JPH0813053A - Refining method of rhodium - Google Patents

Refining method of rhodium

Info

Publication number
JPH0813053A
JPH0813053A JP17209094A JP17209094A JPH0813053A JP H0813053 A JPH0813053 A JP H0813053A JP 17209094 A JP17209094 A JP 17209094A JP 17209094 A JP17209094 A JP 17209094A JP H0813053 A JPH0813053 A JP H0813053A
Authority
JP
Japan
Prior art keywords
soln
resin
hydrochloric acid
complex
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17209094A
Other languages
Japanese (ja)
Inventor
Yasuo Komoda
康夫 薦田
Michihiro Akahori
道弘 赤堀
Masayuki Nakamura
正幸 中村
Shigeki Takekoshi
滋喜 竹腰
Sayuri Tateda
佐由理 舘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMIOKA KOGYO KK
Original Assignee
KAMIOKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMIOKA KOGYO KK filed Critical KAMIOKA KOGYO KK
Priority to JP17209094A priority Critical patent/JPH0813053A/en
Publication of JPH0813053A publication Critical patent/JPH0813053A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently separate and recover Rh with a high recovery rate and high refining efficiency by incorporating an oxidizing agent to an org. soln. of a hydrochloric acid contg. the Rh, heating the soln. and subjecting the soln. to a complex strengthening treatment, then diluting the soln. with pure water and immediately passing the soln. through a cation exchange resin. CONSTITUTION:The oxidizing agent, such as nitric acid or hydrogen peroxide, is incorporated to the acidic soln. of the hydrochloric acid contg. the Rh together with various kinds of impurities at 100 to 600ml per 1g Rh and the son. is subjected to the complex strengthening treatment involving a heat treatment for about 2 to 6 hours at 40 to 80 deg.C. As a result, the Rh in the soln. is converted to complex anions, such as [RhCl4]<->. This soln. is then diluted with the pure water to about pH 0 to 1.0 and thereafter the soln. is rapidly passed through the cation exchange resin while the Rh complex is in a non-equil. state. As a result, the platinum group metals contg. the Rh are adsorbed in nearly the whole amt. in the resin. Only the Rh is thereafter selectively desorbed from the resin by using a 6N hydrochloric acid, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種不純物とともにロジ
ウムを含有する塩酸酸性溶液からロジウムを効率的にか
つ簡単に精製する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for efficiently and simply purifying rhodium from an acidic hydrochloric acid solution containing rhodium along with various impurities.

【0002】[0002]

【従来の技術およびその問題点】多種多量の不純物金属
(Fe,Cu,Pb,Ni,Cr等)とともにロジウム
を含有する溶液からロジウムを精製する方法として、従
来の化学的沈殿法を主とした湿式法に代わり、近時に至
ってイオン交換樹脂を利用した方法が種々提案され、ロ
ジウムの回収率の向上が図られている。例えば、特開平
3−277731公報、特開平3−277730公報等
が挙げられる。前者の方法は、各種金属の塩化物を不純
物として溶解するロジウム含有水溶液をまず陽イオン交
換樹脂に通液し卑金属等の陽イオン不純物を除去し、そ
の後酸濃度を調整してから加熱処理し、陰イオン交換樹
脂に通液し、ロジウム以外の貴金属の陰イオン不純物を
樹脂に吸着させ除去するものであり、流出した液がロジ
ウムの精製液となる。また、後者の方法は、陰イオン交
換樹脂の代わりに、陰イオン交換基を有する有機溶媒を
含浸した樹脂を使用している他は前者の方法と同一であ
る。
2. Description of the Related Art A conventional chemical precipitation method has been mainly used as a method for purifying rhodium from a solution containing rhodium together with a large amount of various impurity metals (Fe, Cu, Pb, Ni, Cr, etc.). Instead of the wet method, various methods using an ion exchange resin have recently been proposed to improve the recovery rate of rhodium. For example, JP-A-3-277731 and JP-A-3-277730 can be cited. In the former method, rhodium-containing aqueous solution in which chlorides of various metals are dissolved as impurities is first passed through a cation exchange resin to remove cation impurities such as base metal, and then heat treatment is performed after adjusting the acid concentration. It is a solution that is passed through an anion exchange resin to adsorb and remove anion impurities of noble metals other than rhodium, and the liquid that flows out becomes a purified solution of rhodium. Further, the latter method is the same as the former method except that a resin impregnated with an organic solvent having an anion exchange group is used instead of the anion exchange resin.

【0003】しかしながら、上記したような従来の方法
では、不純物の量が多いと、陽イオン交換樹脂で卑金属
等の陽イオン不純物を除去しきれず、またロジウムが一
部陽イオン交換樹脂に吸着し、さらには陰イオン交換樹
脂にも吸着するので、それぞれ別途の処理が必要とな
る。また、最終的に流出液をロジウム精製液とするの
で、樹脂に吸着できなかった不純物に対応出来ず、精製
率及び回収率が十分でないという問題点を有するもので
あった。
However, in the conventional method as described above, when the amount of impurities is large, the cation exchange resin cannot completely remove the cation impurities such as base metal, and rhodium is partially adsorbed on the cation exchange resin. Furthermore, since it is also adsorbed on the anion exchange resin, a separate treatment is required for each. In addition, since the effluent is finally a rhodium purified liquid, it is not possible to deal with impurities that could not be adsorbed on the resin, and there is a problem that the purification rate and the recovery rate are insufficient.

【0004】本発明は、陰イオン交換樹脂のみを使用
し、これにロジウムを含む白金族金属を吸着せしめ、次
いでこれからロジウムを選択的に高回収率で分離し得る
という、従来方法とは全く異なる画期的な方法を提供す
るものである。
The present invention is completely different from the conventional method in which only an anion exchange resin is used, and a platinum group metal containing rhodium is adsorbed to the anion exchange resin, and then rhodium can be selectively separated therefrom with a high recovery rate. It provides an epoch-making method.

【0005】[0005]

【問題点を解決するための手段】本発明は、各種不純物
とともにロジウムを含有する塩酸酸性溶液からロジウム
を精製する方法において、該塩酸酸性溶液に酸化剤を添
加して加熱処理する錯体強化処理を施し、次いで純水で
溶液を希釈し、直ちにこの溶液を陰イオン交換樹脂に通
液して白金族金属を樹脂に吸着せしめ、次いでロジウム
のみを樹脂から選択的に分離することを特徴とするもの
であり、これにより前記問題点を解決したものである。
The present invention provides a method for purifying rhodium from a hydrochloric acid acidic solution containing rhodium together with various impurities, and a complex strengthening treatment in which an oxidizing agent is added to the hydrochloric acid acidic solution for heat treatment. Characterized by diluting the solution with pure water, immediately passing this solution through an anion exchange resin to adsorb the platinum group metal to the resin, and then selectively separating only rhodium from the resin In this way, the above problems are solved.

【0006】[0006]

【作用】本発明では、不純物とともにロジウムを含有す
る塩酸酸性溶液に錯体強化処理を施すことによりロジウ
ムを陰イオン交換樹脂に吸着し易くし、希釈後直ちに樹
脂に通液することによりロジウムを含む白金族金属のほ
ぼ全量を陰イオン交換樹脂に吸着することができ、ロジ
ウムの回収率が従来の方法に比べて飛躍的に向上する。
In the present invention, rhodium is easily adsorbed to the anion exchange resin by subjecting the acidic hydrochloric acid solution containing rhodium together with impurities to complex strengthening treatment, and the rhodium-containing platinum is passed through the resin immediately after dilution. Almost all of the group metal can be adsorbed on the anion exchange resin, and the recovery rate of rhodium is dramatically improved as compared with the conventional method.

【0007】以下、本発明をさらに詳しく説明する。本
発明で対象とする溶液は、例えばコレクターメタル等の
塩酸酸性溶液である。塩酸溶液中でロジウムは下記の式
1〜式6のようにマイナス一価の塩素イオン濃度に応じ
て塩素錯イオンを生成しやすい。
Hereinafter, the present invention will be described in more detail. The solution targeted by the present invention is, for example, a hydrochloric acid acidic solution such as a collector metal. In a hydrochloric acid solution, rhodium easily forms a chlorine complex ion according to the minus monovalent chloride ion concentration as shown in the following formulas 1 to 6.

【0008】[0008]

【式1】 (Equation 1)

【式2】 (Equation 2)

【式3】 (Equation 3)

【式4】 (Equation 4)

【式5】 [Formula 5]

【式6】 [Formula 6]

【0009】塩酸酸性溶液中においてロジウムの一部は
陽イオン錯体[RhCl2](プラス一価のイオン)お
よび[RhCl3](電価0)の形で溶存しており、そ
れらは陰イオン交換樹脂に吸着しない。陰イオン交換樹
脂に吸着するのはRhの塩酸錯イオンのイオン価がマイ
ナスのものだけである。すなわち、[RHCl4](マ
イナス一価)、[RhCl5](マイナス二価)、[R
hCl6](マイナス三価)の3種である。
In the acidic solution of hydrochloric acid, a part of rhodium is dissolved in the form of cation complex [RhCl 2 ] (plus monovalent ion) and [RhCl 3 ] (charge of 0), and they are anion exchanged. Does not stick to resin. Only the negative ion number of the Rh hydrochloric acid complex ion is adsorbed on the anion exchange resin. That is, [RHCl 4 ] (minus monovalent), [RhCl 5 ] (minus divalent), [R
hCl 6 ] (minus trivalent).

【0010】Rhイオンの塩素錯体生成と、Rh塩素錯
体の樹脂吸着の選択性を、競争反応の結果と見ると、R
hは錯体の生成時には、周囲の塩素イオン濃度が高いほ
ど塩素の多い錯体を作りやすい。また、樹脂への吸着時
には、錯体形成に参加していない周囲のフリー塩素イオ
ン濃度が低いほど樹脂に吸着しやすく、錯体の電価の違
いによりRh錯体中の塩素イオンの数が多いほど樹脂吸
着しやすいと考えられる。
When the selectivity of Rh ion chlorine complex formation and resin adsorption of Rh chlorine complex is regarded as the result of competitive reaction, R
When h is complexed, h is more likely to form a complex with more chlorine as the surrounding chlorine ion concentration is higher. In addition, when adsorbing to a resin, the lower the concentration of free chloride ions around the part that does not participate in complex formation, the easier it is to adsorb to the resin, and the greater the number of chlorine ions in the Rh complex due to the difference in the charge of the complex, the greater the resin adsorption. It is considered easy to do.

【0011】そこで本発明では、Rhを比較的濃い塩酸
溶液中で、酸化剤、例えば硝酸、過酸化水素等を添加し
て加熱処理することで錯陰イオン([RHCl4](マ
イナス一価)、[RhCl5](マイナス二価)、[R
hCl6](マイナス三価))化させ、純水で希釈して
フリー塩素イオン濃度を低くした後、直ちにイオン交換
するものである。
Therefore, in the present invention, Rh is added to an oxidizing agent such as nitric acid or hydrogen peroxide in a relatively concentrated hydrochloric acid solution and heat-treated to obtain a complex anion ([RHCl 4 ] (minus monovalent)). , [RhCl 5 ] (minus divalent), [R
hCl 6 ] (minus trivalent)), diluted with pure water to reduce the concentration of free chlorine ions, and then immediately ion-exchanged.

【0012】錯陰イオン化を実施する元液の酸濃度につ
いては、塩酸濃度で2Nより低いと初期錯化率(最初か
ら塩素錯陰イオンになっている比率)が低くなるととも
に、フリーの塩素濃度も低くなるので、酸化剤添加の効
果が上がらず、好ましくない。また、元液中のRh濃度
は10g/l以下とすることが好ましい。
Regarding the acid concentration of the base solution for carrying out complex anionization, when the hydrochloric acid concentration is lower than 2N, the initial complexation rate (the ratio of chlorine complex anions from the beginning) is low and the free chlorine concentration is high. Since it also becomes low, the effect of the addition of the oxidizing agent does not increase, which is not preferable. Further, the Rh concentration in the original solution is preferably 10 g / l or less.

【0013】本発明では、反応を左右するのは水素イオ
ン濃度ではなく、塩素イオン濃度であるが、塩素イオン
濃度を迅速に測定することは困難なため、便宜上簡易な
方法としてpH計でpHを測定し、塩素イオン濃度の判断基
準としている。
In the present invention, it is not the hydrogen ion concentration that affects the reaction but the chlorine ion concentration. However, since it is difficult to measure the chlorine ion concentration quickly, it is convenient to measure the pH with a pH meter. It is measured and used as a criterion for the chlorine ion concentration.

【0014】塩酸酸性溶液に加える酸化剤の添加量は、
液中のRh1グラムに対して、62%硝酸で100ml
〜600ml、より好ましくは400mlとし、過酸化
水素を酸化剤とする場合も同等とする。なお、例えば硝
酸添加量が600mlを越えると希釈時の純水量が増加
し望ましくない。また、加熱温度は40〜80℃で、加
熱時間は2時間〜6時間、好ましくは60℃で4時間と
する。加熱温度が80℃を越えるような温度では、溶液
の性質上設備の材質が高価になることと、1日2方操業
で1バッチ処理を想定しているので、時間が6時間を越
えると1日で処理出来ない恐れが生じるので好ましくな
い。
The amount of the oxidizing agent added to the hydrochloric acid acidic solution is
100 g of 62% nitric acid for 1 gram of Rh in the liquid
˜600 ml, more preferably 400 ml, and the same applies when hydrogen peroxide is used as the oxidant. If the amount of nitric acid added exceeds 600 ml, the amount of pure water at the time of dilution increases, which is not desirable. The heating temperature is 40 to 80 ° C., and the heating time is 2 hours to 6 hours, preferably 60 ° C. for 4 hours. If the heating temperature exceeds 80 ° C, the material of the equipment will be expensive due to the nature of the solution, and it is assumed that one batch process will be carried out in two-side operation per day. It is not preferable because it may not be processed depending on the day.

【0015】加熱処理後、純水で希釈し、好ましくは液
のpHを0〜1.0とする。pHが0以下ではRhが樹脂に
吸着しずらくなり、pHが1.0以上では希釈後の液量が
膨大なものとなるため、現実的ではなくなる。純水で希
釈し、フリーの塩素イオン濃度を低くした直後の状態で
は、塩素イオンを多く持つRh錯体は非平衡の状態で溶
存しており、時間の経過とともに塩素を離して平衡状態
になろうとする。このため、希釈後は迅速に樹脂に通液
しなければならない。好ましくは24時間以内、より好
ましくは12時間以内に樹脂に通液する。
After the heat treatment, it is diluted with pure water, and the pH of the liquid is preferably adjusted to 0 to 1.0. When the pH is 0 or less, Rh is less likely to be adsorbed on the resin, and when the pH is 1.0 or more, the amount of liquid after dilution becomes enormous, which is not realistic. Immediately after diluting with pure water to reduce the concentration of free chlorine ions, the Rh complex having a large amount of chlorine ions is dissolved in a non-equilibrium state, and chlorine is released over time to reach an equilibrium state. To do. Therefore, it is necessary to quickly pass the resin through the resin after dilution. The resin is preferably passed within 24 hours, more preferably within 12 hours.

【0016】陰イオン交換樹脂への通液により、Rhを
含む白金族金属のほぼ全量が陰イオン交換樹脂に吸着す
る。通常、塩酸酸性溶液の場合、酸濃度が高ければ分配
係数の差よりRh錯陰イオンよりも塩素イオンのほうが
樹脂に吸着し易い。Rhの陰イオン交換樹脂への分配比
とHCl濃度の関係は、Krausの表がよく知られて
いるが、それによれば、Rhの樹脂への吸着分配比は4
〜6規定付近で0になる。従って、陰イオン交換樹脂に
吸着したRhは、4〜6規定の塩酸を使用して樹脂から
離脱させることが出来る。すなわち、樹脂にRhが吸着
した状態で4〜6規定の塩酸を通液すると、樹脂中でR
h錯イオンを形成している以外のフリーの塩素イオンが
増える。競争反応の結果としてRhの塩素錯陰イオンは
樹脂から離れ、代わりに塩素イオンが樹脂に吸着する。
実際には、樹脂に通液する塩酸の濃度は2〜8規定のも
のが使用できるが、好ましくは上記したような4〜6規
定のものとする。また、通液する塩酸の量はカラム中の
樹脂量の3〜4倍量となるようにする。
By passing the solution through the anion exchange resin, almost all the platinum group metal containing Rh is adsorbed on the anion exchange resin. Generally, in the case of a hydrochloric acid acidic solution, when the acid concentration is high, the chloride ion is more easily adsorbed to the resin than the Rh complex anion because of the difference in distribution coefficient. As for the relationship between the distribution ratio of Rh to the anion exchange resin and the HCl concentration, the Kraus table is well known, and according to it, the adsorption distribution ratio of Rh to the resin is 4
It becomes 0 at around 6 regulations. Therefore, Rh adsorbed on the anion exchange resin can be released from the resin using 4 to 6N hydrochloric acid. That is, when Rh is adsorbed on the resin and 4 to 6N hydrochloric acid is passed through, R
Free chlorine ions other than those forming h complex ions increase. As a result of the competitive reaction, the chlorine complex anion of Rh leaves the resin and instead the chlorine ion adsorbs to the resin.
In practice, the concentration of hydrochloric acid passed through the resin can be 2 to 8 N, but preferably it is 4 to 6 N as described above. The amount of hydrochloric acid to be passed is set to be 3 to 4 times the amount of resin in the column.

【0017】本発明で使用できる陰イオン交換樹脂とし
ては、強塩基性陰イオン交換樹脂ならばいかなるもので
も使用でき、例えばダウエックスSBR(ダウケミカル
社製、商品名)、アンバーライトIR−120B(オル
ガノ社製、商品名)、ダイヤイオンSA−10(三菱化
成社製、商品名)等であるが、樹脂の粒度によって単位
樹脂当たりのRh吸着量に変化が生じるので注意が必要
である。
As the anion exchange resin usable in the present invention, any strongly basic anion exchange resin can be used, for example, Dowex SBR (trade name, manufactured by Dow Chemical Co.), Amberlite IR-120B ( Organo, trade name), DIAION SA-10 (manufactured by Mitsubishi Kasei Co., Ltd.), etc., but care must be taken because the Rh adsorption amount per unit resin varies depending on the particle size of the resin.

【0018】[0018]

【実施例1】市販のコレクターメタルを溶解した塩酸酸
性溶液(液中の不純物品位を表1に示す)を用い、その
中に含有されるRhを精製する例を示す。液中には、表
1に示すように多量の陽イオン不純物(Cu,Cr,N
i等)を溶存しており、Rh濃度は329mg/lであっ
た。この塩酸酸性溶液100mlを60℃まで加温した
後、62%硝酸10mlを添加し、60℃で撹拌しながら
4時間保持した。その後、冷却し、pH0まで純水希釈し
た溶液をSV=2で樹脂に通液した。陰イオン交換樹脂
は、ダイヤイオンSA10AS,200mlを試験用カラ
ムに充填し、pH0に調整した塩酸を流出液のpHが0にな
るまで通液したものを使用した。試料液通液後は、純水
400mlで押し出しを行い、カラム中の試料液をカラム
外へ流出させ、その後樹脂量の3倍量の6N塩酸を通液
して樹脂に吸着したRhを脱離させた。その際、樹脂か
らのRhの脱離率は樹脂への吸着率に関係なくすべて1
00%で、吸着したRhはすべて脱離した。トータルの
流出液中のRhネット量を分析値から計算しRhの回収
率を計算した。同じ試験を3回行い、そのRhの回収率
の平均値を求めたところ、98.7%であった。
Example 1 An example of purifying Rh contained therein by using a commercially available hydrochloric acid acidic solution in which a collector metal is dissolved (impurity grade in the solution is shown in Table 1) is shown. In the liquid, as shown in Table 1, a large amount of cationic impurities (Cu, Cr, N
i)) was dissolved and the Rh concentration was 329 mg / l. After heating 100 ml of this hydrochloric acid acidic solution to 60 ° C., 10 ml of 62% nitric acid was added, and the mixture was kept at 60 ° C. for 4 hours while stirring. Then, the solution was cooled and diluted with pure water to pH 0, and passed through the resin at SV = 2. As the anion exchange resin, used was one in which 200 ml of Diaion SA10AS was packed in a test column, and hydrochloric acid adjusted to pH 0 was passed through until the pH of the effluent became 0. After passing the sample solution, push out with 400 ml of pure water to let the sample solution in the column flow out of the column, and then pass 6N hydrochloric acid in an amount 3 times the resin amount to desorb Rh adsorbed on the resin. Let At that time, the desorption rate of Rh from the resin is 1 regardless of the adsorption rate to the resin.
At 00%, all Rh adsorbed was desorbed. The Rh net amount in the total effluent was calculated from the analytical value, and the recovery rate of Rh was calculated. The same test was performed 3 times, and the average value of the Rh recovery rates was calculated to be 98.7%.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【実施例2】実施例1と同様の条件で硝酸の代わりに過
酸化水素(35%)を同量添加したこと以外は実施例1
と同様にしてRhの精製を行った。その結果、平均回収
率は96.3%であった。
Example 2 Example 1 was repeated except that the same amount of hydrogen peroxide (35%) was added instead of nitric acid under the same conditions as in Example 1.
Rh was purified in the same manner as in. As a result, the average recovery rate was 96.3%.

【0021】[0021]

【実施例3】加熱処理を40℃で行ったこと以外は実施
例1と同様にしてRhの精製をおこなった。その結果、
Rhの平均回収率は88.4%であった。
[Example 3] Rh was purified in the same manner as in Example 1 except that the heat treatment was carried out at 40 ° C. as a result,
The average recovery rate of Rh was 88.4%.

【0022】[0022]

【実施例4】純水希釈後のpHを1.0としたこと以外は
実施例1と同様にしてRhの精製を行った。その結果、
Rhの回収率は92.3%であった。
Example 4 Rh was purified in the same manner as in Example 1 except that the pH after dilution with pure water was 1.0. as a result,
The recovery rate of Rh was 92.3%.

【0023】[0023]

【比較例1】実施例1と同様であるが、酸化剤を何も添
加せず、加熱処理のみ行った。その他の条件は実施例1
と同様にして試験した。その結果、Rhの平均回収率は
69.3%であった。
COMPARATIVE EXAMPLE 1 Same as Example 1, except that no oxidizing agent was added and only heat treatment was performed. Other conditions are Example 1
And tested in the same manner. As a result, the average recovery rate of Rh was 69.3%.

【0024】[0024]

【比較例2】実施例1と同様の条件で酸化剤を何も添加
せず、加熱処理も行わずに、純水希釈のみ行い、試験し
た。その他の条件は実施例1と同様である。その結果、
Rhの平均回収率は51.6%であった。
Comparative Example 2 Under the same conditions as in Example 1, no oxidizing agent was added, no heat treatment was performed, and only pure water was diluted and tested. Other conditions are the same as those in the first embodiment. as a result,
The average recovery rate of Rh was 51.6%.

【0025】[0025]

【比較例3】実施例1と同じ元液100mlを、酸化剤添
加も希釈も何もせず、そのまま陰イオン交換樹脂に通液
した。その他の条件は実施例1と同様にして試験した。
その結果、Rhの平均回収率は34.1%であった。
Comparative Example 3 100 ml of the same original solution as in Example 1 was passed through the anion-exchange resin as it was without adding an oxidizing agent or diluting it. Other conditions were tested in the same manner as in Example 1.
As a result, the average recovery rate of Rh was 34.1%.

【0026】以上の実施例及び比較例の結果をまとめて
表2に示す。
The results of the above Examples and Comparative Examples are summarized in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】以上のような本発明によれば、陰イオン
交換樹脂のみの使用でRhを効率よく回収することがで
き、全体の工程がシンプルで、処理日数が短くて済む。
また、卑金属等の陽イオンを多量に含む場合であって
も、陽イオンを吸着せず、白金族金属等陰イオンのみを
陰イオン交換樹脂に全量吸着させ、その後、Rhのみ選
択的に分離回収するので、精製率の高いRhが高効率で
得られるという従来見られない特異な効果を有し、当業
界において極めて有用である。
According to the present invention as described above, Rh can be efficiently recovered by using only an anion exchange resin, the whole process is simple, and the number of treatment days is short.
Even when a large amount of cations such as base metals are contained, the cations are not adsorbed, and only anions such as platinum group metals are adsorbed on the anion exchange resin, and then only Rh is selectively separated and recovered. Therefore, it has an unprecedented unique effect that Rh with a high purification rate can be obtained with high efficiency, and is extremely useful in the art.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 各種不純物とともにロジウムを含有する
塩酸酸性溶液からロジウムを精製する方法において、該
塩酸酸性溶液に酸化剤を添加して加熱処理する錯体強化
処理を施し、次いで純水で溶液を希釈し、直ちにこの溶
液を陰イオン交換樹脂に通液して白金族金属を樹脂に吸
着せしめ、次いでロジウムのみを樹脂から選択的に分離
することを特徴とするロジウムの精製方法。
1. A method for purifying rhodium from a hydrochloric acid acidic solution containing rhodium together with various impurities, in which a oxidizing agent is added to the hydrochloric acid acidic solution to carry out a heat treatment for complex strengthening, and then the solution is diluted with pure water. Then, the solution is immediately passed through an anion exchange resin so that the platinum group metal is adsorbed on the resin, and then only rhodium is selectively separated from the resin.
JP17209094A 1994-06-30 1994-06-30 Refining method of rhodium Pending JPH0813053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17209094A JPH0813053A (en) 1994-06-30 1994-06-30 Refining method of rhodium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17209094A JPH0813053A (en) 1994-06-30 1994-06-30 Refining method of rhodium

Publications (1)

Publication Number Publication Date
JPH0813053A true JPH0813053A (en) 1996-01-16

Family

ID=15935360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17209094A Pending JPH0813053A (en) 1994-06-30 1994-06-30 Refining method of rhodium

Country Status (1)

Country Link
JP (1) JPH0813053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080648A1 (en) * 2006-01-13 2007-07-19 Asaka Riken Co., Ltd. Method of separating and recovering noble metal
CN102912128A (en) * 2012-11-05 2013-02-06 中国海洋石油总公司 Method for separating and purifying rhodium through anion exchange resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080648A1 (en) * 2006-01-13 2007-07-19 Asaka Riken Co., Ltd. Method of separating and recovering noble metal
CN102912128A (en) * 2012-11-05 2013-02-06 中国海洋石油总公司 Method for separating and purifying rhodium through anion exchange resin

Similar Documents

Publication Publication Date Title
JP4144311B2 (en) Methods for separating and recovering platinum group elements
JPS59162108A (en) Washing of solution of sulfuric acid
JP3021540B2 (en) Purification method of alkali metal chloride aqueous solution
JP2560253B2 (en) Method for producing and regenerating ion exchanger for cesium separation
JPH0813053A (en) Refining method of rhodium
JP3122948B1 (en) Method for producing high purity cobalt
JP3062448B2 (en) Separation and recovery method of uranium and impurities using chelating resin
JPS6351975B2 (en)
JP3863950B2 (en) Method for recovering catalyst in adipic acid production
RU2479651C1 (en) Method for extraction and separation of platinum and rhodium in sulphate solutions
JPH03277731A (en) Method for refining rhodium
CN108046298B (en) Method for purifying concentrated magnesium isotope oxide
JP6933151B2 (en) How to recover selenium from copper electrolytic slime
JPH0533071A (en) Method for separating and refining rhodium from aqueous solution
JPH03277730A (en) Method for refining rhodium
JP3390148B2 (en) Purification treatment method for salt water for electrolysis
Hubicki et al. Studies of the selective removal of microquantities of platinum (IV) ions from model chloride solutions onto ion exchangers containing functional tertiary amine and polyamine groups
JP3206432B2 (en) Low alpha low oxygen metal scandium and method for producing the same
RU2111272C1 (en) Platinum metal isolation procedure
JPS6153117A (en) Recovery of noble metal element
JPH06144802A (en) Recovery of iodine from waste liquid containing organoiodine compound
JP4745936B2 (en) Method for producing ferrous chloride liquid
JPH08206432A (en) Gas treatment method and gas treatment agent
JPH04259341A (en) Method fore refining iridium
JP2784213B2 (en) Treatment of wastewater containing high concentration iron