JPH08131414A - Sampling method for living body function invigoration information in magnetic resonance imaging - Google Patents

Sampling method for living body function invigoration information in magnetic resonance imaging

Info

Publication number
JPH08131414A
JPH08131414A JP6275186A JP27518694A JPH08131414A JP H08131414 A JPH08131414 A JP H08131414A JP 6275186 A JP6275186 A JP 6275186A JP 27518694 A JP27518694 A JP 27518694A JP H08131414 A JPH08131414 A JP H08131414A
Authority
JP
Japan
Prior art keywords
time
magnetic resonance
data
activation
extracting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6275186A
Other languages
Japanese (ja)
Other versions
JP3293720B2 (en
Inventor
Fumiya Takeuchi
文也 竹内
Hiroyuki Itagaki
博幸 板垣
Etsuji Yamamoto
悦治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP27518694A priority Critical patent/JP3293720B2/en
Publication of JPH08131414A publication Critical patent/JPH08131414A/en
Application granted granted Critical
Publication of JP3293720B2 publication Critical patent/JP3293720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To sample the invigoration information of a cranial nerve, etc., with high precision even when no model is established by measuring a magnetic resonance signal in time series fashion, finding the time differentiation of the time series data of the magnetic resonance signal at every pixel and sampling an invigoration part based on the time differentiation. CONSTITUTION: An MR signal is measured by laying down a patient 4 on a bed 5 set in a uniform magnetostatic field made of magnet 1, transmitting a high-frequency magnetic field by an RF coil 3, and receiving the high-frequency magnetic field discharged from the patient 4 with the RF coil 3 after such transmission is stopped. At this time, position information is superimposed on the high-frequency magnetic field received by the RF coil 3 by applying a spatially inclined magnetic field by a coil 2. The high-frequency magnetic field measured in such way goes to the MR signal. In such a case, the magnetic resonance signal is found in time series fashion, and the time differentiation of the time series data of the magnetic resonance signal is found at every pixel, and the invigoration part can be sampled based on the time differentiation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気共鳴イメージング
(MRI)による生体機能計測結果から、脳神経などの
賦活部位と賦活開始時刻との生体機能賦活情報を抽出す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting biofunction activation information of activation sites such as cranial nerves and activation start times from the results of biofunction measurement by magnetic resonance imaging (MRI).

【0002】[0002]

【従来の技術】核磁気共鳴を利用した断層イメージング
(MRI)は医療診断の領域で広く用いられている。M
RIがもたらす画像情報は解剖学的なものが主であった
が、1992年に脳機能を計測する方法(Proc. Natl.
Acad. Sci. USA, 1992, vol.89, pp.5951-5955)が報告
されて以来、脳機能情報の一つとして注目を集めてい
る。MRIによる脳機能計測では、脳神経の活動に伴う
静脈血の成分や血流量の変化を、透磁率の変化などとし
て観測している。ここで注目している血管は脳内に深く
入り込んでいるとともに微小であり、静脈血の変化が近
隣に存在する神経細胞の活動に強く関連していると考え
られている。したがって、MRIによる脳機能計測を行
うためには、2次元あるいは3次元のMR信号の時系列
データ(MRデータ)として、脳神経を賦活させた場合
のデータ(機能データ)と、静脈血変化の基準となる脳
神経を賦活させないときのデータ(基準データ)とを計
測する必要がある。この機能データと基準データとの違
いが静脈血の変化、すなわち脳機能情報となる。
2. Description of the Related Art Tomographic imaging (MRI) utilizing nuclear magnetic resonance is widely used in the field of medical diagnosis. M
Image information provided by RI was mostly anatomical, but in 1992, a method of measuring brain function (Proc. Natl.
Acad. Sci. USA, 1992, vol.89, pp.5951-5955), it has been attracting attention as one of the brain function information. In brain function measurement by MRI, changes in the components of venous blood and blood flow that accompany the activity of cranial nerves are observed as changes in magnetic permeability. The blood vessels of interest here penetrate deep into the brain and are minute, and it is thought that changes in venous blood are strongly related to the activity of nerve cells in the vicinity. Therefore, in order to measure the brain function by MRI, the data (function data) when activating the cranial nerve and the venous blood reference are used as time-series data (MR data) of two-dimensional or three-dimensional MR signals. It is necessary to measure the data (reference data) when the cranial nerve that becomes The difference between the functional data and the reference data is venous blood change, that is, brain functional information.

【0003】計測者が、静脈血の変化をMRデータから
見つけだし、脳神経賦活部位を抽出するには多くの時間
が必要となる。そのため、自動的かつ客観的に静脈血の
変化部位を抽出する方法が提案されている。例えば、機
能データと基準データとの間で統計的な検定を行い、有
意な差がある部位を探索する方法や、刺激印加および休
止の期間とMRデータとの相関をとる方法がある(Proc
eedings of the Society of Magnetic Resonance in Me
dicine 1993, p.449 & p.1376)。なお、相関を利用した
抽出法では、刺激印加期間に得られたMRデータが機能
データに、刺激休止期間に得られたMRデータが基準デ
ータに対応する。
It takes a lot of time for the measurer to find out the change in venous blood from the MR data and extract the cranial nerve activation site. Therefore, a method of automatically and objectively extracting a changed portion of venous blood has been proposed. For example, there is a method of conducting a statistical test between functional data and reference data to search for a site having a significant difference, and a method of correlating MR data with the period of stimulation application and rest (Proc.
eedings of the Society of Magnetic Resonance in Me
dicine 1993, p.449 & p.1376). In the extraction method using correlation, the MR data obtained during the stimulation application period corresponds to the functional data, and the MR data obtained during the stimulation rest period corresponds to the reference data.

【0004】[0004]

【発明が解決しようとする課題】前記で述べた抽出方法
では、基準データには静脈血の変化が無く、機能データ
には該変化が生じているというモデルを仮定している。
しかし、実際の賦活部位では、常にこのようなモデルが
成り立つわけではなく、該モデルが成り立たない場合に
は誤った結果を導き出すこともある。本発明は、前記モ
デルが成り立たない場合においても、精度よく静脈血の
変化部位および変化開始時刻、すなわち脳神経などの賦
活情報を抽出できる方法を提供することを目的とする。
The extraction method described above assumes a model in which there is no change in venous blood in the reference data and the change occurs in the functional data.
However, such a model does not always hold in an actual activation site, and if the model does not hold, an erroneous result may be derived. An object of the present invention is to provide a method capable of accurately extracting a venous blood change site and a change start time, that is, activation information such as a cranial nerve, even when the model does not hold.

【0005】[0005]

【課題を解決するための手段】本発明では、ピクセル毎
にMRデータの時間微分を計算し、時間微分値の時系列
データより閾値を超えるピークを抽出することで、先験
的な仮定を用いることなく脳神経などの賦活の有無の判
定と、部位および開始時刻の抽出を行い、前記目的を達
成する。また、賦活の開始時刻として、最も早く現れた
MRデータの時間変化の時刻を用いる。
In the present invention, the a priori assumption is used by calculating the time derivative of the MR data for each pixel and extracting the peaks exceeding the threshold value from the time series data of the time derivative value. Without doing so, the presence or absence of activation of the cranial nerve and the like is determined, and the site and start time are extracted to achieve the above object. Also, as the activation start time, the time of the earliest time change of the MR data is used.

【0006】MRデータの時間微分は、ある時刻の信号
強度と、それに先立つ時刻あるいはそれに続く時刻の信
号強度との差分から求めることができる。この差分は、
MRデータに変化が現れた時刻で大きなピークを示す。
したがって、このピークを時間微分値の時系列データか
ら抽出すれば、MRデータの時間変化の時刻と大きさと
がわかる。ただし、実際のデータにはノイズがあるた
め、閾値を設定し、この閾値を超える大きさのピークの
みを抽出する。MRデータは水素原子核の磁気共鳴信号
から得るのが好適である。
The time derivative of MR data can be obtained from the difference between the signal strength at a certain time and the signal strength at a time preceding or succeeding the time. This difference is
A large peak is shown at the time when a change appears in the MR data.
Therefore, when this peak is extracted from the time series data of the time differential value, the time and magnitude of the time change of the MR data can be known. However, since there is noise in the actual data, a threshold is set and only peaks with a size exceeding this threshold are extracted. MR data are preferably obtained from magnetic resonance signals of hydrogen nuclei.

【0007】[0007]

【作用】機能情報が含まれているMRデータには、刺激
などによって生じた脳神経などの活動に伴う静脈血の血
流量の変化あるいは血液成分の変化に起因して、信号強
度の時間的な変化が存在する。したがって、MRデータ
から構成されるイメージの各ピクセル毎にMRデータの
時間変化をモニターすれば、脳神経などの賦活部位を抽
出することができる。
[Function] MR data containing functional information includes temporal changes in signal intensity due to changes in blood flow of venous blood or changes in blood components associated with activities such as cranial nerves caused by stimulation. Exists. Therefore, by monitoring the time change of the MR data for each pixel of the image composed of the MR data, it is possible to extract the activation site such as the cranial nerve.

【0008】本発明の方法は、刺激呈示あるいは課題遂
行に伴う脳神経活動などのモデルを仮定する必要がない
ため、モデルが妥当でない場合やモデルの妥当性が確認
できない場合にも使用できる。また、微分処理は低域遮
断特性を有するため、基線変動を含んだデータにも前処
理することなく使用できる。さらに、刺激あるいは課題
開始からMR信号に変化が現れるまでの潜時や、信号変
化の持続時間を容易に調べることができる。
The method of the present invention does not need to assume a model of cranial nerve activity accompanying stimulus presentation or task execution, and therefore can be used when the model is not valid or the model cannot be confirmed to be valid. In addition, since the differential processing has a low-frequency cutoff characteristic, it can be used without preprocessing for data including a baseline change. Furthermore, it is possible to easily examine the latency from the start of the stimulus or task until the change in the MR signal appears, and the duration of the signal change.

【0009】[0009]

【実施例】本発明の方法は図1に示した(1)〜(6)
の手順に従って実行される。以下ではその手順に沿っ
て、実施例を説明する。 (1)MRデータの計測 図2は、MRIを利用した脳機能計測装置の一例を示す
構成図である。図において、1は静磁場を作る磁石、2
は空間的に傾斜した磁場を作る傾斜磁場発生コイル、3
は高周波磁場を送受信するRFコイル、4は被験者、5
は被験者を支持するベッド、6はデータ収集・解析用の
ワークステーションである。
EXAMPLES The method of the present invention is shown in FIGS. 1 (1) to (6).
It is executed according to the procedure. An example will be described below according to the procedure. (1) Measurement of MR data FIG. 2 is a configuration diagram showing an example of a brain function measuring device using MRI. In the figure, 1 is a magnet that creates a static magnetic field, 2
Is a gradient magnetic field generating coil that creates a magnetic field with a spatial gradient, 3
Is an RF coil for transmitting and receiving a high frequency magnetic field, 4 is a subject, 5
Is a bed that supports the subject, and 6 is a workstation for data collection and analysis.

【0010】MR信号を計測するには、磁石1で作った
均一な静磁場中のベッド5に被験者4を横臥させ、RF
コイル3で高周波磁場を一定時間送信し、送信を停止し
た後、被験者4が放出する高周波磁場をRFコイル3で
受信する。このとき、空間的に傾斜した磁場をコイル2
で印加することで、RFコイル3で受信される高周波磁
場に位置情報を重畳させる。このようにして計測される
高周波磁場がMR信号となる。計測に用いるパルスシー
ケンスによっては、1枚の画像データとしてのMR信号
を得るために、傾斜磁場の大きさを変えながら高周波磁
場の送信、傾斜磁場の印加、高周波磁場の受信の過程を
繰り返す必要がある。MR信号の時系列データであるM
Rデータを取得するためには、脳機能情報を得るために
必要な回数だけ、MR信号を収集する過程を繰り返す。
In order to measure the MR signal, the subject 4 is laid down on the bed 5 in a uniform static magnetic field created by the magnet 1 and the RF is applied.
The high frequency magnetic field is transmitted by the coil 3 for a certain period of time, and after the transmission is stopped, the high frequency magnetic field emitted by the subject 4 is received by the RF coil 3. At this time, a spatially inclined magnetic field is applied to the coil 2
Position information is superimposed on the high frequency magnetic field received by the RF coil 3. The high-frequency magnetic field measured in this way becomes an MR signal. Depending on the pulse sequence used for measurement, in order to obtain an MR signal as one piece of image data, it is necessary to repeat the process of transmitting a high frequency magnetic field, applying a gradient magnetic field, and receiving a high frequency magnetic field while changing the magnitude of the gradient magnetic field. is there. M which is time series data of MR signal
In order to obtain R data, the process of collecting MR signals is repeated as many times as necessary to obtain brain function information.

【0011】脳機能計測では、例えば図3に示すよう
に、被験者に対し刺激を呈示しないあるいは課題を遂行
させない安静期間と、刺激を呈示するあるいは課題を遂
行させる刺激期間のMRデータを収集する。図3ではM
Rデータを得るために 2次元のMR信号を、等しい時
間間隔で7回収集している。
In the brain function measurement, for example, as shown in FIG. 3, MR data is collected during a rest period in which no stimulus is presented to the subject or no task is performed, and a stimulus period in which a stimulus is presented or a task is performed. In Figure 3, M
Two-dimensional MR signals are acquired 7 times at equal time intervals to obtain R data.

【0012】(2)解析領域の制限 次に、MRデータのうち賦活情報抽出を行う領域を、頭
部が存在する部分に制限する。その際には、頭部が存在
する部分と背景部分とのMR信号強度の差を利用し、該
強度に閾値を設け、脳と背景を区別する。また、頭皮や
頭蓋骨などの、被験者頭部のうち脳以外の部分について
も閾値を設定することにより脳と区別することができ
る。なお、データによってはこの処理を省略しても構わ
ない。さらに、MRデータをピクセル毎に分解する。脳
機能情報を含んでいるピクセルから得られる時系列のM
Rデータの一例を簡略化して図3に示す。図3のMRデ
ータでは、刺激開始で最初の変化があり、刺激停止で2
番目の変化がある。
(2) Limitation of analysis region Next, the region of the MR data from which activation information is extracted is limited to the portion where the head exists. In that case, the difference in MR signal intensity between the part where the head is present and the background part is used, and a threshold is set for the intensity to distinguish the brain from the background. In addition, it is possible to distinguish from the brain by setting a threshold value for a portion of the subject's head other than the brain, such as the scalp and skull. Note that this process may be omitted depending on the data. Furthermore, the MR data is decomposed for each pixel. Time-series M obtained from pixels containing brain function information
An example of R data is simplified and shown in FIG. In the MR data of FIG. 3, there is a first change at the start of stimulation and 2 at the stop of stimulation.
There is a second change.

【0013】(3)前処理 (2)の処理で生成した時系列データに、高周波成分を
除去する処理をピクセル毎に行う。この処理は、ディジ
タルフィルタによって実現される。なお、データによっ
てはこの処理を省略しても構わない。 (4)微分処理 ピクセル毎に、前処理(3)が終了した時系列データの
時間微分処理を行う。この処理は、ある時刻kのデータ
(k番目データ)と、それよりも時間α前のデータ(k
−α番目データ)あるいは、時刻kよりも時間α後のデ
ータ(k+α番目データ)との差分として行う。また、
下式に示すように、さらにその前後の時刻のデータを用
いてもよい。
(3) Pre-processing The time-series data generated in the processing of (2) is subjected to processing for removing high frequency components for each pixel. This processing is realized by a digital filter. Note that this process may be omitted depending on the data. (4) Differentiation processing For each pixel, time differentiation processing of the time-series data for which the preprocessing (3) has been completed is performed. This process consists of data at a certain time k (kth data) and data (k) before time α.
-Αth data) or data (k + αth data) after time α after time k. Also,
As shown in the following formula, data of times before and after that may be used.

【0014】 D(k) =a(0)・S(k-n)+a(1)・S(k-n+1)+・・・ +a(n)・S(k)+a(n+1)・S(k+1)+・・・ +a(2n-1)・S(k+n-1)+a(2n)・S(k+n) …(1) ただし、D(k) : 時刻kの微分値 a(m),(m=0〜2n):重み係数 S(k+l),(l=-n〜n):時間(k+l)のデータ n:正の整数であり、(2n+1)が微分演算に用いる
データの個数となる。
D (k) = a (0) .S (kn) + a (1) .S (k-n + 1) + ... + a (n) .S (k) + a (n + 1). S (k + 1) + ・ ・ ・ + a (2n-1) ・ S (k + n-1) + a (2n) ・ S (k + n) (1) where D (k): at time k Differential value a (m), (m = 0 to 2n): Weighting coefficient S (k + l), (l = -n to n): Time (k + 1) data n: Positive integer, (2n + 1) Is the number of data used for the differential operation.

【0015】例えば時刻kの微分を、時刻kのデータと
それよりも一つ前の時刻(k−1)のデータとの差分と
して計算する場合には、式(1)のパラメータはn=
1,a(0)=−1,a(1)=1,a(2)=0となり、時刻
kのデータとそれよりも1つ後の時刻(k+1)のデー
タとの差分として計算する場合には、n=1,a(0)=
0,a(1)=1,a(2)=−1となる。図4は、図3で示
したMRデータを用いて、前記の微分処理過程を模式的
に示している。
For example, when the differential of time k is calculated as the difference between the data at time k and the data at time (k-1) immediately before that, the parameter of equation (1) is n =
1, a (0) =-1, a (1) = 1, a (2) = 0, and when calculating as the difference between the data at time k and the data at time (k + 1), which is one time after that. , N = 1, a (0) =
0, a (1) = 1, a (2) = − 1. FIG. 4 schematically shows the differential processing process using the MR data shown in FIG.

【0016】(5)ピーク探索 微分処理(4)が終了した時系列データの中から、図5
に示すように計測者が設定した閾値を超えるデータを探
索し、該当するデータを脳神経の賦活に伴うMR信号の
変化によるピーク(賦活ピーク)として記録する。 (6)結果の表示 ピーク探索により、信号変化の有無がピクセル毎に分か
る。信号変化が有る場合には、信号変化が生じた時刻
と、その変化が生じた向きについての情報が得られる。
さらに、一つのMRデータ中に、変化の向きが異なる二
つの信号変化が有る場合には、それらの間隔より、MR
データが変化していた時間についての情報も得られる。
MR信号の変化の開始時刻として、最初の賦活ピークの
時刻を用いることができる。
(5) Peak Search From the time series data after the differential processing (4),
As shown in, the data that exceeds the threshold set by the measurer is searched, and the corresponding data is recorded as a peak (activation peak) due to a change in the MR signal accompanying activation of the cranial nerve. (6) Display of results Whether or not there is a signal change can be found for each pixel by peak search. If there is a signal change, information about the time when the signal change occurred and the direction in which the change occurred can be obtained.
Furthermore, if there are two signal changes with different directions in one MR data, the MR
It also gives information about the time the data was changing.
The time of the first activation peak can be used as the start time of the change of the MR signal.

【0017】また、処理前のMRデータとその時間微分
のピーク時刻とにより、信号変化の大きさ(信号変化
率)と、信号変化率の時間的な変化とについての情報が
得られる。なお、これらの情報は、MRデータの時間微
分を積分することで求めることもできる。計測者へは、
ピクセル毎に得られるこれらの情報を画像上に、色やパ
ターンの違いとしてワークステーション6上に提示す
る。図6はその一例である。図中、パターンが貼られた
ピクセルは、時系列データに信号変化が存在し、脳神経
賦活部位であることを示している。
Information on the magnitude of the signal change (signal change rate) and the time change of the signal change rate can be obtained from the unprocessed MR data and the peak time of the time derivative thereof. Note that these pieces of information can also be obtained by integrating the time derivative of MR data. For the measurer,
These pieces of information obtained for each pixel are presented on the workstation 6 as a difference in color or pattern on the image. FIG. 6 shows an example thereof. In the figure, the pixels to which the pattern is attached indicate that there is a signal change in the time-series data and that they are cranial nerve activation sites.

【0018】賦活開始時刻の抽出を時間微分を用いて行
う場合には、微分処理(4)でMRデータの時間微分の
時間微分を行い、得られた時間微分値をピーク探索
(5)し、最初の賦活ピークの時刻を賦活開始時刻とし
て、結果の表示(6)を行う。すでに賦活部位が抽出さ
れていれば、この操作をその空間座標に限定することが
できる。
When the activation start time is extracted using the time derivative, the time derivative of the time derivative of the MR data is performed in the derivative process (4), and the obtained time derivative value is searched for a peak (5). The result is displayed (6) using the time of the first activation peak as the activation start time. If the activation site has already been extracted, this operation can be limited to the spatial coordinates.

【0019】本実施例は、2次元のMRデータである
が、3次元のデータにおいてもほぼ同様の手順で取り扱
うことができる。異なる点は、MRデータの収集を3次
元で行うこと、ピクセル毎の処理がボクセル毎の処理と
なること、結果の表示を3次元化するかあるいは図6の
ような断層画像を複数表示することである。なお、ここ
では脳神経の賦活情報の抽出を例にとって説明したが、
本発明は末梢神経や脳以外の臓器の神経賦活情報や静脈
血の変化を抽出する方法として適用することもできる。
Although the present embodiment deals with two-dimensional MR data, it is possible to handle three-dimensional data with substantially the same procedure. The differences are that MR data is collected in three dimensions, pixel-by-pixel processing becomes voxel-based processing, and the results are displayed three-dimensionally or multiple tomographic images as shown in FIG. 6 are displayed. Is. It should be noted that here, the extraction of the activation information of the cranial nerve is described as an example,
The present invention can also be applied as a method for extracting nerve activation information of peripheral nerves and organs other than the brain and changes in venous blood.

【0020】[0020]

【発明の効果】本発明では、既知の抽出法である相関や
有意差検定を用いた方法とは異なり、刺激呈示あるいは
課題遂行に伴う脳神経活動などのモデルを仮定する必要
がないため、モデルが妥当でない場合やモデルの妥当性
が確認できない場合にも使用できる。また、微分処理は
低域遮断特性を有するため、基線変動を含んだデータに
も前処理することなく使用できる。さらに、信号変化時
刻の抽出が容易なことから、刺激あるいは課題開始から
MR信号に変化が現れるまでの潜時や、信号変化の持続
時間を容易に調べることができる。
EFFECTS OF THE INVENTION In the present invention, unlike the method using the correlation or significant difference test which is a known extraction method, it is not necessary to presume a model of cranial nerve activity accompanying stimulus presentation or task execution. It can also be used when it is not valid or the model cannot be validated. In addition, since the differential processing has a low-frequency cutoff characteristic, it can be used without preprocessing for data including a baseline change. Furthermore, since the signal change time is easily extracted, the latency from the start of the stimulus or task to the change in the MR signal and the duration of the signal change can be easily examined.

【図面の簡単な説明】[Brief description of drawings]

【図1】脳神経の賦活部位の自動抽出手順を示すフロチ
ャート。
FIG. 1 is a flow chart showing an automatic extraction procedure of activated areas of cranial nerves.

【図2】MRIを利用した生体機能計測装置の一例を示
す構成図。
FIG. 2 is a configuration diagram showing an example of a biological function measuring apparatus using MRI.

【図3】脳機能計測におけるMRデータの計測結果の模
式図。
FIG. 3 is a schematic diagram of measurement results of MR data in brain function measurement.

【図4】MRデータの時間微分処理の模式図。FIG. 4 is a schematic diagram of time differential processing of MR data.

【図5】時間微分のピーク探索の模式図。FIG. 5 is a schematic diagram of a time differential peak search.

【図6】脳神経の賦活部位の表示例を示す図。FIG. 6 is a diagram showing a display example of activated areas of cranial nerves.

【符号の説明】[Explanation of symbols]

1…静磁場を作る磁石、2…傾斜磁場発生コイル、3…
RFコイル、4…被験者、5…ベッド、6…データ収集
・解析用ワークステーション
1 ... Magnet that creates a static magnetic field, 2 ... Gradient magnetic field generating coil, 3 ...
RF coil, 4 ... Subject, 5 ... Bed, 6 ... Workstation for data collection / analysis

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁気共鳴イメージングによって得られた
データからの生体機能賦活情報の抽出方法において、磁
気共鳴信号を時系列的に計測し、ピクセル毎に磁気共鳴
信号の時系列データの時間微分を求め、該時間微分に基
づいて賦活部位を抽出することを特徴とする磁気共鳴イ
メージングにおける生体機能賦活情報の抽出方法。
1. A method of extracting biofunction activation information from data obtained by magnetic resonance imaging, wherein magnetic resonance signals are measured in time series, and time derivative of time series data of magnetic resonance signals is obtained for each pixel. A method for extracting biofunction activation information in magnetic resonance imaging, which comprises extracting activation sites based on the time derivative.
【請求項2】 前記生体機能が脳神経の機能であること
を特徴とする請求項1記載の生体機能賦活情報の抽出方
法。
2. The method for extracting biofunction activation information according to claim 1, wherein the biofunction is a function of a cranial nerve.
【請求項3】 ピクセル毎に求めた磁気共鳴信号の時系
列データの時間微分値の大きさを予め設定した閾値と比
較し、該閾値を超えた時間微分値の有無により賦活の有
無をピクセル毎に判定することを特徴とする請求項1又
は2記載の生体機能賦活情報の抽出方法。
3. The size of the time differential value of the time series data of the magnetic resonance signal obtained for each pixel is compared with a preset threshold value, and the presence or absence of activation is determined for each pixel by the presence or absence of the time differential value exceeding the threshold value. The method for extracting biofunction activation information according to claim 1 or 2, characterized in that
【請求項4】 所定時刻に得られた磁気共鳴信号と該時
刻の前後の時刻に得られた1又は複数の磁気共鳴信号に
対し、正及び負の重み係数をそれぞれ1個以上含む重み
付き加算を行うことによって、所定時刻における磁気共
鳴信号の一階の時間微分値を算出することを特徴とする
請求項1、2又は3記載の生体機能賦活情報の抽出方
法。
4. A weighted addition including one or more positive and negative weighting factors for a magnetic resonance signal obtained at a predetermined time and one or a plurality of magnetic resonance signals obtained before and after the time. The method for extracting biological function activation information according to claim 1, 2 or 3, wherein the first-order time differential value of the magnetic resonance signal at a predetermined time is calculated by performing.
【請求項5】 賦活の有無の判定において判定された生
体機能賦活の時刻のうち最も早い時刻を賦活開始時刻と
して抽出することを特徴とする請求項3記載の生体機能
賦活情報の抽出方法。
5. The method for extracting biofunction activation information according to claim 3, wherein the earliest time of the biofunction activation times determined in the determination of activation is extracted as the activation start time.
【請求項6】 磁気共鳴信号の時系列データの時間微分
の時間微分をピクセル毎に求め、その値を予め設定した
閾値と比較して閾値を超えた最も早い時刻を賦活開始時
刻として抽出することを特徴とする請求項5記載の生体
機能賦活情報の抽出方法。
6. A time derivative of a time derivative of time series data of a magnetic resonance signal is obtained for each pixel, the value is compared with a preset threshold value, and the earliest time exceeding the threshold value is extracted as an activation start time. 6. The method for extracting biofunction activation information according to claim 5.
JP27518694A 1994-11-09 1994-11-09 Brain function measurement device using magnetic resonance imaging Expired - Fee Related JP3293720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27518694A JP3293720B2 (en) 1994-11-09 1994-11-09 Brain function measurement device using magnetic resonance imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27518694A JP3293720B2 (en) 1994-11-09 1994-11-09 Brain function measurement device using magnetic resonance imaging

Publications (2)

Publication Number Publication Date
JPH08131414A true JPH08131414A (en) 1996-05-28
JP3293720B2 JP3293720B2 (en) 2002-06-17

Family

ID=17551885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27518694A Expired - Fee Related JP3293720B2 (en) 1994-11-09 1994-11-09 Brain function measurement device using magnetic resonance imaging

Country Status (1)

Country Link
JP (1) JP3293720B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046478A1 (en) * 2003-11-12 2005-05-26 Hitachi Medical Corporation Image processing method, image processing device, medical image diagnosis support system, and time-axis direction filtering method
JP2008264014A (en) * 2007-04-16 2008-11-06 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus and magnetic resonance imaging method
CN105078454A (en) * 2014-05-08 2015-11-25 西门子(中国)有限公司 Method and apparatus for acquiring measurement value of functional magnetic resonance
JP2022501157A (en) * 2018-11-29 2022-01-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Real-time fMRI

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046478A1 (en) * 2003-11-12 2005-05-26 Hitachi Medical Corporation Image processing method, image processing device, medical image diagnosis support system, and time-axis direction filtering method
US7949170B2 (en) 2003-11-12 2011-05-24 Hitachi Medical Corporation Image processing method, image processing device, computer aided detection, and method for filtering along the time axis
JP2008264014A (en) * 2007-04-16 2008-11-06 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus and magnetic resonance imaging method
CN105078454A (en) * 2014-05-08 2015-11-25 西门子(中国)有限公司 Method and apparatus for acquiring measurement value of functional magnetic resonance
JP2022501157A (en) * 2018-11-29 2022-01-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Real-time fMRI
US11656310B2 (en) 2018-11-29 2023-05-23 Koninklijke Philips N.V. Real-time fMRI

Also Published As

Publication number Publication date
JP3293720B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
JP4972751B2 (en) Nerve fiber bundle measuring system and image processing system
US6597937B2 (en) Self-adaptive tracking and phase encoding during data collection for contrast-enhanced MRA and dynamic agent uptake studies
US6544170B1 (en) Biosignal measuring method and apparatus
US5603322A (en) Time course MRI imaging of brain functions
US6704593B2 (en) Realtime MR scan prescription using physiological information
JP3512482B2 (en) Magnetic resonance imaging
JP5815508B2 (en) Magnetic resonance imaging system
Clare et al. Detecting activations in event‐related fMRI using analysis of variance
JPH0779943A (en) Magnetic resonance imager
AU2015200573B2 (en) Dynamic cancellation of mri sequencing noise appearing in an ecg signal
DE69934450T2 (en) Method for calculating shaft velocities in blood vessels
US6298258B1 (en) Method and apparatus for spatially resolved measurement of the electrical activity of nerve cells using magnetic resonance
CN103140167A (en) Magnetic resonance imaging of chemical species
CN110736948A (en) System and method for generating ECG reference data for MR imaging triggering
JP3293720B2 (en) Brain function measurement device using magnetic resonance imaging
JP2006166929A (en) SIMULTANEOUS AND CONTINUOUS MEASUREMENT SYSTEM FOR BRAIN WAVE AND fMRI, CLOCK DIVIDER USED THEREFOR, AND BRAIN WAVE MEASURING APPARATUS AND fMRI APPARATUS PROVIDED WITH THE CLOCK DIVIDER
JP2017516590A (en) Method to evaluate and improve the data quality of microstructure analysis data
JP4177165B2 (en) MRI equipment
JPH0947438A (en) Activated area identifying method
Boylan et al. Feature-based Attentional Amplitude Modulations of the Steady-state Visual Evoked Potentials Reflect Blood Oxygen Level Dependent Changes in Feature-sensitive Visual Areas
Zöllei et al. Exploratory Identification of Cardiac Noise in f MRI Images
US20240090791A1 (en) Anatomy Masking for MRI
US11497412B2 (en) Combined oxygen utilization, strain, and anatomic imaging with magnetic resonance imaging
JP2814969B2 (en) Active site detection device
JP2022090453A (en) Magnetic resonance imaging apparatus, image processing device and image processing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees