JPH08130219A - Fine structure forming method and its equipment - Google Patents

Fine structure forming method and its equipment

Info

Publication number
JPH08130219A
JPH08130219A JP26863894A JP26863894A JPH08130219A JP H08130219 A JPH08130219 A JP H08130219A JP 26863894 A JP26863894 A JP 26863894A JP 26863894 A JP26863894 A JP 26863894A JP H08130219 A JPH08130219 A JP H08130219A
Authority
JP
Japan
Prior art keywords
needle
liquid
substrate
liquid metal
fine structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26863894A
Other languages
Japanese (ja)
Inventor
Yoshio Hirayama
祥郎 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26863894A priority Critical patent/JPH08130219A/en
Publication of JPH08130219A publication Critical patent/JPH08130219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To form fine structure excellent in controllability, stability and reproducibility, by using the tip of a pointed pin similarly to STM, without using a tunnel current or the like under a high electric field. CONSTITUTION: A pin 1 whose tip is covered with liquid (or liquid metal) 3 is made to approach a substrate 2, and brought into contact with the substrate 2, via the liquid 3. In this state, the substrate surface is scanned with the pin 1, and the liquid 3 is transferred on the substrate 2. Thereby a thin line 4 is formed on the substrate 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新しい微細構造作製方
法およびそれを実現する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new fine structure manufacturing method and an apparatus for realizing the same.

【0002】[0002]

【従来の技術】従来、基板等に微細構造を作成する方
法、装置としては、走査トンネル電子顕微鏡(以下ST
Mと称す)を用いた微細加工やアトムマニピュレーショ
ンが多数報告されているが、これらはいずれも固体の針
による固体基板の加工であるため、針と基板を接触させ
ずに針からのトンネル電流や局所的な高電界を用いて加
工する方法、装置が中心であった。
2. Description of the Prior Art Conventionally, a scanning tunneling electron microscope (hereinafter referred to as ST
A number of microfabrications and atom manipulations using M) have been reported. However, since these are all processing of a solid substrate with a solid needle, the tunnel current from the needle and the needle current without contacting the substrate can be used. The focus was on methods and devices for processing using a locally high electric field.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記し
た針と基板を接触させずに針からのトンネル電流や局所
的な高電界を用いて加工する方法は、針の周辺が局所的
にきわめて高電界になり、針の先端形状が徐々に変化す
るなど安定性、再現性に問題があった。
However, in the method of processing using a tunnel current from the needle or a local high electric field without bringing the needle and the substrate into contact with each other, the periphery of the needle is locally exposed to an extremely high electric field. However, there was a problem in stability and reproducibility such as the tip shape of the needle gradually changing.

【0004】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、STMと同様に尖った針の先端を利用しつつ、従
来のような高電界下でのトンネル電流等を利用しないで
微細構造を作成することができ、制御性に優れ、安定で
かつ再現性の高い微細構造作製方法およびその装置を提
供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to utilize a sharp needle tip as in the STM while maintaining a high level as in the prior art. It is an object of the present invention to provide a fine structure manufacturing method and a device capable of forming a fine structure without utilizing a tunnel current or the like under an electric field, excellent in controllability, stable and highly reproducible.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、液体もしくは液体金属が
その先端を覆っている針を基板に近づけ、針と基板が液
体もしくは液体金属を介して接触した状態を実現し、こ
の状態で針を走査することにより、液体もしくは液体金
属を針から基板に移しながら微細構造を作製することを
特徴とする。請求項2に記載の発明は、下部に針が設け
られ内部に前記針の材料によく馴染む液体もしくは液体
金属を収容し、前記液体もしくは液体金属が前記針に伝
わるようにした構造をもつ坩堝と、前記針もしくは針と
坩堝をX,Y,Zの3方向に移動させる走査ユニット
と、基板が載置されるステージとを備え、前記液体もし
くは液体金属を介して前記針を前記基板に接触させ、前
記針もしくは針と坩堝を走査し、液体もしくは液体金属
を前記基板上に移し微細構造を作製することを特徴とす
る。請求項3に記載の発明は、請求項2に記載の発明に
おいて、前記坩堝は温度制御手段を備えていることを特
徴とする。請求項4に記載の発明は、請求項2または3
に記載の発明において、前記ステージは温度制御手段を
備えていることを特徴とする。
In order to achieve the above object, the invention according to claim 1 makes a needle whose tip is covered with liquid or liquid metal is brought close to a substrate, and the needle and the substrate are liquid or liquid metal. It is characterized in that a fine structure is produced while the liquid or liquid metal is transferred from the needle to the substrate by realizing the state of contact via the needle and scanning the needle in this state. A second aspect of the present invention is a crucible having a structure in which a needle is provided at a lower portion and a liquid or liquid metal that is well compatible with the material of the needle is accommodated therein, and the liquid or liquid metal is transmitted to the needle. A scanning unit for moving the needle or the needle and the crucible in three directions of X, Y, and Z; and a stage on which a substrate is placed. The needle is brought into contact with the substrate through the liquid or liquid metal. Scanning the needle or the needle and the crucible to transfer a liquid or liquid metal onto the substrate to form a fine structure. According to a third aspect of the invention, in the second aspect of the invention, the crucible is provided with a temperature control means. The invention according to claim 4 is the invention according to claim 2 or 3.
In the invention described in (3), the stage is equipped with a temperature control means.

【0006】[0006]

【作用】請求項1および2に記載の発明においては、針
を伝わってきた液体もしくは液体金属が基板と接触す
る。液体もしくは液体金属を間に挟んで針と基板が接触
しているので、通常の電界での抵抗(またはコンダクタ
ンス)の測定や表面張力や粘性による液体独特の力の測
定等の針に損傷を与えない測定により液体もしくは液体
金属と基板の接触状態を容易に制御することができる。
また、基板と針を接触させているものは液体もしくは液
体金属なので、針先等に損傷を与えることなく、液体も
しくは液体金属と基板の接触状態を一定に制御しながら
針を走査することが可能である。針、液体もしくは液体
金属、基板のそれぞれの材料、温度を適切に設定してお
けば、正確に所望する量の液体もしくは液体金属をあた
かも万年筆で字を書くように針から基板に移して微細構
造を形成することができる。したがって、従来技術のよ
うに針先に高電界を加える必要がなく、しかも、固体で
ある針と基板が直接接触することなしに微細構造を形成
することができる。請求項3に記載の発明において、温
度制御手段は坩堝を温度制御することにより、液体また
は液体金属が針に対して伝わり易くする。請求項4に記
載の発明において、針から基板に伝わる液体もしくは液
体金属は、ステージの温度が温度制御手段によって制御
されることによって良好な液体状態に維持される。
In the invention described in claims 1 and 2, the liquid or liquid metal transmitted through the needle comes into contact with the substrate. Since the needle and the substrate are in contact with each other with the liquid or liquid metal sandwiched between them, damage to the needle such as measurement of resistance (or conductance) under normal electric field or measurement of unique force of liquid due to surface tension or viscosity It is possible to easily control the contact state between the liquid or the liquid metal and the substrate by no measurement.
In addition, since the one that makes contact between the substrate and the needle is liquid or liquid metal, it is possible to scan the needle while controlling the contact state between the liquid or liquid metal and the substrate constant without damaging the needle tip or the like. Is. If the material, temperature of the needle, liquid or liquid metal, and substrate are set appropriately, the desired amount of liquid or liquid metal can be transferred from the needle to the substrate as if writing a fountain pen to the microstructure. Can be formed. Therefore, unlike the prior art, it is not necessary to apply a high electric field to the needle tip, and the fine structure can be formed without the solid needle and the substrate coming into direct contact with each other. In the invention of claim 3, the temperature control means controls the temperature of the crucible to facilitate the transfer of the liquid or the liquid metal to the needle. In the invention of claim 4, the liquid or liquid metal transmitted from the needle to the substrate is maintained in a good liquid state by controlling the temperature of the stage by the temperature control means.

【0007】[0007]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。図1は本発明に係る微細構造作製方法
を示す針の先端部分の概略図であり、針を伝わってきた
液体(もしくは液体金属)が基板上に移され針の走査に
よって細線が形成されていく様子を示す。同図におい
て、1は針、2は基板、3は液体(もしくは液体金
属)、4は基板2上に形成された微細構造としての細線
である。本実施例では針1はタングステン(W)等の金
属、液体3は適当に加熱された液体金属(例えば液体状
のガリウム)であるが、様々な液体もしくは液体金属と
針の組み合わせに対し同様なプロセスが可能である。液
体3の伝わらせ方は様々であり、針1全体を液体3が覆
うようなタイプ、針1の途中まで溝を刻んでおき、溝に
沿って液体3が流れるタイプ、針1の中央に微細な穴を
形成し、そこを液体金属3が流れてくるタイプ等が考え
られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 is a schematic view of a tip portion of a needle showing a method for producing a fine structure according to the present invention, in which a liquid (or a liquid metal) transmitted through the needle is transferred onto a substrate and fine lines are formed by scanning the needle. Show the situation. In the figure, 1 is a needle, 2 is a substrate, 3 is a liquid (or liquid metal), and 4 is a fine line as a fine structure formed on the substrate 2. In this embodiment, the needle 1 is a metal such as tungsten (W) and the liquid 3 is a liquid metal that has been appropriately heated (for example, liquid gallium), but the same applies to various liquids or combinations of liquid metal and needle. The process is possible. There are various ways of transmitting the liquid 3, such as a type in which the liquid 1 covers the entire needle 1, a type in which a groove is formed up to the middle of the needle 1 and the liquid 3 flows along the groove, and a fine pattern is formed in the center of the needle 1. A type in which a transparent hole is formed and the liquid metal 3 flows therethrough can be considered.

【0008】図2は本発明方法の実施によって作成した
微細構造を示す図で、細線に垂直方向に切断した断面図
である。
FIG. 2 is a view showing a fine structure produced by carrying out the method of the present invention, which is a sectional view taken along a direction perpendicular to a fine line.

【0009】図2(a)は金属基板上に作成した金属細
線の例で、基板2を半導体基板2−2と、その上に形成
したW薄膜2−1とで構成し、W薄膜2−1上にガリウ
ム(Ga)の細線4を作成したものである。この細線4
はW薄膜2−1上に液体Gaを流しながら針を走査する
ことで得られる。細線4の大きさは液体Gaの温度、基
板温度、針と基板の距離、走査速度等により制御でき
る。細線幅は狭いもので、2〜3nm、広いものでは約
100nmとなる。厚さも条件により単原子層から数十
原子層の厚さの範囲で制御できる。基板温度が高いほど
良好な液体状態が維持できるものの、温度が高すぎる
と、基板2上で液体金属の原子がマイグレートして微細
なパターンが広がってしまう。一方、基板温度が低すぎ
ると、液体金属の粘度が上がりうまく走査できなくな
る。したがって、基板温度は適当な値に設定する必要が
ある。本実施例では基板温度は約80°Cであり、針の
下では針を伝わってくる熱により液体状態が維持されて
いるが、基板2上に載せられた微細パターンは針が遠ざ
かるにつれて固化していく条件に設定されている。
FIG. 2A shows an example of a metal thin wire formed on a metal substrate. The substrate 2 is composed of a semiconductor substrate 2-2 and a W thin film 2-1 formed on the semiconductor substrate 2-2. A thin wire 4 of gallium (Ga) is formed on the surface of the metal 1. This thin line 4
Can be obtained by scanning the needle while flowing the liquid Ga over the W thin film 2-1. The size of the thin wire 4 can be controlled by the temperature of the liquid Ga, the substrate temperature, the distance between the needle and the substrate, the scanning speed, and the like. The narrow line width is 2 to 3 nm, and the wide line width is about 100 nm. The thickness can also be controlled within the range of the thickness of a monoatomic layer to several tens of atomic layers depending on the conditions. The higher the substrate temperature, the better the liquid state can be maintained, but if the temperature is too high, the atoms of the liquid metal migrate on the substrate 2 and a fine pattern spreads. On the other hand, if the substrate temperature is too low, the viscosity of the liquid metal increases and scanning cannot be performed properly. Therefore, the substrate temperature needs to be set to an appropriate value. In this embodiment, the substrate temperature is about 80 ° C., and the liquid state is maintained under the needle by the heat transmitted through the needle, but the fine pattern placed on the substrate 2 solidifies as the needle moves away. It is set to the condition to go.

【0010】図2(b)は本発明方法を半導体細線の形
成に利用した実施例を示す図である。基板2はGaAs
2−4と、その上に形成されたAlGaAs2−3とで
形成されている。最初AlGaAs2−3上に上記した
と同様な方法によりGaの細線4を形成する。厚さが3
原子層以下になるように基板温度等の条件を設定する。
Gaの細線4を形成した後、全体をAsの雰囲気に晒し
ながら基板温度を上昇させていくと、Gaが3原子層以
下であればAsが完全にGa中に入り込んでGaAsが
形成され、AlGaAs上のGaAs細線4−1が完成
する(図2(c))。
FIG. 2 (b) is a view showing an embodiment in which the method of the present invention is used to form a semiconductor thin wire. Substrate 2 is GaAs
2-4 and AlGaAs 2-3 formed thereon. First, the Ga thin wire 4 is formed on the AlGaAs 2-3 by the same method as described above. Thickness is 3
Conditions such as the substrate temperature are set so that the atomic layer or less is obtained.
After the thin Ga line 4 is formed, the substrate temperature is raised while exposing the whole to the atmosphere of As. If Ga is 3 atomic layers or less, As completely penetrates into Ga to form GaAs. The upper GaAs thin wire 4-1 is completed (FIG. 2 (c)).

【0011】図3は本発明方法を実現する装置の概略構
成図である。同図において、5は下部に針1が設けられ
た坩堝で、この坩堝5は内部に液体(もしくは液体金
属)3を収容し、外周面に温度制御手段としてのヒータ
−7を有し、走査ユニット8によってX,Y,Zの3方
向に独立して微動され精密に位置制御されるよう構成さ
れている。坩堝5と針1の部分は集束イオンビーム注入
装置の液体金属イオン源と類似の仕組みである。坩堝5
内の液体3は、坩堝5の下部に形成された穴から出て針
1に伝わるようになっている。当然針1と液体3は馴染
みが良く、しかも液体3が針1を侵食しない組み合わせ
でなければならないが、液体金属イオン源で知られてい
るようにこのような組み合わせは多数存在する。そし
て、このように構成された坩堝5はSTM等の針の部分
に取り付けられる。9は前記坩堝5の下方に配設された
基板用ステージで、このステージ9はX,Y,Zの3方
向に独立して粗動されると共に、加熱手段としてのヒー
ター10を備え、上面に基板2が載置されるようになっ
ている。11は前記走査ユニット8、ステージ9および
ヒーター7,10を制御するコントロールユニットであ
る。この場合、本実施例では針1と坩堝5を一体に移動
させるようにした場合について示したが、坩堝5を固定
とし、針1のみを3方向に移動させるようにすることも
可能である。また、本実施例では針1をWで形成し、G
aの液体金属3を坩堝5に収容している。
FIG. 3 is a schematic block diagram of an apparatus for realizing the method of the present invention. In the figure, 5 is a crucible having a needle 1 provided at the bottom thereof. The crucible 5 contains a liquid (or liquid metal) 3 inside, and has a heater 7 as a temperature control means on the outer peripheral surface, The unit 8 is configured to be finely moved independently in three directions of X, Y, and Z to precisely control the position. The portion of the crucible 5 and the needle 1 has a mechanism similar to that of the liquid metal ion source of the focused ion beam implanter. Crucible 5
The liquid 3 therein comes out from a hole formed in the lower portion of the crucible 5 and is transmitted to the needle 1. Needless to say, the needle 1 and the liquid 3 should be a combination that is well compatible with each other and that the liquid 3 does not erode the needle 1, but there are many such combinations as is known in the liquid metal ion source. The crucible 5 thus configured is attached to the needle portion such as STM. Reference numeral 9 denotes a substrate stage disposed below the crucible 5, which is coarsely moved independently in three directions of X, Y and Z, and is provided with a heater 10 as a heating means and is provided on the upper surface. The substrate 2 is placed. Reference numeral 11 is a control unit for controlling the scanning unit 8, the stage 9 and the heaters 7 and 10. In this case, although the needle 1 and the crucible 5 are integrally moved in the present embodiment, the crucible 5 may be fixed and only the needle 1 may be moved in three directions. Further, in this embodiment, the needle 1 is formed of W, and G
The liquid metal 3 of a is contained in the crucible 5.

【0012】本装置では先ず細線を形成する位置を決定
した後、針1を坩堝5と共にZ方向に動かし徐々に下げ
る。ある点でGaの液体金属3が基板2に接触し基板2
側に広がる。これは後述するように抵抗(またはコンダ
クタンス)の急激な変化か表面張力や粘性による液体独
特の力の急激な変化により検出可能である。しかる後、
針1を徐々にZ方向に上げ液体金属3のくびれた部分の
大きさを所望の値に設定し、後はこの値を一定に保ちつ
つ針1を走査して針1の動きに対応した微細構造を基板
2上に形成する。細線の書き始めに乱れが残るものの一
様性の高い細線が形成できる。
In the present apparatus, first, after determining the position for forming the fine line, the needle 1 is moved together with the crucible 5 in the Z direction and gradually lowered. At some point, the liquid metal 3 of Ga contacts the substrate 2 and
Spread to the side. This can be detected by an abrupt change in resistance (or conductance) or an abrupt change in liquid-specific force due to surface tension or viscosity, as described later. After a while
The needle 1 is gradually raised in the Z direction to set the size of the constricted portion of the liquid metal 3 to a desired value, and thereafter, the needle 1 is scanned while keeping this value constant, and the fineness corresponding to the movement of the needle 1 is set. The structure is formed on the substrate 2. A fine line with high uniformity can be formed although the disorder remains at the beginning of writing the fine line.

【0013】なお、本発明の方法では上述したように基
板温度の適当な選択が重要であるが、液体状態の原子の
基板上でのマイグレーションが激しく基板用ヒーター1
0による一様な加熱では制御性良く微細構造が作成でき
ない場合も発生することが考えられる。しかし、この場
合にも、基板温度を液体金属3が十分に固化する低温に
設定しておき、レーザー光線や電子線を針1の走査に併
せて動かして針1の近傍のみを良好な液体状態が維持で
きる温度に加熱する仕組みを本装置に付加することによ
り対応可能である。
In the method of the present invention, it is important to properly select the substrate temperature as described above, but the migration of atoms in the liquid state on the substrate is severe and the substrate heater 1
It is conceivable that even if the uniform heating by 0 occurs, a fine structure cannot be formed with good controllability. However, also in this case, the substrate temperature is set to a low temperature at which the liquid metal 3 is sufficiently solidified, and a laser beam or an electron beam is moved in accordance with the scanning of the needle 1 to keep only the vicinity of the needle 1 in a good liquid state. This can be handled by adding a mechanism for heating to a temperature that can be maintained to this device.

【0014】最後に本実施例における液体金属と基板の
接触状態の制御について説明する。図4はタングステン
の針1上に液体Ga3を接触させてから針1を上げてい
ったい時の低電圧で測定された針1と基板2間のコンダ
クタンスの変化を示す図である。液体Ga3がちぎれる
寸前の断面は量子効果が顕著になるほど小さいのでコン
ダクタンスの変化は滑らかではなくステップ構造がみら
れる。点線はこのステップ構造から推定される液体Ga
3の一番くびれた部分の原子数である。コンダクタンス
を通常容易に計測できる領域(例えば1000μS=1
KΩ)で測定することにより容易に原子オーダーの寸法
でくびれの大きさを制御できることが分かる。したがっ
て、コンダクタンスをモニターしながら針1を走査すれ
ば原子オーダーでくびれの大きさを制御しつつ針1の走
査ができ、結果的に原子オーダーで制御された細線が実
現される。
Finally, the control of the contact state between the liquid metal and the substrate in this embodiment will be described. FIG. 4 is a diagram showing a change in conductance between the needle 1 and the substrate 2 measured at a low voltage when it is desired to raise the needle 1 after bringing the liquid Ga3 into contact with the tungsten needle 1. Since the cross section just before the liquid Ga3 is broken is so small that the quantum effect becomes remarkable, the change of the conductance is not smooth, and a step structure is observed. The dotted line is the liquid Ga estimated from this step structure.
It is the number of atoms in the most constricted part of 3. A region where conductance can usually be easily measured (for example, 1000 μS = 1
It can be seen that the size of the constriction can be easily controlled by the dimension of atomic order by measuring with KΩ). Therefore, by scanning the needle 1 while monitoring the conductance, the needle 1 can be scanned while controlling the size of the constriction on the atomic order, and as a result, a fine line controlled on the atomic order is realized.

【0015】基板が非導電性の場合には電気的測定の代
わりに、表面張力や粘性による液体独特の力を利用する
ことができる。液体は針と基板を相互に引き付ける方向
に力を発し、その大きさはくびれの大きさに対応する。
したがって、アトミック・フォース・マイクロスコープ
の原理でこの力を測定すれば、くびれの大きさをコンダ
クタンス測定と同様に精密に制御することが可能であ
る。
When the substrate is non-conductive, a liquid-specific force due to surface tension or viscosity can be used instead of electrical measurement. The liquid exerts a force in the direction of attracting the needle and the substrate to each other, the size of which corresponds to the size of the neck.
Therefore, if this force is measured based on the principle of the atomic force microscope, the size of the constriction can be precisely controlled as in the conductance measurement.

【0016】[0016]

【発明の効果】以上説明したように本発明に係る微細構
造作製方法によれば、STMと同様に尖った針の先端を
利用しつつ、針を伝う液体もしくは液体金属を利用して
微細構造を形成するようにしているので、液体もしくは
液体金属を挟んで針と基板が常に接触しているため、通
常の低電圧の抵抗(またはコンダクタンス)測定等で基
板と液体もしくは液体金属の接触状態を制御でき、さら
に針と基板の間は液体もしくは液体金属であるから針を
走査しても針先を損傷する虞れがなく制御性に優れ、安
定で再現性のある微細加工を実現できる効果がある。ま
た、本発明に係る微細構造作成装置では、液体もしくは
液体金属と基板の接触面積を原子オーダーで制御でき、
結果的に原子オーダーで制御された微細構造が形成でき
る効果がある。更に、従来のSTM加工と異なり、基板
温度、坩堝温度、針と基板の距離、走査速度等を制御す
ることにより同一方法、装置で数原子から数百原子にわ
たる広い範囲で制御性良く細線の幅を選択できる効果も
ある。
As described above, according to the method for producing a fine structure according to the present invention, the fine structure can be formed by utilizing the liquid or liquid metal that travels through the needle while utilizing the pointed tip of the needle as in the STM. Since the needle and the substrate are always in contact with each other with the liquid or liquid metal sandwiched between them, the contact state between the substrate and the liquid or liquid metal is controlled by normal low voltage resistance (or conductance) measurement. In addition, since the space between the needle and the substrate is liquid or liquid metal, there is no risk of damaging the needle tip even if the needle is scanned, excellent controllability, and stable and reproducible microfabrication can be achieved. . Further, in the fine structure forming apparatus according to the present invention, the contact area of the liquid or liquid metal and the substrate can be controlled in atomic order,
As a result, there is an effect that a fine structure controlled on an atomic order can be formed. Further, unlike the conventional STM processing, by controlling the substrate temperature, the crucible temperature, the distance between the needle and the substrate, the scanning speed, etc., the width of the thin line can be controlled in a wide range from several atoms to several hundred atoms with the same method and device. There is also the effect that you can select.

【0017】また、本発明による方法、装置は液体金属
を用いることにより金属微細構造の形成に用いられるの
みならず、実施例のように半導体微細構造に応用するこ
とも可能である。また、様々な種類の液体もしくは液体
金属及びこれと反応する材料を用いることにより多くの
材料の微細構造作成に応用することができる。
Further, the method and apparatus according to the present invention can be used not only for forming a metal fine structure by using a liquid metal, but also for application to a semiconductor fine structure as in the embodiment. Further, by using various kinds of liquids or liquid metals and materials that react with them, it is possible to apply to the formation of fine structures of many materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による微細構造作製方法を示す概略図
である。
FIG. 1 is a schematic view showing a fine structure manufacturing method according to the present invention.

【図2】 (a)は本発明の第1の実施例の断面図、
(b)は第2の実施例の断面図、(c)は第2の実施例
の断面図である。
FIG. 2A is a cross-sectional view of the first embodiment of the present invention,
(B) is sectional drawing of a 2nd Example, (c) is sectional drawing of a 2nd Example.

【図3】 本発明による微細構造作製装置の概略構成図
である。
FIG. 3 is a schematic configuration diagram of a fine structure manufacturing apparatus according to the present invention.

【図4】 微細構造作製装置で測定した針の位置(Z方
向)の変化によるコンダクタンスの変化を示す図であ
る。
FIG. 4 is a diagram showing a change in conductance due to a change in needle position (Z direction) measured by a fine structure manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1…針、2…基板、2−1…タングステン、2−2…半
導体基板、2−3…AlGaAs薄膜、2−4…GaA
s基板、3…液体(または液体金属)、4…細線、5…
坩堝、7…ヒーター、8…走査ユニット、9…ステー
ジ、10…ヒーター、11…コントロールユニット。
1 ... Needle, 2 ... Substrate, 2-1 ... Tungsten, 2-2 ... Semiconductor substrate, 2-3 ... AlGaAs thin film, 2-4 ... GaA
s substrate, 3 ... liquid (or liquid metal), 4 ... fine wire, 5 ...
Crucible, 7 ... Heater, 8 ... Scanning unit, 9 ... Stage, 10 ... Heater, 11 ... Control unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液体もしくは液体金属がその先端を覆っ
ている針を基板に近づけ、針と基板が液体もしくは液体
金属を介して接触した状態を実現し、この状態で針を走
査することにより、液体もしくは液体金属を針から基板
に移しながら微細構造を作製することを特徴とする微細
構造作製方法。
1. A liquid or a liquid metal covers a tip of the needle close to a substrate to realize a state in which the needle and the substrate are in contact with each other through the liquid or the liquid metal, and by scanning the needle in this state, A method for producing a fine structure, which comprises producing a fine structure while transferring a liquid or a liquid metal from a needle to a substrate.
【請求項2】 下部に針が設けられ内部に前記針の材料
によく馴染む液体もしくは液体金属を収容し、前記液体
もしくは液体金属が前記針に伝わるようにした構造をも
つ坩堝と、前記針もしくは針と坩堝をX,Y,Zの3方
向に移動させる走査ユニットと、基板が載置されるステ
ージとを備え、前記液体もしくは液体金属を介して前記
針を前記基板に接触させ、前記針もしくは針と坩堝を走
査し、液体もしくは液体金属を前記基板上に移し微細構
造を作製することを特徴とする微細構造作製装置。
2. A crucible having a needle at a lower portion thereof, a liquid or liquid metal that is well adapted to a material of the needle is accommodated therein, and the liquid or the liquid metal is configured to be transmitted to the needle, and the needle or the crucible. A scanning unit for moving the needle and the crucible in three directions of X, Y, and Z, and a stage on which a substrate is placed are provided, and the needle is brought into contact with the substrate via the liquid or liquid metal, A fine structure manufacturing apparatus characterized by scanning a needle and a crucible to transfer a liquid or a liquid metal onto the substrate to manufacture a fine structure.
【請求項3】 請求項2記載の微細構造作製装置におい
て、 前記坩堝は温度制御手段を備えていることを特徴とする
微細構造作製装置。
3. The fine structure manufacturing apparatus according to claim 2, wherein the crucible is provided with a temperature control means.
【請求項4】 請求項2または3記載の微細構造作製装
置において、 前記ステージは温度制御手段を備えていることを特徴と
する微細構造作製装置。
4. The fine structure manufacturing apparatus according to claim 2, wherein the stage has a temperature control means.
JP26863894A 1994-11-01 1994-11-01 Fine structure forming method and its equipment Pending JPH08130219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26863894A JPH08130219A (en) 1994-11-01 1994-11-01 Fine structure forming method and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26863894A JPH08130219A (en) 1994-11-01 1994-11-01 Fine structure forming method and its equipment

Publications (1)

Publication Number Publication Date
JPH08130219A true JPH08130219A (en) 1996-05-21

Family

ID=17461338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26863894A Pending JPH08130219A (en) 1994-11-01 1994-11-01 Fine structure forming method and its equipment

Country Status (1)

Country Link
JP (1) JPH08130219A (en)

Similar Documents

Publication Publication Date Title
US7541062B2 (en) Thermal control of deposition in dip pen nanolithography
US4968390A (en) High resolution deposition and etching in polymer films
US4896044A (en) Scanning tunneling microscope nanoetching method
US8918152B2 (en) Parallel fabrication of nanogaps and devices thereof
US5741557A (en) Method for depositing metal fine lines on a substrate
EP1243915B1 (en) Apparatus for evaluating electrical characteristics
US5929438A (en) Cantilever and measuring apparatus using it
CN101208774B (en) Self-repair and enhancement of nanostructures by liquification under guiding conditions
WO1996033140A1 (en) Process for transferring microminiature patterns using spin-on glass resist media
US4539089A (en) Method for depositing material with nanometer dimensions
CN106796196A (en) Method for forming nano gap in Graphene
CN110050187A (en) For measure sample small current potential, the application of the equipment based on nanowire crossbars, the method for manufacturing the equipment and the equipment
JPH08130219A (en) Fine structure forming method and its equipment
KR100549227B1 (en) Method for manufacturing organic molecular device
US6207034B1 (en) Method of manufacture of polymer transistors with controllable gap
CN114335335A (en) Method for adjusting gap distance in metal tunneling junction
JP3739796B2 (en) Tapered structure suitable for micro thermocouple, micro electrode, field emission chip and micro magnetic sensor with force detection capability
Snow et al. AFM fabrication of metal-oxide devices with in situ control of electrical properties
JP2885499B2 (en) Information recording material
JP2000227468A (en) Superconducting quantum interference element microscope sensor and manufacture thereof
Li et al. Low energy electron stimulated etching of thin Si-oxide layer in nanometer scale using scanning tunneling microscope
Brückl et al. Observation of Coulomb Blockade Effects in AFM‐machined Tunnel Junctions
JP3697025B2 (en) Fine processing method
JPH08248064A (en) Fine pattern forming apparatus and characteristics measuring apparatus
JPH06204118A (en) Substrate position alignment method