JPH08132283A - Production of pipe filled with powder and granular material - Google Patents

Production of pipe filled with powder and granular material

Info

Publication number
JPH08132283A
JPH08132283A JP6271216A JP27121694A JPH08132283A JP H08132283 A JPH08132283 A JP H08132283A JP 6271216 A JP6271216 A JP 6271216A JP 27121694 A JP27121694 A JP 27121694A JP H08132283 A JPH08132283 A JP H08132283A
Authority
JP
Japan
Prior art keywords
pipe
powder
diameter part
coil
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6271216A
Other languages
Japanese (ja)
Inventor
Takeji Kagami
武二 各務
Hirotoshi Ishide
博俊 石出
Junichi Ifukuro
順一 衣袋
Fumio Hayashi
文雄 林
Satoru Ando
悟 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP6271216A priority Critical patent/JPH08132283A/en
Publication of JPH08132283A publication Critical patent/JPH08132283A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE: To obtain a process for producing a pipe filled with powder and granular materials having the filling rate of the powder and granular materials uniform over the entire length of the pipe and uniform quality with high efficiency and productivity. CONSTITUTION: The pipe is filled with the powder and granular materials under vibration conditions of <=200 in the difference between the product (K1 ×D1 ) of the mechanical index K1 of the max. diameter part of the pipe coil and the max. diameter D1 of the coil and the product (K2 ×D2 ) of the mechanical index K2 of the min. diameter part of the pipe coil and the min. diameter D2 of the coil given by the following equation I and II at the time of placing the pipe coil on a vibration table and supplying the powder and granular materials from the pipe end to fill the pipe with this materials by applying vibration thereon: K1 =a1 (2πf)<2> /g...(I), K2 =a2 (2πf)<2> /g...(II), where K1 : the mechanical index of the max. diameter part of the coil, K2 : the mechanical index of the min. diameter part of the coil, a1 : the horizontal amplitude (cm) of the max. diameter part of the coil, a2 : the horizontal amplitude (cm) of the min. diameter part of the coil, f: the vibration frequency (Hz), g: dynamic acceleration (980cm/sec<2> ).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、炭素鋼、高合金鋼、
ステンレス鋼、銅合金、アルミニウム合金その他の金属
管に粉粒体を充填した溶接用フラックス入りワイヤ、酸
化物超伝導材入りワイヤその他の粉粒体充填管の製造方
法に関する。ここで粉粒体とは溶接用フラックス、酸化
物超伝導材、製鋼用添加材の粉体、粒体または粉体と粒
体との混合物をいう。
This invention relates to carbon steel, high alloy steel,
The present invention relates to a method for manufacturing a flux-cored wire for welding, a wire containing an oxide superconducting material, and the like, in which powder particles are filled in a metal tube such as stainless steel, a copper alloy, an aluminum alloy or the like, and a powder particle-filled tube. Here, the powder or granule means a flux for welding, an oxide superconducting material, a powder of an additive material for steelmaking, a granule or a mixture of powder and granules.

【0002】[0002]

【従来の技術】粉粒体充填管の一つとして、溶接用フラ
ックス入りシームレスワイヤがある。溶接用フラックス
入りシームレスワイヤを製造する工程において、フラッ
クスをワイヤ内部に充填する方法を図1に基づいて説明
する。図においてPは鋼製ボビン1に巻かれた鋼パイ
プ、2はボビン1を介してパイプにスパイラル振動を与
えるための振動モータを備えた振動台、3はフラックス
Fを収納するホッパーである。
2. Description of the Related Art A flux-cored seamless wire for welding is one type of powder-filled tube. A method of filling the inside of the wire with flux in the process of manufacturing a flux-cored seamless wire for welding will be described with reference to FIG. In the figure, P is a steel pipe wound around a steel bobbin 1, 2 is a vibrating table equipped with a vibration motor for giving spiral vibration to the pipe via the bobbin 1, and 3 is a hopper for accommodating the flux F.

【0003】ボビン1に巻かれたパイプPはその巻装体
の軸心が垂直になるように振動台2上に載置し、パイプ
Pのフラックス供給端をボビン1の上部へ曲げ、エアー
抜き用の枝パイプ5を具備する中間パイプ4を介してホ
ッパー3からのフラックスFをパイプPに供給する。ま
たパイプPの終端にはフラックス漏れ防止用の蓋6を施
している。
The pipe P wound on the bobbin 1 is placed on the vibrating table 2 so that the axis of the wound body is vertical, and the flux supply end of the pipe P is bent to the upper part of the bobbin 1 to bleed air. The flux F from the hopper 3 is supplied to the pipe P via the intermediate pipe 4 provided with the branch pipe 5 for. Further, a lid 6 for preventing flux leakage is provided at the end of the pipe P.

【0004】このような装置により、パイプP内にフラ
ックスFを供給充填する。その後縮径し、必要に応じて
焼鈍した後所望の直径に伸線し、巻き取って製品とす
る。
The flux F is supplied and filled in the pipe P by such an apparatus. After that, the diameter is reduced, and if necessary, annealed, then drawn to a desired diameter, and wound to obtain a product.

【0005】ところで、前記方法でフラックスを充填す
ると、パイプ長手方向の全長にわたってフラックスが均
一に充填されず、長手方向に充填フラックスの粗密、す
なわち充填率にバラツキが生じていた。詳しくは図2に
示すようにフラックス供給端では充填率が低く、パイプ
先端部に近づくに従い漸次高くなる傾向にある。これは
図3に示すように特にフラックス中の合金量がパイプ両
端部において大きな差となることを示す。またパイプの
両端部での充填率の差はパイプ長が長いほど大きくなる
傾向にある。なお、図2,3におけるフラックスの目標
充填率は14.5%、フラックス中のNi量は15%で
パイプ長は1000 mである。
By the way, when the flux is filled by the above method, the flux is not filled uniformly over the entire length in the longitudinal direction of the pipe, and the density of the filled flux in the longitudinal direction, that is, the filling rate varies. More specifically, as shown in FIG. 2, the filling rate is low at the flux supply end, and tends to gradually increase as it approaches the pipe tip. This shows that there is a large difference in the amount of alloy in the flux, especially at both ends of the pipe, as shown in FIG. Also, the difference in filling rate at both ends of the pipe tends to increase as the pipe length increases. The target filling rate of the flux in FIGS. 2 and 3 is 14.5%, the amount of Ni in the flux is 15%, and the pipe length is 1000 m.

【0006】このようにしてパイプ内にフラックスを充
填して製造された溶接用フラックス入りシームレスワイ
ヤはパイプ長が短い場合、あるいはパイプ長が長くとも
一般軟鋼材用フラックス入りシームレスワイヤでは溶接
作業性および機械的性質共に問題とならない場合もあ
る。しかしパイプ長が長い場合で低温用鋼用または高張
力鋼用等合金元素を含んだ溶接用フラックス入りシーム
レスワイヤの場合では、フラックス供給端とパイプ先端
部において合金成分が変動する。したがってフラックス
供給端部とパイプ先端部のワイヤで溶接した場合は溶接
金属の機械的性能差が大きくなる。
The flux-cored seamless wire for welding produced by filling the pipe with the flux in this way has a short pipe length, or even if the pipe length is long, the flux-cored seamless wire for general mild steel materials has good welding workability and workability. In some cases, both mechanical properties do not matter. However, when the length of the pipe is long, and in the case of a flux-cored seamless wire for welding, which contains an alloying element such as for low-temperature steel or high-strength steel, the alloy composition changes at the flux supply end and the pipe tip. Therefore, when welding is performed with the wire at the flux supply end and the pipe end, the difference in mechanical performance between the weld metals becomes large.

【0007】このような問題を解決する方法として特開
昭61−144297号公報で開示された「溶接用フラ
ックス入りワイヤの製造方法」があり、フラックス充填
を真空雰囲気下で行う方法がある。しかし、パイプ長が
長くなるとこの方法においてもフラックス供給端とパイ
プ先端部に充填率差が生じていた。また、特開平6−1
06387号公報の「粉粒体充填管の製造方法」には、
粒度構成の異なる2種以上の粉粒体をパイプ長手方向の
位置に区分して、または混合比を変えながら充填する方
法が開示されている。しかし、この方法では別途粒度構
成の異なる粉粒体を製造する必要があり能率面で問題と
なる。
As a method for solving such a problem, there is a "method for manufacturing a flux-cored wire for welding" disclosed in Japanese Patent Laid-Open No. 61-144297, and there is a method for performing flux filling in a vacuum atmosphere. However, when the pipe length becomes long, a difference in filling rate occurs between the flux supply end and the pipe tip even in this method. In addition, Japanese Patent Laid-Open No. 6-1
In "Production method of powder-and-granule-filled tube" of JP06387A,
A method is disclosed in which two or more kinds of powder particles having different particle size configurations are divided into positions in the pipe longitudinal direction or filled while changing the mixing ratio. However, in this method, it is necessary to separately manufacture powders having different particle size configurations, which is a problem in terms of efficiency.

【0008】[0008]

【発明が解決しようとする課題】従って、合金元素を含
む低温用鋼用または高張力鋼用の溶接用フラックス入り
シームレスワイヤを製造する場合は、生産性を犠牲にし
て短いパイプにフラックスを充填せざるをえなかった。
Therefore, when manufacturing a flux-cored seamless wire for low-temperature steel or high-strength steel containing alloy elements for welding, a short pipe is filled with flux at the expense of productivity. I had no choice.

【0009】そこで本発明は、粉粒体充填率がパイプ全
長にわたって均一であり品質が良好でかつ高能率で生産
性の高い粉粒体充填管の製造方法を提供することを目的
とする。
[0009] Therefore, an object of the present invention is to provide a method for producing a powder / granule-filled pipe which has a uniform powder / granule filling rate over the entire length of the pipe, is of good quality, and is highly efficient and highly productive.

【0010】[0010]

【発明を解決するための手段】本発明者らは、パイプ巻
装体を振動台に載置し、振動を与えながら粉粒体をパイ
プ端から充填する場合、パイプ先端部と粉粒体供給端で
は充填率にバラツキが生じるが、この最も大きな原因は
パイプ巻装体の位置差による振動条件の差であることを
見出した。従って、パイプ内の粉粒体充填率を均一にす
るためにはパイプ巻装体の各位置の振動条件差を少なく
して粉粒体を充填すれば良いことを知見した。
DISCLOSURE OF THE INVENTION The inventors of the present invention set a pipe winding body on a vibrating table, and when the powder and granules are filled from the pipe end while applying vibration, the pipe tip and the powder and granule supply It was found that the filling rate varies at the end, but the biggest cause of this is the difference in vibration conditions due to the position difference of the pipe winding body. Therefore, it has been found that in order to make the filling rate of the powder or granules in the pipe uniform, it is sufficient to fill the powder or granules by reducing the vibration condition difference between the respective positions of the pipe winding body.

【0011】この発明は以上の知見に基づいてなされた
もので、パイプ巻装体を振動台に載置し、振動を与えて
パイプ端から粉粒体を供給充填するに際して、下記1お
よび2式で与えられる巻装体最大径部の機械指標K1
巻装体最大径D1 の積(K1×D1 )および巻装体最小
径部の機械指標K2 と巻装体最小径D2 の積(K2 ×D
2 ) との差が200以下の振動条件で粉粒体を充填する
ことを特徴とする。 K1 =a1 (2πf)2 /g (1) K2 =a2 (2πf)2 /g (2) 但し K1 巻装体最大径部の機械指標 K2 巻装体最小径部の機械指標 a1 巻装体最大径部の水平振幅 (cm) a2 巻装体最小径部の水平振幅 (cm) f 振動数 (Hz) g 動加速度 (980 cm/sec2 )
The present invention has been made on the basis of the above findings. When the pipe winding body is placed on a vibrating table and vibration is applied to supply and fill the powdery particles from the end of the pipe, the following formulas 1 and 2 are used. The product (K 1 × D 1 ) of the machine index K 1 of the maximum diameter part of the wound body and the maximum diameter D 1 of the wound body, and the machine index K 2 of the minimum diameter part of the wound body and the minimum diameter D of the wound body Product of 2 (K 2 × D
It is characterized in that the powder and granules are filled under a vibration condition in which the difference from 2 ) is 200 or less. K 1 = a 1 (2πf) 2 / g (1) K 2 = a 2 (2πf) 2 / g (2) where K 1 is the machine index of the maximum diameter part of the wound body K 2 Machine of the minimum diameter part of the wound body Index a 1 Horizontal amplitude of the largest diameter part of the wound body (cm) a 2 Horizontal amplitude of the smallest diameter part of the wound body (cm) f Frequency (Hz) g Dynamic acceleration (980 cm / sec 2 )

【0012】なお、巻装体の直径は、パイプを巻き取っ
たボビンまたは巻胴の外径にパイプ巻き層厚の2倍を加
えたものである。K1 ×D1 とK2 ×D2 との差の下限
は、0である。上記定義から明らかなように、パイプを
ボビンに1層だけ巻き取った場合に、K1 ×D1 とK2
×D2 との差が0になる。粉粒体充填管の製造工程で、
1 ×D1 とK2 ×D2 との差が200を超えた場合、
たとえばパイプの巻き層数を減らして、200以下とす
る。
The diameter of the wound body is equal to the outer diameter of the bobbin or winding cylinder wound with the pipe, plus twice the thickness of the pipe winding layer. The lower limit of the difference between K 1 × D 1 and K 2 × D 2 is 0. As is clear from the above definition, when one layer of the pipe is wound on the bobbin, K 1 × D 1 and K 2
The difference from × D 2 becomes zero. In the process of manufacturing powder-filled tubes,
If the difference between K 1 × D 1 and K 2 × D 2 exceeds 200,
For example, the number of winding layers of the pipe is reduced to 200 or less.

【0013】[0013]

【作用】パイプ巻装体各位置の振動条件差を少なくする
ことで粉粒体充填率が均一となる。振動条件の最も大き
く差があるのはパイプ巻装体外側最大径部と最小径部で
あり、この部分の振動条件差を少なくする。つまり、パ
イプ巻装体外側最大径部および内側最小径部の機械指標
1 , K2 とそれぞれの径D1 , D2 との積(K1 ×D
1 ,K2 ×D2 )の差を200以下にすることにより粉
粒体充填率がパイプ長手向に均一となる。これが200
を超えると、パイプ巻装体の位置差による振動条件の差
が大きくなって粉粒体充填率がパイプ長手方向に均一と
ならずバラツキが生じるようになる。たとえば、粉粒体
充填率のバラツキが、±0.5%を超える。
[Function] By reducing the difference in the vibration condition between the respective positions of the pipe winding body, the packing rate of the powder and granules becomes uniform. The largest difference in vibration condition is between the maximum diameter part and the minimum diameter part outside the pipe winding body, and the difference in vibration conditions in this part is reduced. That is, the product (K 1 × D) of the machine indexes K 1 and K 2 of the outermost diameter portion and the innermost diameter portion of the pipe winding body and their respective diameters D 1 and D 2.
By setting the difference of ( 1 , K 2 × D 2 ) to 200 or less, the packing rate of the powder and granules becomes uniform in the longitudinal direction of the pipe. This is 200
When it exceeds, the difference in the vibration conditions due to the difference in the position of the pipe wound body becomes large, and the powdery or granular material filling rate becomes uneven in the longitudinal direction of the pipe, resulting in variations. For example, the variation of the powder / granular filling rate exceeds ± 0.5%.

【0014】[0014]

【実施例】以下、溶接用フラックス入りシームレスワイ
ヤの製造方法を実施例として説明する。まず、表1に示
す低温用鋼用ワイヤの原料配合比のフラックスを配合
し、水ガラスで造粒した。
EXAMPLE A method for manufacturing a flux-cored seamless wire for welding will be described below as an example. First, the flux of the raw material mixing ratio of the low temperature steel wire shown in Table 1 was mixed and granulated with water glass.

【表1】 [Table 1]

【0015】図1に示す装置を用いて表2に示す各種条
件で表1のフラックスをパイプに充填した。なお、目標
充填率は全て14.5%とした。
The flux shown in Table 1 was filled into the pipe under the various conditions shown in Table 2 using the apparatus shown in FIG. The target filling rates were all set to 14.5%.

【0016】[0016]

【表2】 [Table 2]

【0017】パイプは軟鋼材で直径11mm,肉厚2.1
mm,長さ1000 mを形状(ボビン巻胴径)を変えたボ
ビンに巻装した。フラックス充填後3.2mm径まで縮径
した中間製品で、それぞれの試験例のワイヤにつきパイ
プ供給部,中央部,パイプ先端部の3箇所についてフラ
ックス充填率およびNi量を測定した。それらの結果を
表3に示す。なお、表3中のNi含有量は、フラックス
充填管におけるNi含有量、つまり軟鋼パイプの重量も
含めたものに対する重量比である。
The pipe is made of mild steel and has a diameter of 11 mm and a wall thickness of 2.1.
mm and length of 1000 m were wound on bobbins with different shapes (bobbin winding diameter). The flux filling rate and the amount of Ni were measured at three points of the pipe supply part, the center part, and the pipe tip part of the wire of each test example, which was an intermediate product having a diameter reduced to 3.2 mm after flux filling. The results are shown in Table 3. The Ni content in Table 3 is a weight ratio with respect to the Ni content in the flux-filled tube, that is, the weight of the mild steel pipe.

【表3】 [Table 3]

【0018】その結果、本発明例であるNo. 1〜3はK
1 ×D1 とK2 ×D2 との差が200以下、つまり最大
径部と最小径部との振動条件差が少ないのでフラックス
目標充填率14.5%の±0.2%が得られ、Ni量も
バラツキが非常に少なく極めて満足しうるものであっ
た。
As a result, Nos. 1 to 3 of the present invention are K
The difference between 1 × D 1 and K 2 × D 2 is 200 or less, that is, the difference in vibration conditions between the maximum diameter portion and the minimum diameter portion is small, so the flux target filling rate of 14.5% ± 0.2% is obtained. The amount of Ni also showed very little variation and was extremely satisfactory.

【0019】比較例であるNo. 4〜6はいずれもK1 ×
1 とK2 ×D2 との差が200を超え、つまり最大径
部と最小径部との振動条件差が大きいのでフラックス目
標充填率が14.5%の±1.3%、またNi量もバラ
ツキが非常に大きくなった。
Comparative examples Nos. 4 to 6 are all K 1 ×
Since the difference between D 1 and K 2 × D 2 exceeds 200, that is, the vibration condition difference between the maximum diameter portion and the minimum diameter portion is large, the flux target filling rate is 14.5% ± 1.3%, and Ni The amount of variation is very large.

【0020】[0020]

【発明の効果】この発明によれば、粉粒体充填率がパイ
プ全長にわたって均一にできる。その結果、粉粒体充填
管の品質が良好で、またパイプを長くすることができ高
能率で生産性が向上する。
According to the present invention, it is possible to make the filling rate of the powder and granules uniform over the entire length of the pipe. As a result, the quality of the powder / granule-filled pipe is good, the length of the pipe can be increased, and the productivity is improved with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】フラックス充填装置の側面図である。FIG. 1 is a side view of a flux filling device.

【図2】フラックス充填後の充填率測定結果を示すグラ
フである。
FIG. 2 is a graph showing the results of measuring the filling rate after flux filling.

【図3】図2のワイヤのNi分析結果を示すグラフであ
る。
3 is a graph showing the Ni analysis result of the wire of FIG.

【符号の説明】[Explanation of symbols]

1 ボビン 2 振動台 3 ホッパ 4 中間パイプ 5 枝パイプ 6 蓋 F フラックス P パイプ 1 Bobbin 2 Shaking Table 3 Hopper 4 Intermediate Pipe 5 Branch Pipe 6 Lid F Flux P Pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 文雄 千葉県習志野市東習志野7丁目6番1号 日鐵溶接工業株式会社習志野工場内 (72)発明者 安藤 悟 千葉県習志野市東習志野7丁目6番1号 日鐵溶接工業株式会社習志野工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Fumio Hayashi 7-6-1, Higashi Narashino, Narashino, Chiba Prefecture Narashino Factory of Nittetsu Welding Co., Ltd. (72) Satoru Ando 7-6, Higashi Narashino, Narashino, Chiba Prefecture No. 1 Narashino Factory of Nittetsu Welding Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 パイプ巻装体を振動台に載置し、振動を
与えてパイプ端から粉粒体を供給充填するに際して、下
記1および2式で与えられる巻装体最大径部の機械指標
1 と巻装体最大径D1 の積(K1 ×D1 )および巻装
体最小径部の機械指標K2 と巻装体最小径D2 の積(K
2 ×D2 )との差が200以下の振動条件で粉粒体を充
填することを特徴とする粉粒体充填管の製造方法。 K1 =a1 (2πf)2 /g (1) K2 =a2 (2πf)2 /g (2) 但し K1 巻装体最大径部の機械指標 K2 巻装体最小径部の機械指標 a1 巻装体最大径部の水平振幅 (cm) a2 巻装体最小径部の水平振幅 (cm) f 振動数 (Hz) g 動加速度 (980 cm/sec2 )
1. A mechanical index of the maximum diameter part of the winding body given by the following formulas 1 and 2 when the winding body of the pipe is placed on a vibrating table and the powder particles are supplied and filled from the end of the pipe under vibration. The product of K 1 and the maximum diameter D 1 of the wound body (K 1 × D 1 ) and the product of the machine index K 2 of the minimum diameter portion of the wound body and the minimum diameter D 2 of the wound body (K 1
2 × D 2 ) The method for producing a powder / granule-filled tube, which comprises filling the powder / granular material under a vibration condition having a difference of 200 or less. K 1 = a 1 (2πf) 2 / g (1) K 2 = a 2 (2πf) 2 / g (2) where K 1 is the machine index of the maximum diameter part of the wound body K 2 Machine of the minimum diameter part of the wound body Index a 1 Horizontal amplitude of the largest diameter part of the wound body (cm) a 2 Horizontal amplitude of the smallest diameter part of the wound body (cm) f Frequency (Hz) g Dynamic acceleration (980 cm / sec 2 )
JP6271216A 1994-11-04 1994-11-04 Production of pipe filled with powder and granular material Pending JPH08132283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6271216A JPH08132283A (en) 1994-11-04 1994-11-04 Production of pipe filled with powder and granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6271216A JPH08132283A (en) 1994-11-04 1994-11-04 Production of pipe filled with powder and granular material

Publications (1)

Publication Number Publication Date
JPH08132283A true JPH08132283A (en) 1996-05-28

Family

ID=17496972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6271216A Pending JPH08132283A (en) 1994-11-04 1994-11-04 Production of pipe filled with powder and granular material

Country Status (1)

Country Link
JP (1) JPH08132283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542444A (en) * 2006-07-07 2009-12-03 レヴワイヤーズ・エルエルシー Method and apparatus for making cored wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542444A (en) * 2006-07-07 2009-12-03 レヴワイヤーズ・エルエルシー Method and apparatus for making cored wire
US8656587B2 (en) 2006-07-07 2014-02-25 Revwires Llc Method and apparatus for making cored wire

Similar Documents

Publication Publication Date Title
US4379811A (en) Tubular filler wire for fusion welding
GB1177993A (en) Method of Producing a Seamless Tubular Wire Filled with a Pulverous Material
JPH08132283A (en) Production of pipe filled with powder and granular material
US1277639A (en) Electrode for arc-soldering.
CN112059471A (en) Flux-cored wire for welding 022 austenitic stainless steel seamless pipe for fluid transportation
JPS5916694A (en) Flux cored wire for welding and its production
JPH06106387A (en) Production of powder and granular material packed pipe
JPH0565275B2 (en)
JPS61212500A (en) Production of flux cored wire for welding stainless steel
JPS5947090A (en) Method for packing granular material into pipe wire
JP3199929B2 (en) Manufacturing method of powder filled tube
JPH06198490A (en) Production of additive cored wire
JPH08290295A (en) Manufacture of flux core wire for welding
JPS62289398A (en) Production of flux cored welding wire
JPS59232697A (en) Production of flux cored wire
JPS61216895A (en) Production of powder-cored welding wire
JPS6281294A (en) Manufacture of flux cored wire for welding
GB2079658A (en) Method of electric arc welding or cladding and consumable electrode for use in such method
JPH08295919A (en) Production of pipe packed with granular body
JPH1085986A (en) Production of powdery and granular substance filling tube
KR101274430B1 (en) High dimensional cored wires containing oxygen removers and a process for making the same
JPH0623586A (en) Manufacture of powder and granular material packed tube
JPH03285794A (en) Production of metallic powder flux cored wire
JPH06328293A (en) Manufacture of wire containing additive
JPS6363599A (en) Flux cored wire for welding