JPH081305A - Method for pressure-casting molded product dispersed reinforcing material - Google Patents

Method for pressure-casting molded product dispersed reinforcing material

Info

Publication number
JPH081305A
JPH081305A JP13204194A JP13204194A JPH081305A JP H081305 A JPH081305 A JP H081305A JP 13204194 A JP13204194 A JP 13204194A JP 13204194 A JP13204194 A JP 13204194A JP H081305 A JPH081305 A JP H081305A
Authority
JP
Japan
Prior art keywords
pressure
molten metal
reinforcing material
cavity
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13204194A
Other languages
Japanese (ja)
Inventor
Naomichi Yamamoto
直道 山本
Atsushi Yoshida
淳 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP13204194A priority Critical patent/JPH081305A/en
Publication of JPH081305A publication Critical patent/JPH081305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To surely and easily obtain a high quality cast product by mutually and periodically applying pressurizing forces composed of high pressure and low pressure to molten metal at the interval of a short time. CONSTITUTION:The molten metal 8 is filled up into a cavity 6 in the dies 2, 3. The molten metal 8 is made by mixing reinforcing materials of ceramic fibers, whiskers, particles, etc. The molten metal 8 in the cavity 6 is pressurized with a hydraulic cylinder 10. Oil pressures of the hydraulic cylinder 10 are applied by controlling so as to mutually and periodically act a prescribed high pressure and a prescribed comparatively low pressure at the interval of the short time by a feedback control part 20. In such a way, the pressurizing forces composed of the prescribed high pressure and low pressure mutually and periodically applied to the molten metal 8 solidified in the cavity 6 at the interval of the short time. By this method, the reinforcing materials are made to the form uniformly dispersed, and the strength can be uniformized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,アルミニウム合金やマ
グネシウム合金等の軽金属合金の溶湯に,SiC等に代
表されるセラミックスの粒子,短繊維,ウィスカ等を強
化材として混合し,この強化材の混合された溶湯を金型
を用いて鋳造する加圧鋳造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method of mixing a reinforcing material of a light metal alloy such as an aluminum alloy or a magnesium alloy with particles of ceramics typified by SiC, short fibers and whiskers as a reinforcing material. The present invention relates to a pressure casting method for casting a mixed molten metal using a mold.

【0002】[0002]

【従来の技術】従来より,セラミックスの粒子,短繊
維,ウィスカ等を強化材とした複合材製品は,粉末冶金
法,アトマイズ法,鋳造法等で複合材素材を製造した
後,これに二次加工を施すか,もしくは,そのままの状
態で製品形状に切削加工して,所定の製品を得ていた。
しかし,セラミックスのように硬い強化材を含んだ複合
材素材では切削加工は,極めて困難で,ネットシェイプ
の成形が望まれており,この要望に答える技術として,
ダイカストマシンに代表される高圧鋳造機で,強化材を
混合撹拌した溶湯を射出,成形する鋳造方法が使用され
て来つつある。
2. Description of the Related Art Conventionally, a composite material product in which ceramic particles, short fibers, whiskers, etc. are reinforced is manufactured by a powder metallurgy method, an atomizing method, a casting method, etc. A predetermined product was obtained by performing processing or cutting the product shape as it was.
However, it is extremely difficult to cut a composite material containing a hard reinforcing material such as ceramics, and it is desired to form a net shape. As a technology to meet this demand,
In high-pressure casting machines represented by die casting machines, a casting method of injecting and molding a molten metal in which a reinforcing material is mixed and stirred is being used.

【0003】[0003]

【発明が解決しようとする課題】従来の高圧鋳造法によ
る複合材製品では,二次加工を施さないため,強化材の
分散状態は,マトリクス合金の凝固過程における結晶核
生成および結晶成長挙動によってきまる。一般に,強化
材は固相の成長時,固/液界面に取込まれずに,結晶粒
子間の残留液相に押出される。このため,機械的性質の
良好な複合材に要求される均一な強化材の分散を得るた
めには,結晶粒が微細等軸晶であることが望ましい。単
なる高圧鋳造法では,凝固過程において,しばしば粗大
柱状晶が成長し,その部分については均一に強化材が分
散した複合材製品が得られない。
In the conventional composite material product manufactured by the high-pressure casting method, since the secondary processing is not performed, the dispersion state of the reinforcing material is determined by the crystal nucleation and crystal growth behavior in the solidification process of the matrix alloy. . Generally, the reinforcing material is extruded into the residual liquid phase between the crystal grains during the solid phase growth without being taken in at the solid / liquid interface. Therefore, in order to obtain the uniform dispersion of the reinforcing material required for the composite material having good mechanical properties, it is desirable that the crystal grains are fine equiaxed crystals. In the simple high-pressure casting method, coarse columnar crystals often grow in the solidification process, and a composite material product in which the reinforcing material is uniformly dispersed in that portion cannot be obtained.

【0004】[0004]

【課題を解決するための手段】本発明においては,この
ような課題を解決し,意図した効果を得るために,メタ
ル加圧力を制御するようにした。すなわち,鋳造用の溶
湯に,セラミックス繊維,ウィスカもしくは粒子等の強
化材を混合し,この強化材の混合された溶湯を金型のキ
ャビティ内に充填した後,キャビティ内の溶湯に加圧力
を加える油圧シリンダに油圧力を,所定の高圧力とこの
高圧力に比べて比較的に小さな所定の低圧力とを短時間
の間隔で交互に周期的に作用させるように制御して加え
ることにより,キャビティ内の強化材の混合された凝固
する溶湯に対して所定の高圧力とこの高圧力に比べて比
較的小さな所定の低圧力とからなるメタル加圧力を短時
間の間隔で交互に周期的に加えるようにした。なお,メ
タル加圧力の圧力変動幅および圧力変動周波数が意図し
た値になるように,フィードバック制御によって制御す
るのが望ましい。
In the present invention, in order to solve such problems and obtain the intended effect, the metal pressing force is controlled. That is, a reinforcing material such as ceramic fibers, whiskers or particles is mixed with the molten metal for casting, the molten metal mixed with the reinforcing material is filled into the cavity of the mold, and then a pressing force is applied to the molten metal in the cavity. Cavity is controlled by applying hydraulic pressure to the hydraulic cylinder so that a predetermined high pressure and a predetermined low pressure, which is relatively smaller than this high pressure, are alternately and periodically applied at short time intervals. A metal pressing force consisting of a predetermined high pressure and a predetermined low pressure, which is relatively small compared to the high pressure, is alternately and periodically applied to the solidified molten metal in which the reinforcing material is mixed at short intervals. I did it. In addition, it is desirable to control by feedback control so that the pressure fluctuation width and the pressure fluctuation frequency of the metal pressing force become the intended values.

【0005】[0005]

【作用】本発明においては,キャビティ内の溶湯に高圧
力と低圧力を周期的に付加することにより,溶湯が金型
表面に押付けられる圧力が周期的に変化する。一般に,
溶湯と金型表面との間の熱伝達係数はこの押付け圧力が
大きい程大きな値をとり,溶湯の熱量を短時間に多く抜
熱することが可能となる。このため,圧力を周期的に変
動させると,金型への抜熱量が周期的に変動することと
なる。
In the present invention, by periodically applying a high pressure and a low pressure to the molten metal in the cavity, the pressure at which the molten metal is pressed against the mold surface changes periodically. In general,
The heat transfer coefficient between the molten metal and the surface of the mold takes a larger value as the pressing pressure increases, and it becomes possible to remove a large amount of heat from the molten metal in a short time. Therefore, if the pressure is changed periodically, the amount of heat removed to the mold will be changed periodically.

【0006】このように,金型への抜熱量が周期的に変
動する場合における凝固形態を考えると,以下のように
なる。すなわち,高圧力作用下では金型表面近傍の溶湯
の持つ熱量が急速に抜熱されて,瞬間的に著しく凝固が
進展する。そして,この急速な固相の成長のため,非常
に大きな潜熱が放出される。通常の高圧鋳造ならば,高
圧力が継続的に付加されているため,大きな熱量を金型
へ抜熱し続けることが可能となり,凝固の際放出された
潜熱は速やかに金型へ抜熱される。
Considering the solidification morphology in the case where the amount of heat removed from the mold fluctuates cyclically in this way, it is as follows. That is, under the action of high pressure, the amount of heat of the molten metal in the vicinity of the die surface is rapidly removed, and solidification progresses remarkably instantaneously. And, due to this rapid solid-phase growth, a very large latent heat is released. In ordinary high-pressure casting, since a high pressure is continuously applied, a large amount of heat can be continuously removed to the mold, and the latent heat released during solidification is quickly removed to the mold.

【0007】ところが,本発明のように圧力を周期的に
変動させると低圧力作用下では,高圧力作用時に放出さ
れた多量の潜熱を,十分金型へ放出することができなく
なり,金型表面近傍の溶湯が部分的に上昇する。このよ
うな,金型近傍のレカレセンス(再輝熱,潜熱放出に伴
う温度上昇)によって,結晶遊離および樹枝状晶の枝の
溶断遊離が起こる。また,破状的に加えられた圧力のた
め,溶湯および混合された強化材が流動し,そのことも
合いまって,結晶遊離,樹枝状晶の枝の溶断遊離が促進
される。
However, when the pressure is changed cyclically as in the present invention, under the action of low pressure, the large amount of latent heat released during the action of high pressure cannot be sufficiently released to the die, and the die surface The molten metal in the vicinity partially rises. Due to such recalescence in the vicinity of the mold (temperature increase due to re-radiation heat and latent heat release), crystal release and fusing release of dendrite branches occur. Further, due to the pressure applied disruptively, the molten metal and the mixed reinforcing material flow, and together with this, crystal release and fusing release of dendrite branches are promoted.

【0008】セラミックスの粒子,短繊維,ウィスカ等
の強化材は,一般に,固相の成長時,固/液界面に取込
まれずに,結晶粒子間の残留液相に押出される。高圧鋳
造法では,高圧力が継続的に付加されているため潜熱は
速やかに金型へ抜熱され,結晶遊離,樹枝状晶の枝の溶
断遊離が極めて起こりにくく,しばしば粗大柱状晶の成
長が観察される。この場合,強化材のほとんどが粗大柱
状晶の間に分布し,機械的性質から見て理想的な均一な
分散状態を得ることができない。
Reinforcing agents such as ceramic particles, short fibers, and whiskers are generally extruded into the residual liquid phase between crystal particles without being taken in at the solid / liquid interface during solid phase growth. In the high-pressure casting method, since high pressure is continuously applied, latent heat is quickly released to the mold, and it is extremely unlikely that crystal liberation and fusing desorption of dendrite branches occur, and often coarse columnar crystal growth occurs. To be observed. In this case, most of the reinforcing material is distributed among the coarse columnar crystals, and it is not possible to obtain an ideal uniform dispersion state in terms of mechanical properties.

【0009】ところが,本発明のように,キャビティ内
の溶湯に高圧力と低圧力を周期的に付加すると,結晶遊
離および樹枝状晶の枝の溶断遊離が著しく促進されるた
め,微細等軸晶組織が得られる。この場合でも強化材の
ほとんどは結晶粒の間に分布することとなるが,結晶粒
自体が微細なため,従来高圧鋳造法で得られたよりも,
はるかに均一な強化材の分散状態を得ることができる。
However, when high pressure and low pressure are cyclically applied to the molten metal in the cavity as in the present invention, the liberation of crystals and the fusing and liberation of branches of dendrites are remarkably promoted. The organization is obtained. Even in this case, most of the reinforcing material will be distributed among the crystal grains, but the crystal grains themselves are finer than those obtained by the conventional high pressure casting method.
A much more uniform dispersion of reinforcement can be obtained.

【0010】[0010]

【実施例】図1は本発明方法を実施するための装置の1
実施例を示す縦断面図である。図1に示す鋳造装置本体
1は,横型締竪鋳込型のダイカストマシンと呼ばれてい
るもので,2は固定金型,3は可動金型,4は鋳込スリ
ーブ,5はプランジャチップ,6はキャビティ,7はゲ
ート部,8は例えばセラミックス繊維,ウィスカもしく
は粒子等の強化材を混合したアルミニウムやマグネシウ
ム合金等の溶湯であり,図中,矢印方向から溶湯を鋳込
み,また,鋳込圧力を作用させる。
FIG. 1 shows an apparatus for carrying out the method according to the invention.
It is a longitudinal section showing an example. The casting apparatus main body 1 shown in FIG. 1 is called a horizontal type vertical casting die casting machine, 2 is a fixed die, 3 is a movable die, 4 is a casting sleeve, 5 is a plunger tip, Reference numeral 6 is a cavity, 7 is a gate portion, 8 is a molten metal such as aluminum or magnesium alloy mixed with a reinforcing material such as ceramic fibers, whiskers or particles. In the figure, the molten metal is cast in the direction of the arrow, and the casting pressure is also set. To act.

【0011】キャビティ6に面した可動金型3の一部に
は,加圧ブロック9を摺動自在に設け,加圧ブロック9
には,油圧シリンダ10のピストンロッド11を連結さ
せ,油圧シリンダ10にはサーボバルブ12を連結させ
た。供給圧力設定変動装置13では,サーボバルブ12
の開度を制御することによって,作動油の圧力を制御
し,油圧シリンダ10に作用させる油圧力を制御するよ
うにした。
A pressure block 9 is slidably provided on a part of the movable mold 3 facing the cavity 6,
The piston rod 11 of the hydraulic cylinder 10 was connected to the hydraulic cylinder 10, and the servo valve 12 was connected to the hydraulic cylinder 10. In the supply pressure setting fluctuation device 13, the servo valve 12
The pressure of the hydraulic oil is controlled by controlling the opening of the hydraulic cylinder, and the hydraulic pressure applied to the hydraulic cylinder 10 is controlled.

【0012】14はポンプ,15はモータ,16はロー
ド,アンロード用のリリーフバルブ,17はタンク,1
8は,例えばマシン本体の開閉動作や鋳込開始,終了動
作等に応じて,リリーフバルブ16にロード,アンロー
ドの指令を出す指令装置である。油圧シリンダ10の油
圧力を制御しながら加圧鋳造を行い,それに伴って,油
圧シリンダ10のロッド側とヘッド側の油圧力を連続し
て検出し,それに基づいてフィードバック制御を行い,
所定の変化するメタル加圧力が得られるように制御す
る。
Reference numeral 14 is a pump, 15 is a motor, 16 is a relief valve for loading and unloading, 17 is a tank, 1
Reference numeral 8 denotes a command device that issues commands for loading and unloading to the relief valve 16 in accordance with opening / closing operations of the machine body, start / end operations of casting, and the like. Pressure casting is performed while controlling the hydraulic pressure of the hydraulic cylinder 10, and accordingly, the hydraulic pressures of the rod side and the head side of the hydraulic cylinder 10 are continuously detected, and feedback control is performed based on that.
Control is performed so that a predetermined changing metal pressure is obtained.

【0013】20はフィードバック制御部,21は圧力
モデル部であり,圧力モデル部21では,キャビティ6
内の凝固する強化材を分散した溶湯8に対して所定の高
圧力とこの高圧力に比べて比較的に小さい所定の低圧力
とからなるメタル加圧力を短時間の間隔で交互に周期的
に加えるようにするための,高圧力,低圧力,意図した
一定値からなる圧力変動幅,圧力変動周波数を,時間−
メタル加圧力線図ないしは数値として設定し,それに応
じた出力信号pを出力する。勿論,圧力変動周波数や圧
力変動幅を加圧時間の経過に応じて変えるように制御す
る目的で,時間−メタル加圧力線図等を設定しておくこ
ともできる。
Reference numeral 20 is a feedback control unit, 21 is a pressure model unit, and the pressure model unit 21 has a cavity 6
A metal pressing force consisting of a predetermined high pressure and a predetermined low pressure which is relatively small compared to the high pressure is alternately and periodically applied to the molten metal 8 in which the solidified reinforcing material is dispersed at short intervals. High pressure, low pressure, pressure fluctuation width consisting of an intended constant value, and pressure fluctuation frequency for applying
It is set as a metal pressure diagram or as a numerical value, and an output signal p corresponding to it is output. Of course, for the purpose of controlling the pressure fluctuation frequency and the pressure fluctuation width so as to change according to the passage of the pressurization time, a time-metal pressure diagram or the like may be set.

【0014】22は圧力偏差検出器であり,圧力モデル
部21からの出力信号pと加圧圧力演算器23からの出
力信号を比較し,その偏差を検出し,その偏差値に応じ
た出力信号eをゲイン設定部24に対して出力する。
Reference numeral 22 is a pressure deviation detector, which compares the output signal p from the pressure model section 21 with the output signal from the pressurization pressure calculator 23, detects the deviation, and outputs an output signal corresponding to the deviation value. e is output to the gain setting unit 24.

【0015】なお,油圧シリンダ10のヘッド側の圧力
は圧力検知装置25で検知され,その値はアンプ26と
アナログ・デェジタル変換器27を介して加圧圧力演算
器23に信号として入力される。一方,油圧シリンダ1
0のロッド側の圧力は圧力検知装置28,アンプ29,
アナログ・デェジタル変換器30を介して加圧圧力演算
器23に入力信号として入力される。
The pressure on the head side of the hydraulic cylinder 10 is detected by the pressure detecting device 25, and the value thereof is input as a signal to the pressurizing pressure calculator 23 via the amplifier 26 and the analog / digital converter 27. On the other hand, hydraulic cylinder 1
The pressure on the rod side of 0 is the pressure detection device 28, the amplifier 29,
It is input as an input signal to the pressurization pressure calculator 23 via the analog-digital converter 30.

【0016】加圧圧力演算器23においては,油圧シリ
ンダ10のボア断面積をA,ピストンロッド11の断面
積をa,加圧ブロック9の加圧断面積をS,ヘッド側圧
力をP1 ,ロッド側圧力をP2 ,加圧ブロック9に発生
する圧力をP0 としたとき, P0 =(1/S)×〔A・P1 −(A−a)・P2 〕 として圧力P0 が演算され,この値に応じた出力信号
が,前記したように,圧力偏差検出器22に入力され
る。
In the pressurizing pressure calculator 23, the bore sectional area of the hydraulic cylinder 10 is A, the sectional area of the piston rod 11 is a, the pressing sectional area of the pressurizing block 9 is S, the head side pressure is P 1 , the rod-side pressure P 2, when the pressure generated pressure block 9 and the P 0, P 0 = (1 / S) × [a · P 1 - (a- a) · P 2 ] as the pressure P 0 Is calculated, and the output signal corresponding to this value is input to the pressure deviation detector 22 as described above.

【0017】ゲイン設定部24では,圧力偏差検出器2
2からの出入信号eを入力し,補正した出力信号vをド
ライバ31に出力し,ドライバ31では出力信号iを,
サーボバルブ12のソレノイド12aへ出力する。そし
て,サーボバルブ12の作用に応じて,油圧シリンダ1
0の油圧圧力を適宜制御する。
In the gain setting section 24, the pressure deviation detector 2
The input / output signal e from 2 is input, the corrected output signal v is output to the driver 31, and the driver 31 outputs the output signal i.
Output to the solenoid 12a of the servo valve 12. Then, according to the action of the servo valve 12, the hydraulic cylinder 1
The hydraulic pressure of 0 is controlled appropriately.

【0018】なお,メタル加圧力を求める場合には,前
記したように,油圧シリンダ10の油圧力を検知する代
りに,金型12,13に設置した圧力センサで計測し,
その値を基に演算して求めることもできる。また,キャ
ビティ6内の溶湯8に直接接触している金型12,13
の一部またはその金型12,13の一部に突出可能に設
けた可動部材を,油圧シリンダの油圧力を制御すること
によって前進させるようにすることもできる。
When the metal pressure is to be obtained, as described above, instead of detecting the oil pressure of the hydraulic cylinder 10, it is measured by the pressure sensor installed in the molds 12, 13.
It can also be calculated based on the value. Further, the dies 12, 13 which are in direct contact with the molten metal 8 in the cavity 6
It is also possible to move forward a movable member provided so as to project on a part of the mold or a part of the molds 12 and 13 thereof by controlling the hydraulic pressure of the hydraulic cylinder.

【0019】図1に示す装置において,まず,プランジ
ャチップ5の前進作用で,SiC粒子からなる強化材を
体積含有率で20%混合した例えば6061アルミニウ
ム合金の溶湯8を金型温度200℃の金型2,3のキャ
ビティ6内に溶湯温度750℃で鋳込んで充填させ,プ
ランジャチップ5で溶湯8に例えば800kg/cm 2
の高圧力を作用させる。
In the apparatus shown in FIG. 1, first, the plunge
Due to the forward action of the chip 5, the reinforcing material composed of SiC particles
For example, 6061 aluminum mixed with a volume content of 20%
The molten metal 8 of the aluminum alloy to the molds 2 and 3 at a mold temperature of 200 ° C.
The molten metal is cast in the vity 6 at a temperature of 750 ° C. and filled,
800 kg / cm, for example, in the molten metal 8 with the Langer chip 5 2 
High pressure of.

【0020】溶湯8がキャビティ6内に充填されたら,
直ちに油圧シリンダ10を作動させ,強化材を混合した
溶湯8に,例えば,700プラスマイナス100kg/
cm 2 のメタル加圧力を,すなわち,高圧力が800k
g/cm2 ,低圧力が600kg/cm2 のメタル加圧
力を,例えば100Hzでパルス的に交互に作用させる
ように,油圧シリンダ10内に高圧力と低圧力の作動油
を前記したフィードバック制御によって,例えば20秒
のように所定時間だけパルス的に交互に作用させる。溶
湯8が冷却凝固したら,型開きをして鋳込製品を取出
す。
When the molten metal 8 is filled in the cavity 6,
Immediately actuate hydraulic cylinder 10 to mix reinforcement
For example, 700 plus or minus 100 kg /
cm 2 Of metal pressure, that is, high pressure is 800k
g / cm2 , Low pressure is 600kg / cm2 Metal pressure
Alternating forces in pulses, eg at 100 Hz
As shown in FIG.
By the feedback control described above, for example, 20 seconds
As described above, the pulses are alternately operated for a predetermined time. Melting
When the hot water 8 has cooled and solidified, the mold is opened and the cast product is taken out.
You.

【0021】このようにして得られた鋳込製品の組織を
図2に示す。図2により,鋳込製品の表面まですなわち
全面が微細な等軸晶32になっていることがわかる。図
2において,33は強化材であるSiC粒子,35は製
品端面である。メタル加圧力をパルス状に加えたら,金
型表面に近い部分での強化材が混入している溶湯8内の
組織の変化状態は,次に示すように変化する。まず,最
初の高圧力作用時には,溶湯8は金型2,3の表面に強
く押付けられ,結晶ができ始める。
The structure of the cast product thus obtained is shown in FIG. From FIG. 2, it can be seen that fine equiaxed crystals 32 are formed up to the surface of the cast product, that is, the entire surface. In FIG. 2, 33 is SiC particles as a reinforcing material, and 35 is a product end surface. When the metal pressure is applied in a pulsed manner, the change state of the structure in the molten metal 8 in which the reinforcing material is mixed in the portion near the mold surface changes as follows. First, when the high pressure is applied for the first time, the molten metal 8 is strongly pressed against the surfaces of the molds 2 and 3, and crystals start to form.

【0022】次に,比較的に低い低圧力が作用したら,
溶湯8が金型2,3の表面に押付けられる力は,その分
だけ弱くなり,溶湯8から金型2,3への熱伝達の度合
もその分小さくなり,圧力変動時に結晶の溶断,遊離が
起こる。したがって,次に高圧力を作用させても,結晶
は,溶断,遊離したままとなり,これらが核となり,凝
固が進行する。その結果,高圧力と低圧力の速早い繰返
しにより,柱状晶が生じることはなく,全面が微細な等
軸晶32になる。そして,偏析が防止され,熱間割れが
防止され,結晶粒微細化による強度が向上する。なお,
この場合,強化材のほとんどは結晶粒の間に分布するこ
とになるが,結晶粒自体が微細なため,強化材は均一に
分散する。
Next, if a relatively low pressure is applied,
The force by which the molten metal 8 is pressed against the surfaces of the molds 2 and 3 becomes weaker by that amount, and the degree of heat transfer from the molten metal 8 to the molds 2 and 3 also becomes smaller accordingly. Happens. Therefore, even if a high pressure is applied next, the crystal remains fused and remains free, and these become nuclei, and solidification proceeds. As a result, columnar crystals do not occur due to rapid repetition of high pressure and low pressure, and fine equiaxed crystals 32 are formed on the entire surface. Then, segregation is prevented, hot cracking is prevented, and strength is improved by refining crystal grains. In addition,
In this case, most of the reinforcing material is distributed among the crystal grains, but since the crystal grains themselves are fine, the reinforcing material is uniformly dispersed.

【0023】これに対して,従来の方法で,強化材を混
合した溶湯8に,例えば,800kg/cm2 の一定の
メタル加圧力を20秒間かけ続けて鋳造した場合は,得
られた鋳造製品の組織は,図3に示すようにあらわれ
た。図3においては,表面に柱状晶34があらわれ,内
部に等軸晶32があらわれている。なお,合金成分,注
湯温度,金型温度,および,使用した金型2,3等は,
メタル加圧力をパルス状に作用させたときの条件と同じ
にした。
On the other hand, in the conventional method, when the molten metal 8 mixed with the reinforcing material is continuously cast by applying a constant metal pressure of 800 kg / cm 2 for 20 seconds, the obtained cast product is obtained. The organization of Fig. 3 appeared as shown in Fig. 3. In FIG. 3, columnar crystals 34 appear on the surface and equiaxed crystals 32 appear inside. In addition, alloy composition, pouring temperature, mold temperature, used molds 2, 3 etc.
The conditions were the same as when the metal pressure was applied in a pulsed manner.

【0024】なお,一定加圧を行った時の金型表面に近
い部分での強化材を混合した溶湯8内の組織の変化状態
をみると,溶湯8から金型2,3への熱伝達の度合は大
きなままであり,偏析が生じ,柱状晶34が鋳込製品の
表面部分の全面にあらわれる。
Looking at the change state of the structure in the molten metal 8 mixed with the reinforcing material in the portion close to the mold surface when a constant pressure is applied, the heat transfer from the molten metal 8 to the molds 2, 3 is observed. Is still large, segregation occurs, and columnar crystals 34 appear on the entire surface of the cast product.

【0025】本発明を実施する場合,強化材を混入した
溶湯として鋳込む合金の種類や鋳込製品の形状,寸法,
鋳込条件の違いにより,メタル加圧力の最良の高圧力,
低圧力,圧力変動振幅,圧力変動周波数等は幾分異な
る。ただ,波状的に加えるメタル加圧力の圧力変動振幅
幅等,一定値を越えるものでなければならないことが,
今までの実験結果でわかっている。
When carrying out the present invention, the type of alloy to be cast as a molten metal mixed with a reinforcing material, the shape and dimensions of the cast product,
Depending on the casting conditions, the best high metal pressure,
Low pressure, pressure fluctuation amplitude, pressure fluctuation frequency, etc. are somewhat different. However, it is necessary that the pressure fluctuation amplitude of the metal pressure applied in a wavy manner exceeds a certain value.
We know from the experimental results so far.

【0026】例えば,強化材を混入する溶湯が,7××
×系合金のように,溶質元素が少なく,柱状晶が成長し
やすい合金では,プラスマイナス100kg/cm2
上の圧力変動幅が必要であり,AC7A,AZ91等の
ように,もともと等軸晶が生成しやすい合金に関して
は,例えば,AZ91では,プラスマイナス40kg/
cm2 程度,AC7Aでは,プラスマイナス20kg/
cm2 程度の圧力変動幅で効果がある。しかし,AZ9
1等のように固相の高温強度が極めて低い合金に関して
は,大き過ぎる圧力変動,例えば,AZ91の場合,プ
ラスマイナス100kg/cm2 以上の圧力変動を加え
ると,逆に,熱間割れを発生させる原因となりやすい。
このように,溶湯に圧力を波状的に加えるときは,その
圧力の変動幅等を,経験や実験結果に基づいて,適宜な
値になるように制御する必要がある。
For example, the molten metal mixed with the reinforcing material is 7 ××
For alloys with few solute elements and columnar crystals that are likely to grow, such as x-type alloys, a pressure fluctuation range of plus or minus 100 kg / cm 2 or more is required, and as in the case of AC7A, AZ91, etc. Regarding alloys that are easily generated, for example, in AZ91, plus or minus 40 kg /
cm 2 or so, in AC7A, plus or minus 20kg /
A pressure fluctuation range of about cm 2 is effective. However, AZ9
For alloys whose solid phase high temperature strength is extremely low, such as 1), excessive pressure fluctuations, for example, in the case of AZ91, when pressure fluctuations of plus or minus 100 kg / cm 2 or more are applied, conversely hot cracking occurs. It is easy to cause
As described above, when the pressure is applied to the molten metal in a wavy manner, it is necessary to control the fluctuation range of the pressure so as to be an appropriate value based on experience and experimental results.

【0027】我々の実験結果によれば,メタル加圧力の
変動幅は,プラスマイナス10kg/cm2 以上なけれ
ば,AC7A,AZ91等のように,もともと等軸晶が
生成しやすい合金でも,全く効果は認められない。確実
に効果を得るためには,AC7Aのように,非常に等軸
晶になり易い合金でも,20kg/cm2 以上が必要で
ある。勿論,メタル加圧力の変動幅の上限は,それぞれ
の合金の高温強度に応じて熱間割れが発生しない程度,
例えば,AZ91では,プラスマイナス100kg/c
2 以下というように,それぞれの合金で決めなければ
ならない。平均加圧力については,200kg/cm2
以上必要だが,引け巣が発生し易い鋳造品では,400
kg/cm2 以上が好ましい。
According to our experimental results, if the fluctuation range of the metal pressing force is not more than plus or minus 10 kg / cm 2 , even the alloys which are originally prone to equiaxed crystals such as AC7A and AZ91 are completely effective. It is not allowed. In order to reliably obtain the effect, 20 kg / cm 2 or more is necessary even for an alloy such as AC7A which is likely to form equiaxed crystals. Of course, the upper limit of the fluctuation range of the metal pressure is such that hot cracking does not occur depending on the high temperature strength of each alloy,
For example, with AZ91, plus or minus 100 kg / c
Must be decided for each alloy, such as m 2 or less. The average pressure is 200 kg / cm 2
The above is required, but 400 is required for cast products that are susceptible to shrinkage cavities.
It is preferably at least kg / cm 2 .

【0028】圧力変動周波数については,0.5Hz以
下では全く効果は認められない。もともと等軸晶が生成
し易い合金では,2Hz以上でも効果は認められるが,
確実に効果を得るためには,5Hz以上が好ましい。ま
た1000Hz以上の周波数は必要なく,500Hzま
での周波数であれば,今まで実験した全ての合金で,何
らかの効果が認められた。しかし,500Hzの周波数
を実現するには,加圧装置が大容量となり,コスト面で
も問題があり,一般には,200Hz以下の周波数で良
い。このような好ましい条件にすれば,偏析が発生せ
ず,結晶遊離,樹枝状晶の溶断遊離が促進され,鋳造品
の全面に微細な等軸晶が生じ,品質改善が行われ,ま
た,熱間割れや引け巣も生じない。
Regarding the pressure fluctuation frequency, no effect is recognized at 0.5 Hz or less. Originally, in alloys that tend to form equiaxed crystals, the effect is observed at 2 Hz or higher,
To surely obtain the effect, 5 Hz or higher is preferable. Further, a frequency of 1000 Hz or higher is not necessary, and some effects have been recognized in all the alloys tested so far as long as the frequency is up to 500 Hz. However, in order to realize the frequency of 500 Hz, the pressurizing device has a large capacity, and there is a problem in terms of cost. Generally, a frequency of 200 Hz or less is sufficient. Under such preferable conditions, segregation does not occur, crystal liberation and fusing of dendrites are promoted, fine equiaxed grains are formed on the entire surface of the cast product, quality improvement is performed, and heat No cracks or shrinkage cavities occur.

【0029】[0029]

【発明の効果】このように,本発明においては,特許請
求の範囲に記載したように,強化材を混合した鋳造用の
溶湯を金型のキャビティ内に充填し,キャビティ内の溶
湯に加圧力を加える油圧シリンダに油圧力を所定の高圧
力とこの高圧力に比べて比較的に小さな所定の低圧力と
を短時間の間隔で交互に周期的に作用させるよう制御し
て加えることにより,キャビティ内の凝固する溶湯に対
して所定の高圧力とこの高圧力に比べて比較的に小さな
所定の低圧力とからなるメタル加圧力を短時間の間隔で
交互に周期的に加えるように制御し,例えば,フィード
バック制御により,メタル加圧力の変動幅や変動周波数
が意図した値になるように制御したので,高圧力を作用
させた直後の比較的に低圧力を作用させた時には,一時
的に金型表面の熱伝達係数が小さくなり,凝固時に発生
した潛熱が金型表面から充分抜熱されず,溶湯温度が部
分的に上昇し,結晶遊離および樹枝状晶の枝の溶断遊離
が起こる。また,波状的に加えられた必要充分な値の圧
力のため,溶湯が流動し,そのことも合いまって,結晶
遊離,樹枝状晶の枝の溶断遊離が促進される。
As described above, according to the present invention, as described in the scope of claims, the molten metal for casting in which the reinforcing material is mixed is filled in the cavity of the die, and the molten metal in the cavity is pressed. Cavity is controlled by applying hydraulic pressure to the hydraulic cylinder to which a predetermined high pressure and a predetermined low pressure that is relatively small compared to this high pressure are alternately and periodically applied at short intervals. Control is performed by periodically and alternately applying to the solidified molten metal in a predetermined high pressure and a predetermined low pressure, which is relatively small compared to this high pressure, alternately at short intervals. For example, since the fluctuation width and fluctuation frequency of the metal pressure force are controlled by feedback control so that they are at the intended values, when a relatively low pressure is applied immediately after a high pressure is applied, the metal pressure is temporarily reduced. Mold surface heat Reaches coefficient decreases, 潛熱 that occurred during solidification is not sufficiently heat removal from the mold surface, it increased melt temperature partially crystalline free and dendritic blown free of branches of crystals occurs. Further, due to the pressure of a necessary and sufficient value that is applied in a wavy manner, the molten metal flows, which is also combined to promote crystal release and fusing release of dendrite branches.

【0030】その結果,柱状晶ができず,鋳込製品の内
面全体に等軸晶帯のみが形成され,また,等軸晶帯に溶
質元素の偏析ができることもない。したがって,熱間割
れも発生しないし,引け巣もほとんど発生しないし,高
強度で靭性を有する高品質の鋳込製品を確実容易に得る
ことができる。なお,ほとんどの強化材は結晶粒の間に
分布するが,結晶粒自体が微細なため,強化材は均一に
分散した形となり,強度も一定する。
As a result, columnar crystals are not formed, only equiaxed zones are formed on the entire inner surface of the cast product, and solute elements are not segregated in the equiaxed zones. Therefore, hot cracking does not occur, shrinkage cavities hardly occur, and a high-quality cast product with high strength and toughness can be reliably and easily obtained. Most of the reinforcements are distributed among the crystal grains, but the crystal grains themselves are fine, so the reinforcements are uniformly dispersed and the strength is constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための装置の1実施例を示す
縦断面図である。
FIG. 1 is a vertical sectional view showing an embodiment of an apparatus for carrying out the present invention.

【図2】本発明によって得た鋳込品の組織図である。FIG. 2 is a structural diagram of a cast product obtained according to the present invention.

【図3】従来の方法によって得た鋳造品の組織図であ
る。
FIG. 3 is a structural diagram of a cast product obtained by a conventional method.

【符号の説明】[Explanation of symbols]

1 鋳造装置本体 2 固定金型 3 可動金型 4 鋳込スリーブ 5 プランジャチップ 6 キャビティ 8 強化材を混合した溶湯 9 加圧ブロック 10 油圧シリンダ 12 サーボバルブ 13 供給圧力設定変動装置 20 フィードバック制御部 21 圧力モデル部 22 圧力偏差検出部 23 加圧圧力演算器 24 ゲイン設定部 25,28 圧力検知装置 31 ドライバ 32 等軸晶 33 SiC粒子(強化材) 34 柱状晶 1 Casting Device Main Body 2 Fixed Die 3 Movable Die 4 Casting Sleeve 5 Plunger Chip 6 Cavity 8 Molten Metal Mixing Reinforcement 9 Pressurizing Block 10 Hydraulic Cylinder 12 Servo Valve 13 Supply Pressure Setting Fluctuation Device 20 Feedback Control Unit 21 Pressure Model part 22 Pressure deviation detection part 23 Pressurized pressure calculator 24 Gain setting part 25, 28 Pressure detection device 31 Driver 32 Equiaxed crystal 33 SiC particle (reinforcing material) 34 Columnar crystal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 18/02 L 27/09 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B22D 18/02 L 27/09 A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 鋳造用の溶湯に,セラミックス繊維,ウ
ィスカもしくは粒子等の強化材を混合し,この強化材の
混合された溶湯を金型のキャビティ内に充填した後,キ
ャビティ内の溶湯に加圧力を加える油圧シリンダに油圧
力を,所定の高圧力とこの高圧力に比べて比較的に小さ
な所定の低圧力とを短時間の間隔で交互に周期的に作用
させるように制御して加えることにより,キャビティ内
の強化材の混合された凝固する溶湯に対して所定の高圧
力とこの高圧力に比べて比較的小さな所定の低圧力とか
らなるメタル加圧力を短時間の間隔で交互に周期的に加
えるようにした強化材を分散した成形品の加圧鋳造方
法。
1. A molten metal for casting is mixed with a reinforcing material such as ceramic fibers, whiskers or particles, and the molten metal mixed with the reinforcing material is filled in a cavity of a mold and then added to the molten metal in the cavity. Applying hydraulic pressure to a hydraulic cylinder that applies pressure by controlling so that a predetermined high pressure and a predetermined low pressure that is relatively small compared to this high pressure are alternately and periodically applied at short time intervals. With this, the metal pressure consisting of a predetermined high pressure and a predetermined low pressure, which is relatively small compared to this high pressure, is alternately applied to the solidified molten metal in which the reinforcing material is mixed in the cavity at short intervals. Method for pressure-molding a molded product in which a reinforcing material that has been added selectively is dispersed.
【請求項2】 請求項1記載の加圧鋳造方法において,
キャビティ内の強化材の混合された凝固する溶湯に対し
て高圧力とこの高圧力に比べて比較的小さな低圧力とを
意図した圧力変動幅と圧力変動周波数で制御して付加す
るようにした強化材を分散した成形品の加圧鋳造方法。
2. The pressure casting method according to claim 1,
Reinforcement in which a high pressure and a relatively low pressure, which is relatively small compared to this high pressure, are controlled and added with the intended pressure fluctuation width and pressure fluctuation frequency to the solidified molten metal in which the reinforcing material in the cavity is mixed A method of pressure casting a molded product in which a material is dispersed.
【請求項3】 請求項2記載の加圧鋳造方法において,
キャビティ内の強化材の混合された凝固する溶湯に対し
て高圧力とこの高圧力に比べて比較的小さな低圧力とを
意図した圧力変動幅と圧力変動周波数で制御して付加す
る場合に,設定圧力と測定圧力に基づくフィードバック
制御によって制御するようにした強化材を分散した成形
品の加圧鋳造方法。
3. The pressure casting method according to claim 2,
Set when adding a high pressure and a relatively low pressure that is relatively small compared to this high pressure to the mixed solidified molten metal of the reinforcing material in the cavity by controlling with the intended pressure fluctuation width and pressure fluctuation frequency. A pressure casting method for a molded article in which a reinforcing material is dispersed, which is controlled by feedback control based on pressure and measured pressure.
【請求項4】 請求項3記載の加圧鋳造方法において,
所定の圧力変動幅と圧力変動周波数で予め設定しておい
たメタル加圧力の軌跡と,油圧シリンダのロッド側とヘ
ッド側の油圧力を圧力センサで計測しその値を基に演算
して求めたメタル加圧力ないしは金型に設置した圧力セ
ンサで計測したメタル加圧力との偏差量に応じて,油圧
シリンダに作用させる油圧力を適正に制御し,メタル加
圧力が予め設定しておいた圧力軌跡を追従するように制
御するようにした強化材を分散した成形品の加圧鋳造方
法。
4. The pressure casting method according to claim 3,
The trajectory of the metal pressure force set in advance with a predetermined pressure fluctuation width and pressure fluctuation frequency, and the hydraulic pressure on the rod side and head side of the hydraulic cylinder were measured with a pressure sensor and calculated based on these values. The oil pressure applied to the hydraulic cylinder is properly controlled according to the amount of deviation from the metal pressure or the metal pressure measured by the pressure sensor installed in the mold, and the metal pressure is a preset pressure locus. A method for pressure-casting a molded product in which a reinforcing material is dispersed so as to follow the above.
【請求項5】 請求項1記載の加圧鋳造方法において,
キャビティ内の溶湯に加圧力を加える場合に,キャビテ
ィ内の溶湯に直接接触している金型の一部またはその金
型の一部に突出可能に設けた可動部材を,油圧シリンダ
の油圧力を制御することによって前進させるようにした
強化材を分散した成形品の加圧鋳造方法。
5. The pressure casting method according to claim 1,
When a pressure is applied to the molten metal in the cavity, a part of the mold that is in direct contact with the molten metal in the cavity or a movable member that can be projected on the part of the mold is used to increase the oil pressure of the hydraulic cylinder. A method for pressure-casting a molded article in which a reinforcing material is dispersed so as to be advanced by controlling.
【請求項6】 請求項1記載の加圧鋳造方法において,
プラスマイナス10kg/cm2 以上の圧力変動幅を有
するメタル加圧力を溶湯に作用させるようにした強化材
を分散した成形品の加圧鋳造方法。
6. The pressure casting method according to claim 1,
A pressure casting method for a molded article in which a reinforcing material is dispersed, in which a metal pressure having a pressure fluctuation range of plus or minus 10 kg / cm 2 or more is applied to a molten metal.
【請求項7】 請求項1記載の加圧鋳造方法において,
200kg/cm2以上の平均圧力とプラスマイナス1
0kg/cm2 以上の圧力変動幅と2〜500Hzの圧
力変動周波数を有するメタル加圧力を溶湯に作用させる
ようにした強化材を分散した成形品の加圧鋳造方法。
7. The pressure casting method according to claim 1,
Average pressure of 200 kg / cm 2 or more and plus or minus 1
A method for pressure casting a molded product in which a reinforcing material is dispersed, which is made to act on a molten metal with a pressure fluctuation width of 0 kg / cm 2 or more and a pressure fluctuation frequency of 2 to 500 Hz.
【請求項8】 請求項1記載の加圧鋳造方法において,
400kg/cm2以上の平均圧力とプラスマイナス2
0kg/cm2 以上の圧力変動幅と5〜200Hzの圧
力変動周波数を有するメタル加圧力を溶湯に作用させる
ようにした強化材を分散した成形品の加圧鋳造方法。
8. The pressure casting method according to claim 1,
Average pressure of 400 kg / cm 2 or more and plus or minus 2
A method for pressure casting a molded product in which a reinforcing material is dispersed, which is made to act on a molten metal with a pressure fluctuation width of 0 kg / cm 2 or more and a pressure fluctuation frequency of 5 to 200 Hz.
JP13204194A 1994-06-14 1994-06-14 Method for pressure-casting molded product dispersed reinforcing material Pending JPH081305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13204194A JPH081305A (en) 1994-06-14 1994-06-14 Method for pressure-casting molded product dispersed reinforcing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13204194A JPH081305A (en) 1994-06-14 1994-06-14 Method for pressure-casting molded product dispersed reinforcing material

Publications (1)

Publication Number Publication Date
JPH081305A true JPH081305A (en) 1996-01-09

Family

ID=15072135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13204194A Pending JPH081305A (en) 1994-06-14 1994-06-14 Method for pressure-casting molded product dispersed reinforcing material

Country Status (1)

Country Link
JP (1) JPH081305A (en)

Similar Documents

Publication Publication Date Title
JP3038175B2 (en) Method and apparatus for manufacturing hollow molded parts from metal alloys
US6060005A (en) Low pressure method and apparatus for injection molding a plastic article
US6056902A (en) Method and apparatus for molding a plastic article including injecting based upon a pressure-dominated control algorithm after detecting an indicia of a decrease in the surface area of the melt front
JP2974416B2 (en) Method and apparatus for injection casting of semi-solid metal
US5566743A (en) Method of injecting molten metal into a mold cavity
EP0733421B1 (en) Die casting method
US4380261A (en) Die-casting method
US5979535A (en) Methods for semi-melting injection molding
CA2450037A1 (en) Automotive and aerospace materials in a continuous, pressurized mold filling and casting machine
KR100661447B1 (en) Process for injection molding semi-solid alloys
DE69318467T2 (en) Method and device for back pressure casting
EP0513523B1 (en) Die casting process for producing high mechanical performance components via injection of a semiliquid metal alloy
EP0904875B1 (en) Method of injection molding a light alloy
US5560419A (en) Pressure-casting method and apparatus
JPH081305A (en) Method for pressure-casting molded product dispersed reinforcing material
Ji et al. Twin-screw rheomoulding of AZ91D Mg-alloys
EP1810765B1 (en) Method for pulsed pressure molding
JPH06190534A (en) Pressurize-casting method and apparatus
JPS61135470A (en) Low pressure casting device
JP2964721B2 (en) Method for producing fiber-reinforced composite member
JPH0966350A (en) Pressurized formation of half-molten metal and apparatus therefor
JPH08117953A (en) Pressure casting method and apparatus thereof
US20220048434A1 (en) Hitch step and method of manufacturing
JPH1157967A (en) Method for injection-forming metallic material and device therefor
JPH06256809A (en) Method for recycling metal machining scrap