JPH08132521A - Production of fluoroplastic stretched article - Google Patents

Production of fluoroplastic stretched article

Info

Publication number
JPH08132521A
JPH08132521A JP29562094A JP29562094A JPH08132521A JP H08132521 A JPH08132521 A JP H08132521A JP 29562094 A JP29562094 A JP 29562094A JP 29562094 A JP29562094 A JP 29562094A JP H08132521 A JPH08132521 A JP H08132521A
Authority
JP
Japan
Prior art keywords
fluororesin
temperature
solid phase
fluoroplastic
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29562094A
Other languages
Japanese (ja)
Other versions
JP3604746B2 (en
Inventor
Tetsuo Kanemoto
哲夫 金元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP29562094A priority Critical patent/JP3604746B2/en
Publication of JPH08132521A publication Critical patent/JPH08132521A/en
Application granted granted Critical
Publication of JP3604746B2 publication Critical patent/JP3604746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To produce a fluoroplastic stretched article excellent in strength and the modulus of elasticity by extruding fluoroplastic in a solid phase within a temp. range not substantially melting fluoroplastic before stretching the same. CONSTITUTION: Fluoroplastic is extruded or rolled in a solid phase within temp. range not substantially melting fluoroplastic. That is, when fluoroplastic extruded or rolled in a solid phase (processed in a solid phase) is stretched, it is pref. to set the temp. of fluoroplastic lower than solid phase processing temp. As fluoroplastic, polytetrafluoroethylene capable of obtaining a degree of crystallization by stretching is pref. The number average mol.wt of raw material fluoroplastic is pref. 5.0×10<6> to 1.0×10<7> . The temp. range not substantially melting fluoroplastic may be set so that the difference between the max. endothermic temp. after processing and that before processing is within 2 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフッ素樹脂延伸物の製造
方法に関する。さらに詳しくは、本発明は特定な条件下
でフッ素樹脂を固相押出しまたは固相圧延したのち、引
張延伸することにより強度、弾性率等の力学的物性が改
善されたフッ素樹脂延伸物を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a stretched fluororesin. More specifically, the present invention produces a stretched fluororesin having improved mechanical properties such as strength and elastic modulus by solid-phase extrusion or solid-phase rolling of a fluororesin under specific conditions and then tensile stretching. Regarding the method.

【0002】[0002]

【従来技術および発明が解決しようとする課題】フッ素
樹脂は一般にその融点が著しく高く、耐薬品性が良好で
あり,樹脂表面の摩擦係数が小さいことから、エンジニ
アリングプラスチックの一つとして広く利用されている
が、フッ素樹脂はその化学構造がポリオレフィンと酷似
していることから、その分子鎖を十分に引き伸ばし、一
軸に配向結晶化せしめることにより、高強度・高弾性率
のフィルム、テープないしヤーン状の延伸物を得る試み
もなされている。例えば、特開平1−192812号、
特開平2−307907号、特開平5ー78908号な
どには、ポリエチレンやポリプロピレンを延伸する技術
を応用して、フッ素樹脂繊維を製造する方法が教示され
ている。これらの従来技術の一つは、汎用の溶剤には溶
解しないフッ素樹脂を特殊の溶剤で溶液化した後、これ
を紡糸して延伸し、しかる後溶剤を抽出するという複雑
な工程を必要とする。また、他の一つは、フッ素樹脂を
その融点以上の高温で融解させ、得られた高粘度融液を
紡糸して延伸するものである。しかし、高粘度の溶液や
融液を均質に紡糸することは、技術的に極めて難しく、
なかでも、後者の方法は、融点以上の非常に高い温度を
採用しているため、フッ素樹脂の熱分解と人体に有害な
ガスの発生が心配される。従って、上記二つの従来技術
は、必ずしも賞用できないのが実情である。上記以外の
従来技術としては、例えば、J.Polym.Sci.Polym.Phys.E
d.,17(1979)73 あるいは Polym.Eng.Sci.,26(1986)239
に見られる如く、ポリテトラフルオロエチレンを固相押
出しする方法があるが、この方法では延伸物の強度を満
足できる程には向上させることができない。一般に、原
料樹脂を同じ倍率で延伸する場合には、原料樹脂の分子
量を大きくすることによって、また、原料樹脂の分子量
が同じである場合には、延伸倍率を大きくすることによ
って、延伸物の延伸方向の強度や弾性率を向上させるこ
とができる。しかし、フッ素樹脂の分子量をむやみに大
きくすることは、先に紹介した従来技術では、溶剤への
溶解性が低下するとか、あるいは、融解時の粘度が増大
して紡糸ないしは延伸に支障を来すなどの不都合を招く
ばかりでなく、延伸倍率を大きくした場合には、延伸切
れが多発する可能性があるため好ましくない。
2. Description of the Related Art Fluororesin is generally used as one of engineering plastics because it has a very high melting point, good chemical resistance, and a small coefficient of friction on the resin surface. However, since the chemical structure of fluororesin is very similar to that of polyolefin, its molecular chain is sufficiently stretched and uniaxially oriented and crystallized to form a film, tape or yarn of high strength and high elastic modulus. Attempts have also been made to obtain a stretched product. For example, JP-A-1-192812,
JP-A-2-307907, JP-A-5-78908 and the like teach methods for producing fluororesin fibers by applying the technique of stretching polyethylene or polypropylene. One of these conventional techniques requires a complicated process in which a fluororesin that does not dissolve in a general-purpose solvent is solubilized with a special solvent, spun and stretched, and then the solvent is extracted. . The other is to melt the fluororesin at a temperature higher than its melting point, and spin and stretch the resulting high-viscosity melt. However, it is technically extremely difficult to spin a highly viscous solution or melt homogeneously,
In particular, the latter method employs a very high temperature above the melting point, so there is concern about thermal decomposition of the fluororesin and generation of gas harmful to the human body. Therefore, in reality, the above-mentioned two conventional techniques cannot necessarily be prized. As a conventional technique other than the above, for example, J.Polym.Sci.Polym.Phys.E
d., 17 (1979) 73 or Polym.Eng.Sci., 26 (1986) 239
As can be seen from the above, there is a method of solid-phase extrusion of polytetrafluoroethylene, but this method cannot improve the strength of the drawn product to a satisfactory level. In general, when the raw material resin is stretched at the same ratio, by stretching the molecular weight of the raw material resin, and when the molecular weight of the raw material resin is the same, by stretching the stretching ratio, stretching of the stretched product The strength and elastic modulus in the direction can be improved. However, increasing the molecular weight of the fluororesin unnecessarily means that in the above-mentioned conventional technique, the solubility in a solvent is lowered, or the viscosity at the time of melting is increased, which causes troubles in spinning or drawing. In addition to inconveniences, when the stretching ratio is increased, stretching breakage may occur frequently, which is not preferable.

【0003】[0003]

【課題を解決するための手段】本発明者は、従来技術に
指摘されるような問題点を伴うことなく、フッ素樹脂延
伸物を製造する方法について鋭意検討した結果、特定の
条件下フッ素樹脂を固相押出しまたは固相圧延した後、
引張延伸することにより強度、弾性率等の力学的物性に
優れたフッ素樹脂延伸物が製造できることを見出した。
すなわち、本発明に係るフッ素樹脂延伸物の製造方法
は、フッ素樹脂が実質的に融解しない温度範囲内で、フ
ッ素樹脂を固相押出しまたは固相圧延した後、引張延伸
することを特徴とする。本発明において、固相押出しま
たは固相圧延(以下、これを総称して固相加工という)
されたフッ素樹脂を、引張延伸するに際しては、その温
度を固相加工温度より低い温度に設定することが好まし
い。
Means for Solving the Problems The inventors of the present invention have made extensive studies as to a method for producing a stretched fluororesin without the problems pointed out in the prior art. After solid phase extrusion or solid phase rolling,
It has been found that a stretched fluororesin having excellent mechanical properties such as strength and elastic modulus can be produced by tensile stretching.
That is, the method for producing a stretched fluororesin according to the present invention is characterized in that the fluororesin is subjected to solid phase extrusion or solid phase rolling within a temperature range in which the fluororesin is not substantially melted, and then stretched and stretched. In the present invention, solid phase extrusion or solid phase rolling (hereinafter collectively referred to as solid phase processing)
When the stretched fluororesin is stretch-stretched, the temperature is preferably set to a temperature lower than the solid-phase processing temperature.

【0004】本発明の原料樹脂としては、如何なる種類
のフッ素樹脂も使用可能であって、これには共重合体も
含まれる。本発明で使用可能なフッ素樹脂を例示すれ
ば、ポリテトラフルオロエチレン(PTFE)、ポリク
ロロトリフルオロエチレン(PCTFE)、テトラフル
オロエチレン−パーフルオロアルキルビニルエーテル共
重合体(PFA)、テトラフルオロエチレン−エチレン
共重合体(ETFE)、テトラフルオロエチレン−ヘキ
サフルオロプロピレン共重合体(FEP)、クロロトリ
フルオロエチレン−エチレン共重合体(ECTFE)、
テトラフルオロエチレン−ヘキサフルオロプロピレン−
パーフルオロアルキルビニルエーテル共重合体(EP
E)、ポリビニリデンフルオライド(PVDF)、ポリ
ビニルフルオライド(PVF)などが挙げられる。なか
でも、延伸によって高い結晶化度が得られるフッ素樹脂
が好ましく、特にポリテトラフルオロエチレンが好まし
い。原料フッ素樹脂が共重合体である場合において、そ
の共重合体のコモノマー比に特別な限定はなく、重合形
態についても交互共重合、ランダム共重合、ブロック共
重合などのいずれであっても差し支えない。また、コモ
ノマーの結合様式も、頭−頭結合、頭−尾結合、尾−尾
結合のいずれであるかを問わない。また、本発明に使用
する原料として例示したフッ素樹脂は、1種のみであっ
ても、2種以上を組み合せたもの(例えはブレンドした
もの)でもよい。2種以上組み合せたものの場合、各樹
脂の使用比(例えばブレンド比)は、本発明の目的が達
成される限り、特に限定されない。
As the raw material resin of the present invention, any kind of fluororesin can be used, including a copolymer. Examples of the fluororesin usable in the present invention include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene. Copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), chlorotrifluoroethylene-ethylene copolymer (ECTFE),
Tetrafluoroethylene-hexafluoropropylene-
Perfluoroalkyl vinyl ether copolymer (EP
E), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF) and the like. Among them, fluororesins that can obtain high crystallinity by stretching are preferable, and polytetrafluoroethylene is particularly preferable. When the raw material fluororesin is a copolymer, there is no particular limitation on the comonomer ratio of the copolymer, and the polymerization form may be alternating copolymerization, random copolymerization, block copolymerization or the like. . Further, the comonomers may be bonded in any of head-to-head bonding, head-to-tail bonding, or tail-to-tail bonding. The fluororesin exemplified as the raw material used in the present invention may be only one kind or a combination of two or more kinds (for example, a blend). In the case of a combination of two or more kinds, the use ratio (for example, blend ratio) of each resin is not particularly limited as long as the object of the present invention is achieved.

【0005】原料フッ素樹脂の分子量にも特別な限定は
ないが、分子量の小さなものを用いると、引張延伸時の
倍率を大きくとることができないため、引張強度の高い
延伸物を得ることが難しく、分子量の大きなものを用い
ると、分子鎖が長大になりすぎるため押出しあるいは圧
延時の変形比を大きくすることが難しい。従って、本発
明で使用する原料フッ素樹脂は、数平均分子量が好まし
くは5.0×104 〜5.0×108 、より好ましくは
5.0×105 〜5.0×107 、さらに好ましくは
5.0×106 〜1.0×107 の範囲にあることが望
ましい。フッ素樹脂の分子量測定に関しては、種々の文
献で報告されている。例えば、PTFEについては Pol
ym.Eng.Sci.,28,538(1988)に記載されているように、溶
融状態における応力の緩和時間から見積もる方法、Macr
omol.,22,831(1989)に記載されているように、溶液の光
散乱の状態から見積もる方法で測定することができる。
また、テトラフルオロエチレン−ヘキサフルオロプロピ
レン共重合体については Macromol.,18,2023(1985)に記
載されているように、溶融状態における応力の緩和時間
から見積もる方法、テトラフルオロエチレン−エチレン
共重合体については Macromol.,20,98(1987)などに記載
されているように、溶液の光散乱の 状態から見積もる
方法で測定することができる。そのほかのフッ素樹脂に
ついてはPolym.Eng.Sci.,25,122(1985) に記載されてい
るように、溶融状態における応 力の緩和時間から見積
もる方法を応用して測定することができる。フッ素樹脂
の分子量分布は、上記した方法で分子量を測定した際に
同時に求めることができるが、本発明で使用する原料フ
ッ素樹脂は、力学的物性に優れた延伸物を得る上で、分
子量分布の狭いものが望ましい。
There is no particular limitation on the molecular weight of the raw material fluororesin, but if a material having a small molecular weight is used, it is difficult to obtain a stretched product having a high tensile strength because the stretch ratio at the time of tensile stretching cannot be increased. If a polymer having a large molecular weight is used, it is difficult to increase the deformation ratio during extrusion or rolling because the molecular chain becomes too long. Therefore, the raw material fluororesin used in the present invention has a number average molecular weight of preferably 5.0 × 10 4 to 5.0 × 10 8 , more preferably 5.0 × 10 5 to 5.0 × 10 7 , and further It is preferably in the range of 5.0 × 10 6 to 1.0 × 10 7 . Various molecular weight measurements of fluororesins have been reported in various documents. For example, for PTFE, Pol
As described in ym.Eng.Sci., 28 , 538 (1988), a method for estimating the relaxation time of stress in the molten state, Macr.
As described in Omol., 22 , 831 (1989), it can be measured by a method estimated from the light scattering state of the solution.
Further, for the tetrafluoroethylene-hexafluoropropylene copolymer, as described in Macromol., 18 , 2023 (1985), a method of estimating from the relaxation time of stress in the molten state, tetrafluoroethylene-ethylene copolymer Can be measured by the method estimated from the light scattering state of the solution, as described in Macromol., 20 , 98 (1987). Other fluororesins can be measured by applying a method of estimating from the relaxation time of the response in the molten state, as described in Polym. Eng. Sci., 25 , 122 (1985). The molecular weight distribution of the fluororesin can be determined at the same time when the molecular weight is measured by the above-mentioned method, but the raw material fluororesin used in the present invention is used to obtain a stretched product having excellent mechanical properties. A narrow one is desirable.

【0006】本発明の原料フッ素樹脂はその製法を問わ
ない。従って、本発明で使用する原料フッ素樹脂は、懸
濁重合法、乳化重合法、塊状重合法、溶液重合法、気相
重合法などのいずれで製造されたものであっても差し支
えなく、それらの重合法で採用される重合触媒や助触媒
の種類、さらには温度,圧力,時間などの重合条件にも
特別な制限はない。溶媒を必要とする重合法にあって
は、使用溶媒にも特別な制限はない。本発明では、重合
後溶剤などを除去させて得られる粉末状ないし粒状フッ
素樹脂をそのまま原料樹脂として使用することができる
が、それに先立ち、当該粉末状ないし粒状フッ素樹脂を
融解後冷却するか、あるいは適当な溶剤に溶解後、溶剤
を除去するという内容の予備処理を施すことができる。
但し、この予備処理後のフッ素樹脂は、次の条件を満た
すフッ素樹脂であることが望ましい。すなわち、予備処
理前後の粉末状ないし粒状フッ素樹脂をそれぞれ約1mg
正確に秤量し、各々を示差走査型熱量計(セイコー電子
工業(株)製DSC−220)を用い、昇温速度10℃
/分の条件で融解吸熱曲線を描かせ、その曲線が最も大
きい吸熱ピークを描く温度をピーク温度(いわゆる融
点)とする。この場合において、 [予備処理後のピーク温度(℃)>予備処理前のピーク
温度(℃)−4℃] 好ましくは、 [予備処理後のピーク温度(℃)>予備処理前のピーク
温度(℃)−2℃] を満たす粉末状ないし粒状フッ素樹脂が、予備処理後の
フッ素樹脂である。本発明の原料フッ素樹脂の粒径は、
通常0.1μm〜1000μm程度の範囲に、好ましく
は1μm〜500μm程度の範囲にある。本発明の原料
フッ素樹脂にはまた、その物性を改善するミルドカーボ
ンファイバーなどの補強剤、紫外線吸収剤、耐候剤、耐
光剤、酸化防止剤、さらには、顔料、染料などの任意の
添加剤を、本発明の効果を阻害しない範囲で配合させる
ことができるが、それらの各添加剤はフッ素樹脂に対し
て潤滑剤または溶剤としての作用しないものが選ばれ
る。
The raw material fluororesin of the present invention may be manufactured by any method. Therefore, the raw material fluororesin used in the present invention may be produced by any of suspension polymerization method, emulsion polymerization method, bulk polymerization method, solution polymerization method, gas phase polymerization method, etc. There are no particular restrictions on the type of polymerization catalyst or co-catalyst employed in the polymerization method, and on the polymerization conditions such as temperature, pressure and time. In the polymerization method that requires a solvent, the solvent used is not particularly limited. In the present invention, the powdery or granular fluororesin obtained by removing the solvent after the polymerization can be directly used as the raw material resin, but prior to that, the powdery or granular fluororesin is melted and then cooled, or After dissolving in a suitable solvent, a preliminary treatment of removing the solvent can be performed.
However, it is desirable that the fluororesin after this preliminary treatment is a fluororesin that satisfies the following conditions. That is, about 1 mg each of powdery or granular fluororesin before and after pretreatment
Accurately weigh each, using a differential scanning calorimeter (DSC-220 manufactured by Seiko Denshi Kogyo Co., Ltd.), heating rate 10 ℃
A melting endothermic curve is drawn under the condition of / min, and the temperature at which the curve shows the largest endothermic peak is the peak temperature (so-called melting point). In this case, [peak temperature after pretreatment (° C)> peak temperature before pretreatment (° C) -4 ° C], preferably, [peak temperature after pretreatment (° C)> peak temperature before pretreatment (° C) ) −2 ° C.] The powdery or granular fluororesin is a fluororesin after pretreatment. The particle size of the raw material fluororesin of the present invention is
Usually, it is in the range of about 0.1 μm to 1000 μm, preferably in the range of about 1 μm to 500 μm. The raw material fluororesin of the present invention also contains a reinforcing agent such as milled carbon fiber for improving the physical properties thereof, an ultraviolet absorber, a weather resistance agent, a light resistance agent, an antioxidant, and further, any additive such as a pigment or a dye. The additives can be blended within a range that does not impair the effects of the present invention, but those additives that do not act as a lubricant or a solvent on the fluororesin are selected.

【0007】本発明の方法は、基本的には原料フッ素樹
脂をこれが実質的に融解しない温度で固相押出しまたは
固相圧延(これを総称して固相加工という)し、次い
で、引張延伸する工程で構成されるが、上記の固相加工
に先立って、フッ素樹脂を予備圧縮成形しておくことが
できる。任意的なこの予備圧縮成形工程も、フッ素樹脂
が実質的に融解しない温度で行われるが、本発明で言う
「実質的に融解しない温度」の上限は、原料フッ素樹脂
の種類および性状によって相違し、また、原料フッ素樹
脂に施す加工の内容によって、つまり、その加工が圧縮
成形であるか、固相押出しであるか、固相圧延である
か,あるいは引張延伸であるかによっても相違する。従
って、まず、本発明で言う「フッ素樹脂が実質的に融解
しない温度」について説明する。示差走査型熱量計を用
いて或るフッ素樹脂の融解吸熱曲線を描かせると、その
曲線から最大吸熱ピーク温度(いわゆる融点)を求める
ことができるが、同種のフッ素樹脂であっても、その最
大吸熱ピーク温度は或る加工を施したフッ素樹脂と、そ
の加工を施していないフッ素樹脂とでは相違し、また、
加工の内容が異なれば、それによっても加工前の最大ピ
ーク温度と加工後のそれとは相違する。加工前後でフッ
素樹脂の最大吸熱ピーク温度が異なることに関して、本
発明者は次のような新知見を得た。すなわち、フッ素樹
脂に圧縮成形、固相押出し、固相圧延または引張延伸の
何れかの加工を施すと、その加工で採用した温度如何に
よって、加工後のフッ素樹脂の最大吸熱ピーク温度が、
加工前の最大吸熱ピーク温度を上回る場合と、下回る場
合があるが、加工が圧縮成形、固相押出し、固相圧延ま
たは引張延伸の何れであっても、任意の温度(t℃)で
フッ素樹脂に加工を施し、その加工後のフッ素樹脂の最
大吸熱ピーク温度が、加工前の最大吸熱ピーク温度を上
回る場合には、常に本発明の方法によって所期の延伸物
を得ることができる。そしてまた、本発明者は加工後の
フッ素樹脂の最大吸熱ピーク温度が、加工前の最大吸熱
ピーク温度を下回る場合であっても、その差が4℃、好
ましくは2℃以内であれば、同様に所期の延伸物を得る
ことができる。従って、本発明では原料フッ素樹脂また
は前工程で加工したフッ素樹脂を任意の温度(t℃)で
加工したサンプルと、当該加工工程の加工前サンプルに
ついて、それぞれの融解吸熱曲線から、それぞれの最大
吸熱ピーク温度を求め、両者の差が下記の式を満たして
いれば、その加工は「フッ素樹脂が実質的に融解しない
温度」で行われていると定義する。 P(t)>P0 −4℃ 、好ましくは、 P(t)>P
0 −2℃ ここで、P(t)は温度t℃で加工した、すなわち、圧
縮成形、固相押出し、固相圧延または引張延伸した各々
の加工後のサンプルの最大吸熱ピーク温度(℃)を示
し、P0 は当該加工工程の加工前のサンプルの最大吸熱
ピーク温度(℃)を示す。尚、フッ素樹脂の融解吸熱曲
線を描かせるに当っては、測定サンプルを約1mg正確に
秤量し、示差走査型熱量計(セイコー電子工業(株)製
DSC−220)を昇温速度10℃/分の条件で使用し
た。
In the method of the present invention, basically, the raw material fluororesin is subjected to solid phase extrusion or solid phase rolling (collectively referred to as solid phase processing) at a temperature at which it does not substantially melt, and then stretched and stretched. Although it is composed of steps, the fluororesin can be pre-compression-molded prior to the above solid-phase processing. This optional pre-compression molding step is also carried out at a temperature at which the fluororesin does not substantially melt, but the upper limit of "the temperature at which the fluororesin does not substantially melt" in the present invention varies depending on the type and properties of the raw fluororesin. Also, it differs depending on the content of the processing applied to the raw material fluororesin, that is, whether the processing is compression molding, solid phase extrusion, solid phase rolling, or tensile drawing. Therefore, first, the “temperature at which the fluororesin does not substantially melt” in the present invention will be described. If you draw a melting endothermic curve of a certain fluororesin using a differential scanning calorimeter, you can determine the maximum endothermic peak temperature (so-called melting point) from that curve, but even for the same type of fluororesin, the maximum The endothermic peak temperature is different between the fluororesin that has been processed and the fluororesin that has not been processed.
If the content of processing is different, the maximum peak temperature before processing and that after processing also differ accordingly. Regarding the difference in the maximum endothermic peak temperature of the fluororesin before and after processing, the present inventor has obtained the following new findings. That is, when the fluororesin is subjected to compression molding, solid-phase extrusion, solid-phase rolling, or tensile stretching, the maximum endothermic peak temperature of the fluororesin after processing, depending on the temperature adopted in the processing,
The maximum endothermic peak temperature before processing may be higher or lower than that, but whether the processing is compression molding, solid phase extrusion, solid phase rolling or tensile stretching, the fluororesin is at any temperature (t ° C). When the maximum endothermic peak temperature of the fluororesin after the processing is higher than the maximum endothermic peak temperature before the processing, the intended stretched product can always be obtained by the method of the present invention. Further, even when the maximum endothermic peak temperature of the fluororesin after processing is lower than the maximum endothermic peak temperature before processing, the present inventor is the same as long as the difference is 4 ° C, preferably 2 ° C or less. The desired stretched product can be obtained. Therefore, in the present invention, the maximum endotherm of each of the samples obtained by processing the raw material fluororesin or the fluororesin processed in the previous step at an arbitrary temperature (t ° C.) and the sample before the processing in the processing step from the melting endothermic curves The peak temperature is determined, and if the difference between the two satisfies the following equation, the processing is defined as "the temperature at which the fluororesin does not substantially melt". P (t)> P0 -4 ° C, preferably P (t)> P
0 −2 ° C. Here, P (t) is the maximum endothermic peak temperature (° C.) of the processed sample that was processed at a temperature of t ° C., that is, compression molded, solid phase extruded, solid phase rolled or stretched. P0 indicates the maximum endothermic peak temperature (° C.) of the sample before the processing in the processing step. In drawing the melting endothermic curve of the fluororesin, a measurement sample was accurately weighed by about 1 mg, and a differential scanning calorimeter (DSC-220 manufactured by Seiko Denshi Kogyo Co., Ltd.) was used to raise the temperature at 10 ° C / Used under the condition of minutes.

【0008】また、本発明で原料となるフッ素樹脂の任
意の一つを用い、加工温度(t℃)を変えて上記のよう
な実験を、圧縮成形、固相押出し及び固相圧延のそれぞ
れについて繰り返すことにより、上記式1を満たす各加
工温度の上限を求めることができる。そして、他の原料
フッ素樹脂についても、上と同様な手順で、上記式1を
満たす各加工温度の上限を求めることができる。本発明
では、各原料フッ素樹脂について、各工程毎に求められ
る加工温度の上限が、「フッ素樹脂が実質的に融解しな
い温度」の上限値であって、これを以下加工上限温度と
いう。本発明の実施に際しては、フッ素樹脂に施される
圧縮成形、固相押出し及び固相圧延の各加工は、それぞ
れの加工について上記のように規定される加工上限温度
以下で行うことだけを要件とし、この要件が満足されれ
ば、圧縮成形、固相押出し、固相圧延及び引張延伸の各
加工は、任意の温度でこれを行うことができる。ちなみ
に、圧縮成形、固相押出し及び固相圧延の各加工工程に
おける加工下限温度は、上記加工上限温度より150℃
低い温度、好ましくは、100℃である。
Further, using any one of the fluororesin as a raw material in the present invention, the processing temperature (t ° C.) was changed, and the above experiments were conducted for compression molding, solid phase extrusion and solid phase rolling. By repeating it, the upper limit of each processing temperature that satisfies the above expression 1 can be obtained. Then, with respect to the other raw material fluororesins, the upper limit of each processing temperature satisfying the above formula 1 can be obtained by the same procedure as above. In the present invention, for each raw material fluororesin, the upper limit of the processing temperature required for each step is the upper limit of "the temperature at which the fluororesin does not substantially melt", which is hereinafter referred to as the upper processing temperature. In the practice of the present invention, each processing of compression molding, solid phase extrusion and solid phase rolling performed on the fluororesin is required only to be carried out at the processing upper limit temperature or less defined as above for each processing. As long as this requirement is satisfied, compression molding, solid phase extrusion, solid phase rolling and tensile stretching can be performed at any temperature. By the way, the processing lower limit temperature in each processing step of compression molding, solid phase extrusion and solid phase rolling is 150 ° C from the above processing upper limit temperature.
Low temperature, preferably 100 ° C.

【0009】進んで、本発明で採用される圧縮成形、固
相押出し、固相圧延および引張延伸の各工程について説
明する。原料フッ素樹脂は、これをそのまま固相押出し
工程または固相圧延工程に供することも可能であるが、
それに先立ち、原料樹脂を予め圧縮成形しておくことが
好ましい。この予備圧縮成形には任意の圧縮成形機が使
用可能であって、圧縮成形後のフッ素樹脂の形状もロッ
ド状またはシート(フィルム)状の何れであっても差し
支えない。尚、予備圧縮成形によってシート(フィル
ム)状成形物を得る場合、その厚さは通常0.1mm〜5
mm程度の範囲にある。任意的に行われるこの予備圧縮成
形は、上記した「フッ素樹脂が実質的に融解しない温
度」で行われ、一般には、上記した加工上限温度以下
で、室温以上の温度が選ばれる。ちなみに、PTFEの
場合にあっては、通常、室温〜335℃、好ましくは2
00〜330℃の範囲から、予備圧縮成形温度が選ばれ
る。また、予備圧縮成形に際して採用される圧力には特
別な制限はないが、通常は10MPa〜2GPa、好ま
しくは20MPa〜500MPaの範囲であることを可
とする。
Next, the respective steps of compression molding, solid phase extrusion, solid phase rolling and tensile stretching adopted in the present invention will be described. The raw material fluororesin can be directly subjected to the solid phase extrusion step or the solid phase rolling step,
Prior to that, it is preferable that the raw material resin is previously compression-molded. Any compression molding machine can be used for this preliminary compression molding, and the shape of the fluororesin after compression molding may be rod-shaped or sheet (film) -shaped. When a sheet (film) shaped article is obtained by preliminary compression molding, the thickness thereof is usually 0.1 mm to 5 mm.
It is in the range of about mm. This optional pre-compression molding is carried out at the above-mentioned "temperature at which the fluororesin does not substantially melt", and in general, a temperature not higher than the processing upper limit temperature but not lower than room temperature is selected. By the way, in the case of PTFE, it is usually room temperature to 335 ° C., preferably 2
The pre-compression molding temperature is selected from the range of 00 to 330 ° C. Further, there is no particular limitation on the pressure adopted in the pre-compression molding, but it is usually possible to set it in the range of 10 MPa to 2 GPa, preferably 20 MPa to 500 MPa.

【0010】本発明によれば、原料フッ素樹脂は直接ま
たは上記の予備圧縮成形工程を経て、固相押出し工程ま
たは固相圧延工程に供される。本発明の固相押出し工程
は、フッ素樹脂だけを押出す通常の押出しの外、他の樹
脂を共に押し出す、所謂、共押出しを包含する。何れの
場合でも、押出し方法に特別な制限はない。例えば、末
端にダイスを取り付けた固相押出し装置のシリンダー
に、原料フッ素樹脂またはその圧縮成形物を供給し、こ
れを常法通り押し出すことができる。また、固相共押出
し法を採用する場合には、典型的には、予めシート状に
圧縮成形されたフッ素樹脂を、他の樹脂から製造された
シートないしビレットの間に挟んで押出す方法が採用さ
れる。この場合、他の樹脂から製造されたシートないし
ビレットとしては、ポリエチレン,ポリプロピレン,ポ
リ4メチル1ペンテン等のポリオレフィンや別に用意さ
れたフッ素樹脂が使用可能である。固相押出しに用いる
ダイスの形状は、円形、楕円形、矩形その他任意に選択
することができ、通常は入り口側の断面積よりも出口側
の断面積の方が小さくなっているダイスが使用される。
ダイスの大きさにも特別な制限はないが、通常はダイス
入り口側の直径(対角線)が5〜100mm、好ましくは
5〜50mmの範囲で選ばれる。押出し圧力は、押出しの
変形比の大きさによって適宜変化するものであるが、本
発明の押出し比の範囲を想定すると、通常0.1MPa
〜300MPa、好ましくは1MPa〜100MPaの
範囲を可とする。押出し比(延伸比)は、原料フッ素樹
脂の製法、粒径、粒径分布、分子量、分子量分布等に応
じて、また、使用するダイスの形状または大きさに応じ
て選択される。一般に、押出し比の下限は2倍、好まし
くは5倍である。上限は特に限定されないが、押出し比
を大きくすれば、大きな押出し圧力を必要するので、通
常は押出し比100倍、好ましくは60倍で固相押出し
が行われる。固相押出し温度は、先に説明した通りの
「フッ素樹脂が実質的に融解しない温度」であって、具
体的には、先に説明したところに従って規定される固相
押出しについての加工上限温度以下で、加工下限温度以
上の温度域で固相押出しが行われる。ちなみに、PTF
Eを対象とする場合には、固相押出しを室温〜335
℃、好ましくは、200〜330℃の範囲に設定するこ
とを可とする。固相押出しを加工上限温度以上の温度で
行うと、フッ素樹脂の押出し性並びに後段の引張延伸工
程における最高到達延伸比などに問題が生じて、本発明
の目的を達成できない。また、加工下限温度以下の温度
で固相押出しすると、後段の引張延伸工程での最高到達
延伸比や延伸物の物性に問題が生じ、本発明の目的を達
成できない。本発明の固相押出しに際しては、押出し対
象物を予備加圧後、固相押出しする方法も好ましく用い
られる。この場合の予備加圧の圧力は、10MPa〜1
00MPa程度が望ましい。押出し速度は適宜選択でき
るが、通常1mm/分〜1m/分,好ましくは10mm/分
〜500mm/分の範囲で選ばれる。固相押出しされた樹
脂の形状は、ダイス形状や共押出しの方法で決まるが、
通常その断面形状は、円形、楕円形、矩形の何れかであ
る。
According to the present invention, the raw material fluororesin is subjected to the solid phase extrusion step or the solid phase rolling step directly or through the above-mentioned preliminary compression molding step. The solid phase extrusion process of the present invention includes so-called co-extrusion in which other resins are co-extruded in addition to ordinary extrusion in which only a fluororesin is extruded. In any case, there is no special limitation on the extrusion method. For example, the raw material fluororesin or its compression molded product can be supplied to a cylinder of a solid-phase extrusion apparatus having a die attached to its end, and this can be extruded in a usual manner. When the solid-phase coextrusion method is adopted, typically, a method of extruding a fluororesin that has been compression-molded into a sheet shape in advance by sandwiching it between a sheet or billet manufactured from another resin is used. Adopted. In this case, as the sheet or billet manufactured from another resin, a polyolefin such as polyethylene, polypropylene, and poly (methyl 4-pentene), or a fluororesin prepared separately can be used. The shape of the die used for solid phase extrusion can be arbitrarily selected, such as circular, elliptical, rectangular, etc. Normally, a die with a smaller cross-sectional area on the outlet side than the cross-sectional area on the inlet side is used. It
The size of the die is not particularly limited, but the diameter (diagonal line) on the die inlet side is usually selected in the range of 5 to 100 mm, preferably 5 to 50 mm. The extrusion pressure varies depending on the size of the deformation ratio of extrusion, but when the range of the extrusion ratio of the present invention is assumed, it is usually 0.1 MPa.
˜300 MPa, preferably 1 MPa to 100 MPa. The extrusion ratio (drawing ratio) is selected according to the production method, particle size, particle size distribution, molecular weight, molecular weight distribution, etc. of the raw material fluororesin, and according to the shape or size of the die used. Generally, the lower limit of extrusion ratio is 2 times, preferably 5 times. The upper limit is not particularly limited, but if the extrusion ratio is increased, a large extrusion pressure is required. Therefore, solid phase extrusion is usually performed at an extrusion ratio of 100 times, preferably 60 times. The solid phase extrusion temperature is the “temperature at which the fluororesin does not substantially melt” as described above, and specifically, is equal to or lower than the processing upper limit temperature for solid phase extrusion defined according to the description above. Then, solid phase extrusion is performed in a temperature range above the lower processing temperature limit. By the way, PTF
When E is targeted, solid phase extrusion is performed at room temperature to 335
C., preferably in the range of 200 to 330.degree. C. If the solid phase extrusion is carried out at a temperature above the processing upper limit temperature, problems will occur in the extrudability of the fluororesin and the maximum ultimate stretching ratio in the subsequent tensile stretching step, and the object of the present invention cannot be achieved. Further, if solid phase extrusion is performed at a temperature equal to or lower than the processing lower limit temperature, problems will occur in the maximum ultimate stretch ratio and the physical properties of the stretched product in the subsequent tensile stretching step, and the object of the present invention cannot be achieved. In the solid phase extrusion of the present invention, a method of prepressurizing an object to be extruded and then solid phase extrusion is also preferably used. Pre-pressurization pressure in this case is 10 MPa to 1
About 00 MPa is desirable. The extrusion speed can be appropriately selected, but is usually selected in the range of 1 mm / min to 1 m / min, preferably 10 mm / min to 500 mm / min. The shape of the solid-phase extruded resin is determined by the die shape and the coextrusion method,
Usually, its cross-sectional shape is any one of a circle, an ellipse, and a rectangle.

【0011】本発明における固相圧延工程は、通常、予
めロッド状またはシート状に圧縮成形されたフッ素樹脂
が供給される。固相圧延にはロッド状またはシート状に
圧縮成形されたフッ素樹脂を、等速あるいは周速度の異
なる少なくとも2本の圧延ロールで挟んで圧延する方法
が一般に採用される。圧延操作によるフッ素樹脂の変形
比は広く選択することができ、圧延効率(圧延後の長さ
/圧延前の長さ)で示せば、その下限は通常1.2倍、
好ましくは1.5倍であるが、通常は30倍、好ましく
は20倍で固相圧延を行うことを可とする。固相圧延温
度は、先に説明した通りの「フッ素樹脂が実質的に融解
しない温度」であって、具体的には、先に説明したとこ
ろに従って規定される固相圧延についての加工上限温度
以下で、加工下限温度以上の温度域で固相圧延が行われ
る。ちなみに、PTFEを固相圧延する場合は、圧延温
度を室温〜335℃、好ましくは、200〜330℃の
範囲に設定することが望ましい。固相圧延を加工上限温
度以上の温度で行うと、フッ素樹脂の圧延性並びに後段
の引張延伸工程における最高到達延伸比などに問題が生
じて、本発明の目的を達成できない。また、加工下限温
度以下の温度で固相圧延すると、後段の引張延伸工程で
の最高到達延伸比や延伸物の物性に問題が生じ、本発明
の目的を達成できない。圧延速度は適宜選択できるが、
通常は0.5m/分〜100m/分、好ましくは1m/
分〜50m/分の範囲で選ばれる。固相圧延された樹脂
の形状は、一般にテープ状、フィルム状ないしはシート
状であって、その横断面は楕円形、矩形など任意の形状
とすることができる。もちろん、固相圧延操作は複数回
多段階に行っても良い。
In the solid phase rolling step in the present invention, a fluororesin which has been compression-molded into a rod or sheet shape in advance is usually supplied. For solid-phase rolling, a method in which a fluororesin that is compression-molded into a rod shape or a sheet shape is sandwiched between at least two rolling rolls having different constant speeds or peripheral speeds and rolled is generally adopted. The deformation ratio of the fluororesin due to the rolling operation can be widely selected, and if it is expressed by rolling efficiency (length after rolling / length before rolling), the lower limit is usually 1.2 times,
It is preferably 1.5 times, but it is usually possible to carry out solid phase rolling 30 times, preferably 20 times. The solid phase rolling temperature is the “temperature at which the fluororesin does not substantially melt” as described above, and specifically, is equal to or lower than the processing upper limit temperature for solid phase rolling defined according to the description above. Then, solid phase rolling is performed in a temperature range equal to or higher than the lower working temperature limit. By the way, in the case of performing solid phase rolling of PTFE, it is desirable to set the rolling temperature in the range of room temperature to 335 ° C, preferably 200 to 330 ° C. If the solid phase rolling is performed at a temperature equal to or higher than the processing upper limit temperature, problems occur in the rollability of the fluororesin and the maximum ultimate stretching ratio in the subsequent tensile stretching step, and the object of the present invention cannot be achieved. Further, if solid-phase rolling is performed at a temperature equal to or lower than the processing lower limit temperature, problems will occur in the maximum ultimate stretch ratio and the physical properties of the stretched product in the subsequent tensile stretching process, and the object of the present invention cannot be achieved. The rolling speed can be selected as appropriate,
Usually 0.5 m / min to 100 m / min, preferably 1 m / min
It is selected in the range of minutes to 50 m / min. The shape of the solid-phase rolled resin is generally a tape shape, a film shape or a sheet shape, and its cross section can be any shape such as an elliptical shape or a rectangular shape. Of course, the solid phase rolling operation may be carried out multiple times in multiple stages.

【0012】本発明における引張延伸工程には、固相押
出しされたフッ素樹脂または固相圧延されたフッ素樹脂
が供給される。本発明の引張延伸には、例えば、恒温槽
内において固相押出し物または圧延物を引張試験機によ
り引張延伸する回分方式が利用できる外、ニップ延伸、
熱板延伸、ゾーン延伸、熱風延伸などの連続方式を利用
することもできる。そして、連続式引張延伸を利用する
場合には、加熱手段として、加熱ロール、熱板、高周波
加熱、マイクロ波加熱、赤外波ないし遠赤外波加熱、熱
風加熱などの1種または2種以上を使用することができ
る。引張延伸による試料の変形比は広く選択することが
でき、引張延伸倍率(引張延伸後の長さ/引張延伸前の
長さ)により示すと、その下限を通常1.5倍、好まし
くは5倍として任意に選ぶことができる。しかし、通常
は20倍、好ましくは10倍の延伸倍率で、本発明の引
張延伸を行うことを可とする。引張延伸温度は、先に説
明した通りの「フッ素樹脂が実質的に融解しない温度」
であって、具体的には、先に説明したところに従って規
定される引張延伸についての加工上限温度以下で、好ま
しくは、引張延伸工程の前にフッ素樹脂が固相押出しま
たは固相圧延された温度より低い温度で、本発明の引張
延伸が実施される。ちなみに、PTFEを引張延伸する
場合、引張延伸温度の上限は、好ましくは170℃以
下、さらに好ましくは120℃以下、より好ましくは1
00℃未満であり、下限は通常室温以上、好ましくは4
0℃以上である。引張延伸の速度はフッ素樹脂の分子
量、分子量分布、延伸倍率、延伸前の樹脂の形状により
適宜選択できるが、回分式延伸の場合の引張延伸速度の
下限は、通常1mm/分、好ましくは5mm/分であり、上
限は通常500mm/分、好ましくは100mm/分、さら
に好ましくは50mm/分である。また,連続式延伸の場
合の引張延伸速度の下限は、通常10mm/分、好ましく
は50mm/分であり、上限は通常500m/分、好まし
くは300m/分、さらに好ましくは100m/分であ
る。本発明の引張延伸を行うに際しては、押出し物また
は圧延物をそのままの幅で延伸をすることもできるが、
延伸を行う前に、押出し物または圧延物を0.5〜15
0mm、好ましくは1〜100mm、より好ましくは1〜5
0mmの一定幅にスリットしてから、延伸を行っても良
い。そして、本発明の引張延伸は、その操作を複数回多
段階に行っても良い。引張延伸後の樹脂は、繊維状、テ
ープ状、フィルム状などの任意の形状をとることができ
るが、その断面形状は通常、楕円形または矩形である。
引張延伸後の樹脂がテープ状またはフィルム状を呈して
いるものに対しは、横に広げると網のような形状となる
ように、延伸方向に機械的に割れ目を入れるスプリット
処理を行っても良い。また、引張延伸の後工程として、
延伸物が実質的に融解しない温度の範囲内で緊張下ある
いは弛緩状態にある延伸物に、熱処理を施すこともでき
る。本発明の方法においては、トータル延伸倍率(各加
工工程の変形比の積、具体的には押出し比×引張延伸倍
率または圧延効率×引張延伸倍率)を高めるほど、高強
度、高弾性率が達成されるため、出来る限り延伸倍率を
高めることが望ましい。具体的には30〜150倍の、
好ましくは30〜100倍程度の延伸倍率が選ばれる。
本発明の方法によれば、フッ素樹脂の分子鎖を最大限ま
で引き伸ばし、かつ延伸方向に分子を配向せしめること
により、従来にない高い引張強度、弾性率を有する延伸
物を得ることができる。例えば、PTFEの場合、常温
において引張強度300MPa以上、好ましくは350
MPa、引張弾性率通常40GPa、好ましくは50G
Pa以上の高強度、高弾性率のフッ素樹脂延伸物を得る
ことができる。
In the tensile drawing step in the present invention, a solid phase extruded fluororesin or a solid phase rolled fluororesin is supplied. In the tensile stretching of the present invention, for example, a batch method in which a solid-phase extrudate or a rolled product is stretch-stretched by a tensile tester in a constant temperature bath can be used, nip stretching,
A continuous method such as hot plate stretching, zone stretching or hot air stretching can also be used. When using the continuous tensile stretching, as heating means, heating roll, hot plate, high frequency heating, microwave heating, infrared or far infrared heating, hot air heating, etc. Can be used. The deformation ratio of the sample due to the tensile stretching can be widely selected, and the lower limit is usually 1.5 times, preferably 5 times as shown by the tensile stretching ratio (length after tensile stretching / length before tensile stretching). Can be selected arbitrarily. However, it is usually possible to carry out the tensile stretching of the present invention at a draw ratio of 20 times, preferably 10 times. The tensile stretching temperature is the "temperature at which the fluororesin does not substantially melt" as described above.
That is, specifically, at or below the processing upper limit temperature for tensile stretching defined according to the description above, preferably the temperature at which the fluororesin was solid-phase extruded or solid-phase rolled before the tensile stretching step. At lower temperatures, the tensile stretching of the present invention is carried out. By the way, when PTFE is stretched and stretched, the upper limit of the tensile stretching temperature is preferably 170 ° C. or lower, more preferably 120 ° C. or lower, and more preferably 1 ° C. or lower.
It is less than 00 ° C, and the lower limit is usually room temperature or higher, preferably 4
0 ° C. or higher. The tensile stretching speed can be appropriately selected depending on the molecular weight of the fluororesin, the molecular weight distribution, the stretching ratio, and the shape of the resin before stretching, but the lower limit of the tensile stretching speed in the case of batchwise stretching is usually 1 mm / min, preferably 5 mm / min. The upper limit is usually 500 mm / min, preferably 100 mm / min, more preferably 50 mm / min. In the case of continuous stretching, the lower limit of the tensile stretching speed is usually 10 mm / min, preferably 50 mm / min, and the upper limit is usually 500 m / min, preferably 300 m / min, more preferably 100 m / min. When performing the tensile stretching of the present invention, it is possible to stretch the extruded product or rolled product in the width as it is,
Prior to stretching, the extrudate or rolled product should be 0.5 to 15
0 mm, preferably 1 to 100 mm, more preferably 1 to 5
You may slit it to a fixed width of 0 mm, and then perform drawing. The operation of the tensile stretching of the present invention may be carried out multiple times in multiple stages. The resin after the tensile stretching can take any shape such as a fibrous shape, a tape shape, a film shape, etc., but its cross-sectional shape is usually an ellipse or a rectangle.
For the resin having a tape shape or a film shape after the tensile stretching, a split treatment may be performed in which mechanical cracks are formed in the stretching direction so that the resin has a net-like shape when laterally spread. . Also, as a post-process of tensile stretching,
The stretched product under tension or in a relaxed state within a temperature range in which the stretched product does not substantially melt may be subjected to heat treatment. In the method of the present invention, the higher the total draw ratio (the product of the deformation ratios of the respective processing steps, specifically the extrusion ratio × the tensile draw ratio or the rolling efficiency × the tensile draw ratio), the higher the strength and the high elastic modulus achieved. Therefore, it is desirable to increase the draw ratio as much as possible. Specifically, 30 to 150 times,
A draw ratio of about 30 to 100 times is preferably selected.
According to the method of the present invention, a stretched product having unprecedented high tensile strength and elastic modulus can be obtained by stretching the molecular chain of the fluororesin to the maximum extent and orienting the molecules in the stretching direction. For example, in the case of PTFE, the tensile strength at room temperature is 300 MPa or more, preferably 350
MPa, tensile modulus 40 GPa, preferably 50 G
A fluororesin stretched product having a high strength of Pa or higher and a high elastic modulus can be obtained.

【0013】[0013]

【実施例】以下に、実施例により本発明をさらに詳述す
るが、本発明はこれらに限定されるものではない。融点測定法 フッ素樹脂(原料樹脂、各加工工程前または各加工工程
後の樹脂)を約1mg正確に秤量し、示差走査型熱量計
(セイコー電子工業(株)製DSC−220)[以下、
DSCと略記]を用い、昇温速度10℃/分の条件で融
解吸熱曲線を描かせ、その曲線が最も大きい吸熱ピーク
を示した温度(ピーク温度)を融点とした。実施例1 ポリテトラフルオロエチレンパウダー(PTFE,三井
デュポンフロロケミカル(株)製6−J,分子量5.0
×106 ,融点334℃)を、約6g秤取り直径 10
0mmの円板状の鉄板に挟み込み、融点以下の320℃の
温度で10分間予熱を行った後、同じ温度で100MP
aの圧力をかけ圧縮成形を行った。圧力をかけたまま室
温まで冷却して、厚み0.5mm、直径90mmのフィルム
を得た。このフィルムの融点をDSCを用いて測定した
ところ335℃であった。このフィルムを短冊状に切り
出した後、別に用意したPTFEのビッレットに挟み込
み、330℃で固相共押出しを行った。この時、長さ方
向に20倍の押出しが行われ、外観きれいな押出しが行
われ、ビッレットに挟み込まれているサンプルを取り出
したところ、テープ状の押出し物が得られた。この押出
し物の融点をDSCを用いて測定したところ336℃で
あった。この押出し物を長さ約5cmに切り出し、恒温層
を備えた引張り試験機を用いて延伸を行った。この時温
度は330℃、延伸前のつかみ具間距離は25mm、引張
り速度は25mm/分で行った。引張り延伸は最大1.9
倍まで達成され、トータルで38倍の延伸物が得られ
た。この延伸物の融点は337℃、24℃における引張
り強度と引張り弾性率はそれぞれ300MPa、40G
Paであった。実施例2 実施例1と同様に作製した圧縮成型フィルムを短冊状に
切り出した後、別に用意したPTFEのビッレットに挟
み込み、330℃で固相共押出しを行った。この時、長
さ方向に20倍の押出しが行われ、外観きれいな押出し
が行われ、ビッレットに挟み込まれているサンプルを取
り出したところ、テープ状の押出し物が得られた。この
押出し物の融点をDSCを用いて測定したところ336
℃であった。この押出し物を長さ約5cmに切り出し、恒
温層を備えた引張り試験機を用いて延伸を行った。この
時温度は120℃、延伸前のつかみ具間距離は25mm、
引張り速度は25mm/分で行った。引張り延伸は最大
3.5倍まで達成され、トータルで70倍の延伸物が得
られた。この延伸物の融点は341℃、24℃における
引張り強度と引張り弾性率はそれぞれ450MPa、7
8GPaであった。実施例3 実施例1と同様に圧縮成形を行い、縦横厚みが15cm×
5cm×0.1cmのシートを得た。このシートの融点をD
SCを用いて測定したところ334℃であった。このシ
ートを直径15cm、面長30cmの200℃に加温された
圧延ロールに挟み込み、長さ方向に8倍の圧延を行っ
た。圧延速度は0.6m/分で行った。圧延物の融点は
335℃であった。この圧延物を幅1cm、長さ約5cmに
切り出し、恒温層を備えた引張り試験機を用いて延伸を
行った。この時温度は60℃、延伸前のつかみ具間距離
は25mm、引張り速度は25mm/分で行った。引張り延
伸は最大8.2倍まで達成され,トータルで65.6倍
の延伸物が得られた。この延伸物の融点は340℃、2
4℃における引張り強度と引張り弾性率はそれぞれ42
5MPa,70GPaであった。比較例1 ポリテトラフルオロエチレンパウダー(PTFE,三井
デュポンフロロケミカル(株)製6ーJ,分子量5.0
×106 ,融点334℃)を、約6g秤取り直径100
mmの円板状の鉄板に挟み込み、融点以上の360℃の温
度で10分間予熱を行った後100MPaの圧力をかけ
圧縮成形を行った。圧力をかけたまま室温まで冷却し
て、厚み0.5mm,直径90mmのフィルムを得た。この
フィルムの融点をDSCを用いて測定したところ326
℃であった。このフィルムを短冊状に切り出した後、別
に用意したPTFEのビッレットに挟み込み、330℃
で固相共押出しを行った。この時、長さ方向に20倍の
押出しが行われ、外観きれいな押出しが行われたが、ビ
ッレットに挟み込まれているサンプルを取り出してみる
と、小片に細かくちぎれたものとなっており、有効に押
出しが行われていないことが分かった。比較例2 比較例1で用いたポリテトラフルオロエチレンパウダー
を約5g秤取り、これを直径10mmのシリンダーに入
れ、320℃まで加温し、100MPaの圧力をかけ、
30分間圧縮成形を行い、圧をかけたまま室温まで冷却
した。得られた直径10mm、長さ約3cmの円柱状のサン
プル(融点は334℃であった)を再度シリンダーに挿
入し、シリンダー出口には押出し比が60倍となる断面
が円形のダイスを取り付け、330℃の温度のもと固相
押出しを行った。直径約0.65mmの線状の押出し物が
得られた。得られた押出し物の24℃における曲げ弾性
率を測定したところ約12GPaであった。押出し物の
融点は338℃であった。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited thereto. Melting point measuring method Approximately 1 mg of fluororesin (raw material resin, resin before or after each processing step) is accurately weighed, and a differential scanning calorimeter (DSC-220 manufactured by Seiko Denshi Kogyo Co., Ltd.) [hereinafter,
[Abbreviated as DSC]], a melting endothermic curve was drawn under the condition of a heating rate of 10 ° C./min, and the temperature at which the curve showed the largest endothermic peak (peak temperature) was taken as the melting point. Example 1 Polytetrafluoroethylene powder (PTFE, 6-J manufactured by DuPont Mitsui Fluorochemical Co., Ltd., molecular weight 5.0)
X10 6 , melting point 334 ° C.), weigh about 6 g, diameter 10
It is sandwiched between 0mm disk-shaped iron plates, preheated at a temperature of 320 ° C below the melting point for 10 minutes, and then 100MP at the same temperature.
The pressure of a was applied and compression molding was performed. It was cooled to room temperature while applying pressure to obtain a film having a thickness of 0.5 mm and a diameter of 90 mm. The melting point of this film was 335 ° C. as measured by DSC. This film was cut into strips, sandwiched between separately prepared PTFE billets, and solid phase coextrusion was performed at 330 ° C. At this time, 20 times extrusion was carried out in the length direction, extrusion with a clean appearance was carried out, and when the sample sandwiched between billets was taken out, a tape-shaped extrudate was obtained. The melting point of this extrudate was 336 ° C. as measured by DSC. This extruded product was cut out to a length of about 5 cm and stretched using a tensile tester equipped with a constant temperature layer. At this time, the temperature was 330 ° C., the distance between grips before stretching was 25 mm, and the pulling speed was 25 mm / min. Tensile stretching is up to 1.9
It was achieved up to double, and a stretched product of 38 times in total was obtained. The melting point of this stretched product is 337 ° C., and the tensile strength and tensile modulus at 24 ° C. are 300 MPa and 40 G, respectively.
It was Pa. Example 2 A compression molded film produced in the same manner as in Example 1 was cut into strips, sandwiched between separately prepared PTFE billets, and solid phase coextrusion was performed at 330 ° C. At this time, 20 times extrusion was carried out in the length direction, extrusion with a clean appearance was carried out, and when the sample sandwiched between billets was taken out, a tape-shaped extrudate was obtained. The melting point of this extrudate was 336 as measured by DSC.
° C. This extruded product was cut out to a length of about 5 cm and stretched using a tensile tester equipped with a constant temperature layer. At this time, the temperature is 120 ° C, the distance between the grips before stretching is 25 mm,
The pulling speed was 25 mm / min. Tensile stretching was achieved up to 3.5 times, and a total 70 times stretched product was obtained. The melting point of this stretched product is 341 ° C., and the tensile strength and tensile elastic modulus at 24 ° C. are 450 MPa and 7 respectively.
It was 8 GPa. Example 3 Compression molding was carried out in the same manner as in Example 1, and the vertical and horizontal thickness was 15 cm ×
A 5 cm × 0.1 cm sheet was obtained. The melting point of this sheet is D
It was 334 ° C. when measured using SC. This sheet was sandwiched between rolling rolls having a diameter of 15 cm and a face length of 30 cm and heated to 200 ° C., and rolled 8 times in the length direction. The rolling speed was 0.6 m / min. The melting point of the rolled product was 335 ° C. This rolled product was cut into a piece having a width of 1 cm and a length of about 5 cm and stretched using a tensile tester equipped with a thermostatic layer. At this time, the temperature was 60 ° C., the distance between the grips before stretching was 25 mm, and the pulling speed was 25 mm / min. Tensile stretching was achieved up to 8.2 times, and a total of 65.6 times stretched material was obtained. The melting point of this stretched product is 340 ° C., 2
The tensile strength and tensile elastic modulus at 4 ° C are 42 respectively.
It was 5 MPa and 70 GPa. Comparative Example 1 Polytetrafluoroethylene powder (PTFE, 6-J, manufactured by Mitsui DuPont Fluorochemical Co., Ltd., molecular weight 5.0)
X10 6 , melting point 334 ° C), weigh about 6 g, diameter 100
It was sandwiched by a disc-shaped iron plate of mm, preheated at a temperature of 360 ° C. or higher than the melting point for 10 minutes, and then a pressure of 100 MPa was applied to perform compression molding. It was cooled to room temperature while applying pressure to obtain a film having a thickness of 0.5 mm and a diameter of 90 mm. The melting point of this film was measured by DSC and found to be 326.
° C. After cutting this film into strips, insert it into a separately prepared PTFE billet and heat it at 330 ° C.
Solid phase coextrusion was carried out. At this time, 20 times extrusion was performed in the length direction, and extrusion with a clean appearance was performed, but when the sample sandwiched between the billets was taken out, it was found to be finely torn into small pieces, and it was effective. It was found that there was no extrusion. Comparative Example 2 About 5 g of the polytetrafluoroethylene powder used in Comparative Example 1 was weighed, placed in a cylinder having a diameter of 10 mm, heated to 320 ° C., and a pressure of 100 MPa was applied.
It was compression molded for 30 minutes and cooled to room temperature while applying pressure. The obtained cylindrical sample having a diameter of 10 mm and a length of about 3 cm (melting point was 334 ° C.) was again inserted into the cylinder, and a die having a circular cross section with an extrusion ratio of 60 times was attached to the cylinder outlet. Solid phase extrusion was performed at a temperature of 330 ° C. A linear extrudate having a diameter of about 0.65 mm was obtained. The flexural modulus at 24 ° C. of the obtained extrudate was measured and found to be about 12 GPa. The extrudate had a melting point of 338 ° C.

【0014】[0014]

【発明の効果】本発明により製造されるフッ素樹脂延伸
物は、従来のフッ素樹脂と同等の耐熱性、耐薬品性等の
特長を保持しながら、従来にない高強度高弾性率を有す
る新しいフッ素樹脂材料である。また、本発明の製造法
は従来技術と比較して経済性のあるプロセスであるた
め、市場ニーズに合う価格でフッ素樹脂延伸物の提供が
可能となり、従来フッ素樹脂が用いられてきた用途の他
に、高強度・高弾性率が要求される樹脂材料分野におい
て全く新しい用途も期待できる。具体的に、本発明の延
伸物は、ロープ、漁網、海苔網、陸上ネット、防球ネッ
ト、医療用縫合糸、釣り糸、凧糸、セメント補強剤、織
布、不織布、ソフ、各種フィルターなどに利用できる
外、複合材料の補強剤などの用途にも利用でき、自動
車、電気、石油、化学、水産、土木、建設、医療などの
産業各分野のみならず日常品の衣類、雑貨などにおいて
も大いに利用される価値のあるものである。
EFFECTS OF THE INVENTION The stretched fluororesin produced by the present invention is a new fluororesin having the unprecedented high strength and high elastic modulus while maintaining the same heat resistance and chemical resistance as conventional fluororesins. It is a resin material. Further, since the production method of the present invention is an economical process as compared with the prior art, it becomes possible to provide a fluororesin stretched product at a price that meets the market needs, and other applications where the fluororesin has been used conventionally In addition, completely new applications can be expected in the field of resin materials that require high strength and high elastic modulus. Specifically, the stretched product of the present invention is used for ropes, fishing nets, seaweed nets, land nets, ball nets, medical sutures, fishing lines, kite yarns, cement reinforcing agents, woven fabrics, non-woven fabrics, softeners, various filters, etc. Not only can it be used, but it can also be used for applications such as reinforcing agents for composite materials, and it can be used not only in industries such as automobiles, electricity, petroleum, chemicals, fisheries, civil engineering, construction, and medical care, but also in everyday clothes, sundries, etc. It is worth using.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フッ素樹脂が実質的に融解しない温度範
囲内でフッ素樹脂を固相押出しまたは固相圧延したの
ち、引張延伸することを特徴とするフッ素樹脂延伸物の
製造方法。
1. A method for producing a stretched fluororesin, which comprises subjecting the fluororesin to solid phase extrusion or solid phase rolling within a temperature range in which the fluororesin does not substantially melt, and then stretching the stretched fluororesin.
【請求項2】 フッ素樹脂を引張延伸する際の温度が、
固相押出しまたは固相圧延する際の温度より低いことを
特徴とする請求項1記載の方法。
2. The temperature at which the fluororesin is stretched and stretched is
The method according to claim 1, wherein the temperature is lower than the temperature during solid phase extrusion or solid phase rolling.
【請求項3】 フッ素樹脂がポリテトラフルオロエチレ
ンであることを特徴とする請求項1記載の方法。
3. The method according to claim 1, wherein the fluororesin is polytetrafluoroethylene.
JP29562094A 1994-11-05 1994-11-05 Method for producing stretched fluororesin Expired - Fee Related JP3604746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29562094A JP3604746B2 (en) 1994-11-05 1994-11-05 Method for producing stretched fluororesin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29562094A JP3604746B2 (en) 1994-11-05 1994-11-05 Method for producing stretched fluororesin

Publications (2)

Publication Number Publication Date
JPH08132521A true JPH08132521A (en) 1996-05-28
JP3604746B2 JP3604746B2 (en) 2004-12-22

Family

ID=17822996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29562094A Expired - Fee Related JP3604746B2 (en) 1994-11-05 1994-11-05 Method for producing stretched fluororesin

Country Status (1)

Country Link
JP (1) JP3604746B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207091B1 (en) 1997-05-23 2001-03-27 Nippon Mitsubishi Oil Corporation Process for producing the drawn molded article of a fluoroplastic
JP2002370279A (en) * 2001-06-19 2002-12-24 Nitto Denko Corp Polytetrafluoroethylene sheet and its manufacturing method
JP2007534523A (en) * 2004-04-23 2007-11-29 ゴア エンタープライズ ホールディングス,インコーポレイティド Fluoropolymer barrier material
WO2015037245A1 (en) * 2013-09-12 2015-03-19 日東電工株式会社 Method for producing filler-containing fluororesin sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207091B1 (en) 1997-05-23 2001-03-27 Nippon Mitsubishi Oil Corporation Process for producing the drawn molded article of a fluoroplastic
JP2002370279A (en) * 2001-06-19 2002-12-24 Nitto Denko Corp Polytetrafluoroethylene sheet and its manufacturing method
JP2007534523A (en) * 2004-04-23 2007-11-29 ゴア エンタープライズ ホールディングス,インコーポレイティド Fluoropolymer barrier material
JP4782774B2 (en) * 2004-04-23 2011-09-28 ゴア エンタープライズ ホールディングス,インコーポレイティド Method for producing fluoropolymer barrier material
WO2015037245A1 (en) * 2013-09-12 2015-03-19 日東電工株式会社 Method for producing filler-containing fluororesin sheet
CN105531102A (en) * 2013-09-12 2016-04-27 日东电工株式会社 Method for producing filler-containing fluororesin sheet
US9914259B2 (en) 2013-09-12 2018-03-13 Nitto Denko Corporation Method for producing filler-containing fluororesin sheet

Also Published As

Publication number Publication date
JP3604746B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
RU2349454C2 (en) Method for manufacturing of oriented film from thermoplastic polymer alloys, device for film manufacture and manufactured goods
CA2138588A1 (en) Process for obtaining ultra-high modulus line products with enhanced mechanical properties
WO2002048436A1 (en) High strength polyethylene fiber
EP2173794B1 (en) Polyethylene films
JPH0149611B2 (en)
JPH07102413A (en) Polytetrafluoroethylene filament
EP0991798B1 (en) Melt spun fluoropolymeric fibers and process for producing them
US6207091B1 (en) Process for producing the drawn molded article of a fluoroplastic
US5695698A (en) Production of oriented plastics by roll-drawing
KR102178645B1 (en) Polyethylene yarn of high tenacity having high dimensional stability and method for manufacturing the same
JPH02192927A (en) Polymer drawn molded product
JP3208238B2 (en) Multifilament yarn of thermoplastic polymer based on tetrafluoroethylene and fiber obtained therefrom
JP3734077B2 (en) High strength polyethylene fiber
JPH08132521A (en) Production of fluoroplastic stretched article
US3173977A (en) Production of shaped objects from highmolecular polyolefins
TWI775244B (en) Polyethylene yarn of high tenacity having high dimensional stability and method for manufacturing the same
JP3661800B2 (en) Manufacturing method of high heat-resistant polymer filament
JP2001514707A (en) Composite fiber having sheath-core structure made of fluororesin, method for producing this composite fiber and method of using the same
JP3418692B2 (en) Manufacturing method of ultra high molecular weight polyolefin filament
JPH0130924B2 (en)
KR102230748B1 (en) Polyethylene yarn of high tenacity having high dimensional stability and method for manufacturing the same
JP5390041B1 (en) Unstretched fluororesin fiber, stretched fluororesin fiber, method for producing unstretched fluororesin fiber, and method for producing stretched fluororesin fiber
JPH0261122A (en) Production of drawn polyester tape yarn
JPS6245715A (en) Production of drawn polypropylene tape yarn
Lin et al. Assessment of metallocene propylene polymers for cast film applications

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees