cerium phosphate other than diamond was detected. . When the hardness of this sintered body was evaluated by a Knoop indenter, it was 8200 kg / mm 2 , which was a high hardness. The Knoop hardness was 8000 kg / mm 2 when powder of diamond and graphite mixed at a ratio of 1: 5 was used instead of synthetic diamond.

【0055】〔実施例15〕リン酸セリウムの代わり
に、実施例7−1と同様にして作製したCeAl3 (P
4 2 ・(OH)6 を用いた他は実施例14と同様に
してダイヤモンド焼結体を作製した。得られた焼結体の
ヌープ硬度は8400kg/mm2 と高硬度であった。
Example 15 In place of cerium phosphate, CeAl 3 (P was prepared in the same manner as in Example 7-1.
A diamond sintered body was produced in the same manner as in Example 14 except that O 4 ) 2 (OH) 6 was used. The Knoop hardness of the obtained sintered body was as high as 8400 kg / mm 2 .

【0056】〔実施例16〕リン酸セリウムの代わり
に、実施例8−1と同様にして作製したLaGa3 (P
aOb)2 ・(OH)6 を用いた他は実施例14と同様
にしてダイヤモンド焼結体を作製した。得られた焼結体
のヌープ硬度は8000kg/mm2 と高硬度であっ
た。
Example 16 Instead of cerium phosphate, LaGa 3 (P was prepared in the same manner as in Example 8-1.
A diamond sintered body was produced in the same manner as in Example 14 except that aOb) 2 (OH) 6 was used. The Knoop hardness of the obtained sintered body was as high as 8000 kg / mm 2 .

【0057】[0057]

【発明の効果】以上説明したように、本発明により耐欠
損性、耐腐食性、耐熱性、耐食性のいずれにも優れ、さ
らに非鉄金属溶媒では不可能であった低圧低温でダイヤ
モンド焼結体が焼結可能となった。これはダイヤモンド
焼結体の製造コスト低減をもたらし、産業上の効果が非
常に大きい。また本発明のダイヤモンド焼結体を用いた
た工具や粉砕して得られる砥粒は上記特性を有する優れ
たものである。
As described above, according to the present invention, the diamond sintered body is excellent in all of fracture resistance, corrosion resistance, heat resistance and corrosion resistance, and further, it is possible to obtain a diamond sintered body at a low pressure and a low temperature which is impossible with a non-ferrous metal solvent. It became possible to sinter. This brings about a reduction in the manufacturing cost of the diamond sintered body and has a very great industrial effect. The tool using the diamond sintered body of the present invention and the abrasive grains obtained by crushing are excellent ones having the above-mentioned characteristics.

フロントページの続き (72)発明者 金田 泰幸 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内Front Page Continuation (72) Inventor Yasuyuki Kaneda 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンドの体積比率が50〜99.
9%であり、残部結合相が希土類元素、アルカリ土類元
素、周期律表の3B族元素、4B族元素、及びイオウか
らなる群から選ばれる1種又は2種以上の元素(A)と
リン化合物((C)もしくは複合体、又は前記化合物
(C)もしくは複合体と(A)の酸化物からなる単相も
しくは複合相であることを特徴とするダイヤモンド焼結
体。
1. The volume ratio of diamond is 50 to 99.
9%, and the balance of the binder phase is one or more elements (A) and phosphorus selected from the group consisting of rare earth elements, alkaline earth elements, 3B group elements of the periodic table, 4B group elements, and sulfur. A diamond sintered body characterized by being a single phase or a composite phase composed of a compound ((C) or a complex, or an oxide of the compound (C) or the complex and (A).
【請求項2】 ダイヤモンドの体積比率が50〜99.
9%であり、残部結合相が希土類元素とリン化合物とか
ら得られる物質を主体とする相からなることを特徴とす
るダイヤモンド焼結体。
2. The volume ratio of diamond is 50 to 99.
9%, and the remaining bonded phase is a phase mainly composed of a substance obtained from a rare earth element and a phosphorus compound, wherein the diamond sintered body is characterized.
【請求項3】 前記リン化合物(B)がPa b (但し
aは1又は2、bは2,3,4,5又は7である)で表
されるものであることを特徴とする請求項1記載のダイ
ヤモンド焼結体。
3. The phosphorus compound (B) is represented by P a O b (where a is 1 or 2, and b is 2, 3, 4, 5 or 7). The diamond sintered body according to claim 1.
【請求項4】 前記化合物(C)もしくは複合体
(C′)がMNx (Pa b y ( OH)z 〔但しMは
希土類元素、アルカリ土類金属及び周期律表の4B族元
素から選ばれる1又は2以上の元素の単体又は固溶体で
あり、Nは周期律表の3B族元素又はイオウの単体又は
固溶体であり、x,y,zはそれぞれ1≦x≦4.5,
1≦y≦5,1≦z≦26の範囲にある〕で表されるこ
とを特徴とする請求項1記載のダイヤモンド焼結体。
4. The compound (C) or complex
(C ') is MNx(PaO b)y(OH)z[However, M is
Rare earth elements, alkaline earth metals and 4B group elements of the periodic table
A simple substance or a solid solution of one or more elements selected from the elements
Yes, N is a 3B group element of the periodic table or sulfur alone or
It is a solid solution, and x, y, and z are 1 ≦ x ≦ 4.5,
1 ≦ y ≦ 5, 1 ≦ z ≦ 26]]
The diamond sintered body according to claim 1, characterized in that
【請求項5】 前記結合相が、希土類元素、アルカリ土
類元素、周期律表の3B族元素、4B族元素及びイオウ
からなる群から選ばれる1種又は2種以上の元素(A)
とPa b (但しaは1又は2、bは2,3,4,5又
は7である)で表されるリン化合物(B)との化合物
(C)又は複合体(C′)と希土類元素、アルカリ土類
元素、周期律表の3B族元素、4B族元素及びイオウか
らなる群から選ばれる1種又は2種以上の元素(A)の
酸化物からなることを特徴とする請求項1、3又は4に
記載のダイヤモンド焼結体。
5. The bonding phase is one or more elements (A) selected from the group consisting of rare earth elements, alkaline earth elements, 3B group elements of the periodic table, 4B group elements and sulfur.
And a compound (C) or a complex (C ′) with a phosphorus compound (B) represented by P a O b (where a is 1 or 2 and b is 2,3,4,5 or 7) 7. An oxide of one or more elements (A) selected from the group consisting of rare earth elements, alkaline earth elements, 3B group elements of the periodic table, 4B group elements and sulfur. The diamond sintered body according to 1, 3, or 4.
【請求項6】 前記結合相が、MNx (Pa b y (
OH)z 〔但しMは希土類元素、アルカリ土類金属及び
周期律表の4B族元素から選ばれる1又は2以上の元素
の単体又は固溶体であり、Nは周期律表の3B族元素又
はイオウの単体又は固溶体であり、x,y,zはそれぞ
れ1≦x≦4.5,1≦y≦5,1≦z≦26の範囲に
ある〕で表される前記化合物(C)又は複合体(C′)
及び希土類元素、アルカリ土類元素、周期律表の3B族
元素、4B族元素及びイオウからなる群から選ばれる1
種又は2種以上の元素(A)の酸化物からなることを特
徴とする請求項1、3又は4に記載のダイヤモンド焼結
体。
6. The bonded phase is MN x (P a O b ) y (
OH) z [where M is a simple substance or a solid solution of one or more elements selected from rare earth elements, alkaline earth metals and 4B group elements of the periodic table, and N is 3B group element of the periodic table or sulfur A simple substance or a solid solution, and x, y, and z are in the range of 1 ≦ x ≦ 4.5, 1 ≦ y ≦ 5, 1 ≦ z ≦ 26]] or the compound (C) or complex ( C ')
And a rare earth element, an alkaline earth element, a group 3B element of the periodic table, a group 4B element, and sulfur 1
The diamond sintered body according to claim 1, 3 or 4, wherein the diamond sintered body is made of one kind or an oxide of two or more kinds of elements (A).
【請求項7】 希土類元素、アルカリ土類元素、周期律
表の3B族元素、4B族元素及びイオウからなる群から
選ばれる1種又は2種以上の元素(A)の粉末、該
(A)の酸化物又は該(A)を含有する化合物(D)の
粉末、リン又はリン化合物(B)の粉末並びにダイヤモ
ンド粉末又は黒鉛粉末を混合し、得られた混合粉末をダ
イヤモンドの熱力学的安定領域の圧力、温度条件で保持
し、焼結することを特徴とする請求項1〜6何れかに記
載のダイヤモンド焼結体の製造方法。
7. A powder of one or more elements (A) selected from the group consisting of rare earth elements, alkaline earth elements, 3B group elements of the periodic table, 4B group elements and sulfur, the powder (A). Powder of the compound (D) containing the oxide of the above or (A), powder of phosphorus or phosphorus compound (B) and diamond powder or graphite powder, and the resulting mixed powder is used as a thermodynamically stable region of diamond. The method for producing a diamond sintered body according to any one of claims 1 to 6, wherein the diamond sintered body is held under the pressure and temperature conditions described above and sintered.
【請求項8】 希土類元素、アルカリ土類元素、周期律
表の3B族元素、4B族元素及びイオウからなる群から
選ばれる1種又は2種以上の元素(A)とリン化合物
(B)との化合物(C)、もしくは当該化合物(C)と
(A)の酸化物からなる複合物を予め合成し、当該化合
物(C)又は当該複合物の粉末とダイヤモンド粉末又は
黒鉛粉末を混合し、得られた混合粉末をダイヤモンドの
熱力学的安定領域の圧力、温度条件で保持し、焼結する
ことを特徴とする請求項1〜6の何れかに記載のダイヤ
モンド焼結体の製造方法。
8. A phosphorus compound (B) and one or more elements (A) selected from the group consisting of rare earth elements, alkaline earth elements, 3B group elements of the periodic table, 4B group elements and sulfur. Of the compound (C) or the compound of the compound (C) and the oxide of the compound (A) is previously synthesized, and the powder of the compound (C) or the compound is mixed with the diamond powder or the graphite powder to obtain The method for producing a diamond sintered body according to any one of claims 1 to 6, wherein the mixed powder thus obtained is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered.
【請求項9】 希土類元素、アルカリ土類元素、周期律
表の3B族元素、4B族元素及びイオウからなる群から
選ばれる1種又は2種以上の元素(A)とリン化合物
(B)との化合物(C)、もしくは当該化合物(C)と
(A)の酸化物からなる複合物の薄片、薄板又は焼結体
保持板を予め作製しておき、ダイヤモンド粉末又は黒鉛
粉末と前記薄片、薄板又は焼結体保持板とを組合せ、ダ
イヤモンドの熱力学的安定領域の圧力、温度条件で溶浸
させることによりダイヤモンドを焼結させることを特徴
とする請求項1〜6の何れかに記載のダイヤモンド焼結
体の製造方法。
9. A phosphorus compound (B) and one or more elements (A) selected from the group consisting of rare earth elements, alkaline earth elements, 3B group elements of the periodic table, 4B group elements and sulfur. Of the compound (C) or the compound (C) and an oxide of the compound (A), a thin piece, a thin plate, or a sintered body holding plate is prepared in advance, and the diamond powder or the graphite powder and the thin piece, the thin plate are prepared. Alternatively, the diamond according to any one of claims 1 to 6, wherein the diamond is sintered by being combined with a sintered body holding plate and infiltrated under the pressure and temperature conditions of the thermodynamically stable region of the diamond. Manufacturing method of sintered body.
【請求項10】 希土類元素粉末又は該希土類元素を1
種類以上含有する合金粉末及びリン化合物粉末並びにダ
イヤモンド粉末又は非ダイヤモンド炭素粉末又はダイヤ
モンドと非ダイヤモンド炭素の混合粉末を混合し、得ら
れた混合原料をダイヤモンドの熱力学的安定領域の圧
力、温度条件で保持し、焼結することを特徴とする請求
項1〜6の何れかに記載のダイヤモンド焼結体の製造方
法。
10. A rare earth element powder or the rare earth element
Mixed alloy powder and phosphorus compound powder containing more than one kind and diamond powder or non-diamond carbon powder or mixed powder of diamond and non-diamond carbon, the resulting mixed raw material under the pressure and temperature conditions of the thermodynamic stable region of diamond The method for producing a diamond sintered body according to any one of claims 1 to 6, which is held and sintered.
【請求項11】 希土類元素とリン化合物から形成され
る化合物をあらかじめ合成しておき、当該化合物の粉末
とダイヤモンド粉末又は非ダイヤモンド炭素粉末又はダ
イヤモンドと非ダイヤモンド炭素の混合粉末とを混合
し、得られた混合粉末をダイヤモンドの熱力学的安定領
域の圧力、温度条件で保持し、焼結することを特徴とす
る請求項1〜6の何れかに記載のダイヤモンド焼結体の
製造方法。
11. A compound obtained by previously synthesizing a compound formed from a rare earth element and a phosphorus compound and mixing the powder of the compound with a diamond powder or a non-diamond carbon powder or a mixed powder of diamond and non-diamond carbon. The method for producing a diamond sintered body according to any one of claims 1 to 6, wherein the mixed powder is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered.
【請求項12】 希土類元素粉末又は該希土類元素を1
種類以上含有する合金粉末及びリン化合物粉末の成形体
と、ダイヤモンド粉末の成形体又は非ダイヤモンド炭素
粉末の成形体又はダイヤモンドと非ダイヤモンド炭素の
混合粉末の成形体とを積層し、これをダイヤモンドの熱
力学的安定領域の圧力、温度条件で保持し、焼結するこ
とを特徴とする請求項1〜6の何れかに記載のダイヤモ
ンド焼結体の製造方法。
12. The rare earth element powder or the rare earth element is used as 1
The alloy powder and phosphorus compound powder compacts containing more than one kind are laminated with the diamond powder compact or the non-diamond carbon powder compact or the diamond and non-diamond carbon mixed powder compact, and this is heat-treated with diamond. The method for producing a diamond sintered body according to any one of claims 1 to 6, characterized in that the diamond sintered body is held under pressure and temperature conditions in a mechanically stable region and then sintered.
【請求項13】 希土類元素とリン化合物から形成され
る化合物をあらかじめ合成しておき、当該化合物粉末の
成形体と、ダイヤモンド粉末の成形体又は非ダイヤモン
ド炭素粉末の成形体又はダイヤモンドと非ダイヤモンド
炭素の混合粉末の成形体とを積層し、これをダイヤモン
ドの熱力学的安定領域の圧力、温度条件で保持し、焼結
することを特徴とする請求項1〜6の何れかに記載のダ
イヤモンド焼結体の製造方法。
13. A compound formed from a rare earth element and a phosphorus compound is previously synthesized, and a compact of the compound powder, a compact of diamond powder or a compact of non-diamond carbon powder, or a compact of diamond and non-diamond carbon. The diamond sintered body according to any one of claims 1 to 6, wherein a compacted body of mixed powder is laminated, and this is sintered under pressure and temperature conditions in a thermodynamically stable region of diamond. Body manufacturing method.
【請求項14】 請求項1〜6の何れかに記載されるダ
イヤモンド焼結体を刃先として用いてなることを特徴と
する切削、研削又は掘削用ダイヤモンド焼結体工具。
14. A diamond sintered body tool for cutting, grinding or excavating, characterized by using the diamond sintered body according to any one of claims 1 to 6 as a cutting edge.
【請求項15】 請求項1〜6の何れかに記載されるダ
イヤモンド焼結体を粉砕されてなることを特徴とする砥
粒。
15. An abrasive grain obtained by crushing the diamond sintered body according to any one of claims 1 to 6.
JP22154695A 1994-09-16 1995-08-30 Diamond sintered body, manufacturing method thereof, diamond sintered body tool, and abrasive grains Expired - Fee Related JP3893631B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22154695A JP3893631B2 (en) 1994-09-16 1995-08-30 Diamond sintered body, manufacturing method thereof, diamond sintered body tool, and abrasive grains
DE69533769T DE69533769T2 (en) 1994-09-16 1995-09-15 Diamond sintered body, process for its production and material, and abrasive grains using the same
EP95306515A EP0701861B1 (en) 1994-09-16 1995-09-15 A diamond sintered body and a process for the production of the same, tools and abrasive grains using the same
US08/529,158 US5912217A (en) 1994-09-16 1995-09-15 Diamond sintered body and a process for the production of the same, tools and abrasive grains using the same
RU95115972A RU2113531C1 (en) 1994-09-16 1995-09-15 Diamond sintered material, method of its production and tool and abrasive powder made from diamond sintered material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6-221939 1994-09-16
JP22193994 1994-09-16
JP22193894 1994-09-16
JP6-221938 1994-09-16
JP22154695A JP3893631B2 (en) 1994-09-16 1995-08-30 Diamond sintered body, manufacturing method thereof, diamond sintered body tool, and abrasive grains

Publications (2)

Publication Number Publication Date
JPH08133838A true JPH08133838A (en) 1996-05-28
JP3893631B2 JP3893631B2 (en) 2007-03-14

Family

ID=27330558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22154695A Expired - Fee Related JP3893631B2 (en) 1994-09-16 1995-08-30 Diamond sintered body, manufacturing method thereof, diamond sintered body tool, and abrasive grains

Country Status (1)

Country Link
JP (1) JP3893631B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504550A (en) * 2005-08-11 2009-02-05 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline diamond polishing element and method for manufacturing the same
JP2013245128A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain type wire
JP2013544744A (en) * 2010-10-22 2013-12-19 エレメント シックス アブレイシヴズ ソシエテ アノニム Polycrystalline diamond material
JP2015112685A (en) * 2013-12-12 2015-06-22 株式会社ミズホ Low melting and low shrinkable vitrified grindstone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504550A (en) * 2005-08-11 2009-02-05 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline diamond polishing element and method for manufacturing the same
US10213901B2 (en) 2005-08-11 2019-02-26 Element Six Abrasives Sa Polycrystalline diamond abrasive element and method of its production
JP2013544744A (en) * 2010-10-22 2013-12-19 エレメント シックス アブレイシヴズ ソシエテ アノニム Polycrystalline diamond material
JP2013245128A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain type wire
JP2015112685A (en) * 2013-12-12 2015-06-22 株式会社ミズホ Low melting and low shrinkable vitrified grindstone

Also Published As

Publication number Publication date
JP3893631B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
US5912217A (en) Diamond sintered body and a process for the production of the same, tools and abrasive grains using the same
EP0181258B1 (en) Improved cubic boron nitride compact and method of making
US5769176A (en) Diamond sintered compact and a process for the production of the same
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JP4684599B2 (en) Method for producing cubic boron nitride
JP2008539155A (en) Cubic boron nitride compact
EP1013379A1 (en) Diamond-containing stratified composite material and method of manufacturing the same
GB2173814A (en) High-hardness sintered article and method for manufacture thereof
JPH07286229A (en) High pressure phase boron nitride sintered body for cutting tool and its production
JPH08133839A (en) Diamond sintered compact, its production and diamond sintered compact tool and abrasive grain
JP2798263B2 (en) Sintered body of hardly sinterable powder, its abrasive grains and whetstone, and methods for producing them
JP3893631B2 (en) Diamond sintered body, manufacturing method thereof, diamond sintered body tool, and abrasive grains
JPH083131B2 (en) Method for manufacturing diamond sintered body for tool
JPS6355161A (en) Manufacture of industrial diamond sintered body
JPH09142933A (en) Diamond sintered compact and its production
JPH09142932A (en) Diamond sintered compact and its production
RU2113531C1 (en) Diamond sintered material, method of its production and tool and abrasive powder made from diamond sintered material
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPS6319585B2 (en)
CN102510907A (en) Boron suboxide composite material
JPS5950075A (en) Manufacture of cubic boron nitride sintered body
JP3731223B2 (en) Diamond sintered body and manufacturing method thereof
JP3622261B2 (en) Diamond sintered body and manufacturing method thereof
JP3978789B2 (en) Diamond sintered body and method for producing the same
JPH08310865A (en) Diamond sintered compact and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees