JPH08130097A - Discharge preventive apparatus for aerospace vehicle - Google Patents

Discharge preventive apparatus for aerospace vehicle

Info

Publication number
JPH08130097A
JPH08130097A JP6266915A JP26691594A JPH08130097A JP H08130097 A JPH08130097 A JP H08130097A JP 6266915 A JP6266915 A JP 6266915A JP 26691594 A JP26691594 A JP 26691594A JP H08130097 A JPH08130097 A JP H08130097A
Authority
JP
Japan
Prior art keywords
spacecraft
potential
plasma
aerospace vehicle
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6266915A
Other languages
Japanese (ja)
Inventor
Yukishige Nozaki
幸重 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6266915A priority Critical patent/JPH08130097A/en
Publication of JPH08130097A publication Critical patent/JPH08130097A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • B64G1/54Protection against radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/405Ion or plasma engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/646Docking or rendezvous systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Critical Care (AREA)
  • Emergency Medicine (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

PURPOSE: To surely prevent a discharge phenomenon between mutually approaching aerospace vehicles. CONSTITUTION: An ion engine 11 for plasma generation is installed in a first aerospace vehicle 10, the ion engine 11 is driven and controlled based on the potential difference in the space between the vehicle 10 and a second aerospace vehicle 15, and plasma is discharged toward the second aerospace vehicle 15. Consequently, the charge of the surface of the second aerospace vehicle 15 is neutralized and the potential of the surface is made almost the same as that of the surface of the first aerospace vehicle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば人工衛星、軌
道上作業機等の宇宙航行体の放電を抑制するのに用いる
放電防止装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge prevention device used for suppressing discharge of spacecraft such as artificial satellites and orbital working machines.

【0002】[0002]

【従来の技術】一般に、宇宙航行体は、宇宙空間がプラ
ズマ密度が極端に少ないうえ、高エネルギを有する電
子、プロトンの衝突により、その表面が周囲のプラズマ
電位に対して数キロV以上の負に帯電することが知られ
ている。この帯電現象は、宇宙航行体表面の物質や太陽
光照射の有無により、大きく変化され、宇宙航行体表面
の電位分布が極めて複雑なものとなる。
2. Description of the Related Art In general, a spacecraft has an extremely low plasma density in outer space, and its surface is negative by several kilovolts or more against the surrounding plasma potential due to collision of electrons and protons having high energy. It is known to be charged. This charging phenomenon is greatly changed depending on the substance on the surface of the spacecraft and the presence / absence of sunlight irradiation, and the potential distribution on the surface of the spacecraft becomes extremely complicated.

【0003】特に、宇宙航行体の帯電現象は、高高度軌
道上において、地球の影、即ち日陰を航行している場合
に多く、太陽光が直接的に宇宙航行体に照射される日照
期間中には、周囲のプラズマからの電流と太陽光により
発生する光電子電流が互いに相殺されて,あまり発生す
ることがない。
In particular, the electrification phenomenon of a spacecraft is often observed in the shadow of the earth in high altitude orbit, that is, in the shade, and during the sunshine period when sunlight is directly irradiated on the spacecraft. In this case, the current from the surrounding plasma and the photoelectron current generated by sunlight cancel each other out, so that they do not occur so much.

【0004】このように、帯電現象は、日陰期間におい
て、太陽光による光電子電流の流入がないことで、宇宙
航行体の周囲のプラズマ電位に比べて非常に大きな負の
電位に帯電する。これは、日照中において、宇宙航行体
の影となる部分においても、同様に負の電位に帯電が発
生する。
As described above, the charging phenomenon is charged to a very large negative potential as compared with the plasma potential around the spacecraft due to the absence of inflow of photoelectron current due to sunlight in the shade period. This is because during the daylight, the negative potential is also charged in the shadow of the spacecraft.

【0005】ところで、最近の宇宙開発の分野において
は、宇宙航行体同士をランデブー・ドッキングさせた
り、あるいは軌道上作業機と称する宇宙航行体を利用し
て他の宇宙航行体への各種の保守サービスを実行する計
画が進められている。
By the way, in the field of recent space development, spacecrafts are rendezvous and docked with each other, or a spacecraft called an in-orbit working machine is used to perform various maintenance services for other spacecrafts. A plan to implement is underway.

【0006】しかしながら、上記宇宙航行体にあって
は、他の宇宙航行体に接近した場合、仮に他の宇宙航行
体が負の電位に帯電していると、その電位差が「0」と
なるように急激な電荷の移動、即ち放電現象が発生し
て、宇宙航行体自体の破損を招いたり、破壊しないまで
も電磁ノイズにより電子機器の誤動作を招いたりすると
いう問題を有する。
However, in the above spacecraft, when the other spacecraft approaches the other spacecraft, if the other spacecraft is negatively charged, the potential difference becomes "0". However, there is a problem in that a sudden movement of electric charge, that is, a discharge phenomenon occurs, which causes damage to the spacecraft itself or causes malfunction of electronic equipment due to electromagnetic noise even if it is not destroyed.

【0007】係る放電現象の問題は、今後の宇宙開発の
分野で計画されている宇宙基地、静止プラットフォーム
等において、作業機等の宇宙航行体を宇宙基地やプラッ
トフォームに係留したりするいわゆるドッキング動作を
何度となく繰返すこととなることで重大である
The problem of such a discharge phenomenon is that in space stations, stationary platforms, etc. planned in the field of future space development, so-called docking operation such as mooring a spacecraft such as a working machine to the space station or platform. It is important to be repeated many times

【0008】[0008]

【発明が解決しようとする課題】以上述べたように、従
来の宇宙航行体にあっては、他の宇宙航行体と接近する
と、放電現象が発生して破損等を起こす虞れを有する。
この発明は上記の事情に鑑みてなされたもので、安全性
の高い宇宙航行体同士の接近動作の実現に寄与し得るよ
うに、放電現象の確実な抑制を実現した宇宙航行体の放
電防止装置を提供することを目的とする。
As described above, in the conventional spacecraft, when it approaches another spacecraft, there is a risk that a discharge phenomenon may occur and damage or the like may occur.
The present invention has been made in view of the above circumstances, and a discharge preventive device for a spacecraft that realizes reliable suppression of a discharge phenomenon so as to contribute to the realization of highly safe approaching operations of spacecraft. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】この発明は、第1の宇宙
航行体に設けられるものであって、接近する第2の宇宙
航行体に向けてプラズマを放出し、該第2の宇宙航行体
の表面に帯電している電荷を中和するプラズマ発生手段
と、前記第1及び第2の宇宙航行体が対向する空間電位
を測定する電位検出センサと、この電位検出センサの検
出に基づいて、前記第1及び第2の宇宙航行体の表面間
の電位差を求めて、該電位差に基づいて前記プラズマ発
生手段を駆動制御してプラズマを放出させ、前記第2の
宇宙航行体の表面の電位を前記第1の宇宙航行体の表面
の電位と略同電位に設定する制御手段とを備えて宇宙航
行体の放電防止装置を構成したものである。
The present invention, which is provided in a first spacecraft, discharges plasma toward an approaching second spacecraft, and the second spacecraft is discharged. Plasma generating means for neutralizing the electric charge charged on the surface of the, a potential detection sensor for measuring the space potential facing the first and second spacecraft, based on the detection of the potential detection sensor, The potential difference between the surfaces of the first and the second spacecraft is obtained, and the plasma generation means is driven and controlled based on the potential difference to emit plasma, and the potential of the surface of the second spacecraft is changed. A discharge preventing device for a spacecraft is provided with a control means for setting the potential of the surface of the first spacecraft to be substantially the same as the potential of the surface.

【0010】[0010]

【作用】上記構成によれば、プラズマ発生手段は、プラ
ズマを第2の宇宙航行体に向けて放出することにより、
該第2の宇宙航行体の表面の電荷を中和させ、第1の宇
宙航行体の表面の電位と略同電位に設定する。これによ
り、第1及び第2の宇宙航行体は、互いに接近しても放
電現象の発生がなくなる。
According to the above construction, the plasma generating means emits plasma toward the second spacecraft,
The electric charge on the surface of the second spacecraft is neutralized and set to approximately the same potential as the potential of the surface of the first spacecraft. As a result, the first and second spacecraft do not generate a discharge phenomenon even if they approach each other.

【0011】[0011]

【実施例】以下、この発明の実施例について、図面を参
照して詳細に説明する。図1は、この発明の一実施例に
係る宇宙航行体の放電防止装置を示すもので、軌道上作
業機等の第1の宇宙航行体10には、プラズマ発生手段
としてイオンエンジン11が搭載される。このイオンエ
ンジン11は、加速電圧が数十Vボルト程度で、その信
号入力端には、電源回路12に接続される。電源回路1
2は、その信号入力端に制御エレクトロニクス部13が
接続され、この制御エレクトロニクス部13には、例え
ばラングミュアプローブ等で代表される電位検出センサ
14の出力端が接続される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a discharge preventive apparatus for a spacecraft according to an embodiment of the present invention, in which a first spacecraft 10, such as an on-orbit working vehicle, is equipped with an ion engine 11 as a plasma generating means. It The ion engine 11 has an accelerating voltage of about several tens of volts, and its signal input terminal is connected to the power supply circuit 12. Power supply circuit 1
2, the control electronics section 13 is connected to the signal input terminal thereof, and the control electronics section 13 is connected to the output terminal of a potential detection sensor 14 represented by, for example, a Langmuir probe.

【0012】電位検出センサ14は、一方の検出端が第
1の宇宙航行体10の接近側表面に設けられ、他方の検
出端が接近側表面から宇宙空間に突出されて設けられて
おり、各検出端からの検出信号を制御エレクトロニクス
部13に出力する。制御エレクトロニクス部13は、入
力した検出信号に基づいて宇宙空間と第1の宇宙航行体
10の表面との電位差を求め、この電位差に基づいてエ
ンジン駆動信号を生成して、電源回路12に出力する。
電源回路12は、入力したエンジン駆動信号に基づいて
イオンエンジン11を駆動制御する。ここで、イオンエ
ンジン11は、エンジン駆動信号に基づいて陽極と陰極
に高電圧が印加されて、ヘリウム等の不活性ガスを電離
させてプラズマを発生させて宇宙空間に向けて放出する
が、第1の宇宙航行体に対してほとんど推力を与えるこ
とがなく、姿勢に対する外乱とならない。
The potential detection sensor 14 has one detection end provided on the approach side surface of the first spacecraft 10, and the other detection end provided on the approach side surface so as to project into the outer space. The detection signal from the detection end is output to the control electronics section 13. The control electronics section 13 obtains a potential difference between the outer space and the surface of the first spacecraft 10 based on the input detection signal, generates an engine drive signal based on this potential difference, and outputs it to the power supply circuit 12. .
The power supply circuit 12 drives and controls the ion engine 11 based on the input engine drive signal. Here, in the ion engine 11, a high voltage is applied to the anode and the cathode based on the engine drive signal to ionize an inert gas such as helium to generate plasma, which is emitted toward outer space. It gives almost no thrust to the spacecraft 1 and does not cause any disturbance to the attitude.

【0013】上記電源回路12及び制御エレクトロニク
ス部13は、それぞれバス電源に接続され、このバス電
源を介して図示しない中央演算装置からの指令信号によ
り動作制御される。
The power supply circuit 12 and the control electronics section 13 are each connected to a bus power supply, and their operations are controlled by a command signal from a central processing unit (not shown) via the bus power supply.

【0014】上記構成において、第1の宇宙航行体10
が、例えば第2の宇宙航行体へ15のサービス、あるい
はランデブー・ドッキングを実行するために、該第2の
宇宙航行体15に接近すると、電位検出センサ14は、
宇宙空間の電位及び第1の宇宙航行体10の表面及びそ
の近傍の電位を検出し、その検出信号が制御エレクトロ
ニクス部13に出力する。制御エレクトロニクス部13
は、入力した検出信号より第2の宇宙航行体15の表面
の電位と第1の宇宙航行体10の表面の電位との電位差
を求めて、この電位差が予め設定した一定値(例えば5
00V)以上あると判定すると、この電位差に応じたエ
ンジン駆動信号を生成し、電源回路12に出力する。電
源回路12は、エンジン駆動信号に応動してイオンエン
ジン11を駆動制御して、プラズマを第2の宇宙航行体
15に向けて放出させる。これにより、第2の宇宙航行
体15は、その表面の電荷がプラズマにより中和され、
第1の宇宙航行体10の表面と略同電位に可変される。
この状態において、第1の宇宙航行体10は、さらに第
2の宇宙航行体15に対して、所望サービスあるいはラ
ンデブー・ドッキングが実行可能な位置まで接近され
る。
In the above structure, the first spacecraft 10
Approaches the second spacecraft 15, for example to service the second spacecraft 15 or to perform rendezvous docking, the potential sensing sensor 14
The electric potential of outer space and the electric potential of the surface of the first spacecraft 10 and its vicinity are detected, and the detection signal is output to the control electronics unit 13. Control electronics section 13
Is a potential difference between the surface potential of the second spacecraft 15 and the surface potential of the first spacecraft 10 from the input detection signal, and this potential difference is a preset constant value (for example, 5
00 V) or more, an engine drive signal corresponding to this potential difference is generated and output to the power supply circuit 12. The power supply circuit 12 drives and controls the ion engine 11 in response to the engine drive signal, and discharges plasma toward the second spacecraft 15. As a result, the electric charges on the surface of the second spacecraft 15 are neutralized by the plasma,
The potential is varied to be substantially the same as the surface of the first spacecraft 10.
In this state, the first spacecraft 10 further approaches the second spacecraft 15 to a position where desired service or rendezvous docking can be performed.

【0015】なお、制御エレクトロニクス部13は、第
1及び第2の宇宙航行体10,15のいずれが負の電位
に帯電しているかに応じて、イオンエンジン11を適宜
に駆動制御し、第1及び第2の宇宙航行体10,15の
相互の表面の電位を略同電位に設定する。
The control electronics section 13 appropriately drives and controls the ion engine 11 depending on which of the first and second spacecraft 10, 15 is charged to a negative potential, And the electric potentials of the surfaces of the second spacecraft 10, 15 are set to substantially the same electric potential.

【0016】このように、上記宇宙航行体の放電防止装
置は、第1の宇宙航行体10にプラズマ発生用のイオン
エンジン11を設け、このイオンエンジン11を接近す
る第2の宇宙航行体15との空間の電位差に応じて駆動
制御して、プラズマを第2の宇宙航行体15に向けて放
出することにより、該第2の宇宙航行体15の表面の電
荷を中和させ、第1の宇宙航行体10の表面の電位と略
同電位に設定するように構成した。
As described above, in the discharge preventive device for the spacecraft, the first spacecraft 10 is provided with the ion engine 11 for plasma generation, and the ion engine 11 is approached to the second spacecraft 15 approaching. Driving control is performed according to the potential difference in the space, and plasma is emitted toward the second spacecraft 15, thereby neutralizing the charge on the surface of the second spacecraft 15 and It is configured so as to be set to substantially the same potential as the surface potential of the navigation body 10.

【0017】これによれば、第1及び第2の宇宙航行体
10,15は、サービスしたり、あるいはランデブー・
ドッキングを行うために接近すると、相互の表面が自動
的に略同電位に設定されることにより、帯電による放電
現象が確実に防止される。この結果、放電現象による損
傷や、電磁ノイズの発生防止が図れて、安全性の高い接
近動作が実現される。
According to this, the first and second spacecraft 10, 15 are in service or rendezvous.
When approaching for docking, the mutual surfaces are automatically set to substantially the same potential, so that the discharge phenomenon due to charging is reliably prevented. As a result, damage due to the discharge phenomenon and generation of electromagnetic noise can be prevented, and a highly safe approaching operation is realized.

【0018】なお、上記実施例では、プラズマ発生手段
として、イオンエンジン11を用いて構成した場合で説
明したが、これに限ることなく、各種の構成が可能であ
る。この場合、作動流体としては、宇宙航行体表面を汚
染することなく、しかも、宇宙航行体の姿勢に対する外
乱を極力押さえることができるように、質量の軽いガス
が望ましい。よって、この発明は、上記実施例に限るこ
となく、その他、この発明の要旨を逸脱しない範囲で種
々の変形を実施し得ることは勿論のことである。
In the above embodiment, the case where the plasma generating means is configured by using the ion engine 11 has been described, but the plasma generating means is not limited to this and various configurations are possible. In this case, the working fluid is preferably a gas having a light mass so that the surface of the spacecraft is not contaminated and the disturbance to the attitude of the spacecraft can be suppressed as much as possible. Therefore, it is needless to say that the present invention is not limited to the above-described embodiment, and that various modifications can be made without departing from the scope of the present invention.

【0019】[0019]

【発明の効果】以上詳述したように、この発明によれ
ば、安全性の高い宇宙航行体同士の接近動作の実現に寄
与し得るように、放電現象の確実な防止を実現した宇宙
航行体の放電防止装置を提供することができる。
As described in detail above, according to the present invention, a spacecraft that reliably prevents the discharge phenomenon so as to contribute to the realization of highly safe approaching operations of the spacecraft. It is possible to provide the discharge prevention device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る宇宙航行体の放電防
止装置を示した図。
FIG. 1 is a diagram showing a discharge preventive device for a spacecraft according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…第1の宇宙航行体。 11…イオンエンジン。 12…電源回路。 13…制御エレクトロニクス部。 14…電位検出センサ。 15…第2の宇宙航行体。 10 ... The first spacecraft. 11 ... Ion engine. 12 ... Power supply circuit. 13 ... Control electronics department. 14 ... Potential detection sensor. 15 ... The second spacecraft.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の宇宙航行体に設けられるものであ
って、接近する第2の宇宙航行体に向けてプラズマを放
出し、該第2の宇宙航行体の表面に帯電している電荷を
中和するプラズマ発生手段と、 前記第1及び第2の宇宙航行体が対向する空間電位を測
定する電位検出センサと、 この電位検出センサの検出に基づいて、前記第1及び第
2の宇宙航行体の表面間の電位差を求めて、該電位差に
基づいて前記プラズマ発生手段を駆動制御してプラズマ
を放出させ、前記第2の宇宙航行体の表面の電位を前記
第1の宇宙航行体の表面の電位と略同電位に設定する制
御手段とを具備した宇宙航行体の放電防止装置。
1. A charge provided on a first spacecraft, which discharges plasma toward an approaching second spacecraft and charges the surface of the second spacecraft. Plasma generating means for neutralizing the space, a potential detecting sensor for measuring a space potential facing the first and second spacecraft, and the first and second space based on the detection by the potential detecting sensor. The potential difference between the surfaces of the navigation body is obtained, and the plasma generation means is driven and controlled based on the potential difference to emit plasma, and the potential of the surface of the second spacecraft is adjusted to that of the first spacecraft. A discharge preventive device for a spacecraft, comprising: a control means for setting the surface potential to be substantially the same as the potential.
【請求項2】 前記プラズマ発生手段は、イオンエンジ
ンで構成されたことを特徴とする請求項1記載の宇宙航
行体の放電防止装置。
2. The discharge preventive apparatus for a spacecraft according to claim 1, wherein the plasma generating means is composed of an ion engine.
JP6266915A 1994-10-31 1994-10-31 Discharge preventive apparatus for aerospace vehicle Pending JPH08130097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6266915A JPH08130097A (en) 1994-10-31 1994-10-31 Discharge preventive apparatus for aerospace vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6266915A JPH08130097A (en) 1994-10-31 1994-10-31 Discharge preventive apparatus for aerospace vehicle

Publications (1)

Publication Number Publication Date
JPH08130097A true JPH08130097A (en) 1996-05-21

Family

ID=17437445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6266915A Pending JPH08130097A (en) 1994-10-31 1994-10-31 Discharge preventive apparatus for aerospace vehicle

Country Status (1)

Country Link
JP (1) JPH08130097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222578A (en) * 2012-04-16 2013-10-28 Mitsubishi Electric Corp Power supply device
US20180297722A1 (en) * 2017-04-13 2018-10-18 Orbital Atk, Inc. Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222578A (en) * 2012-04-16 2013-10-28 Mitsubishi Electric Corp Power supply device
US20180297722A1 (en) * 2017-04-13 2018-10-18 Orbital Atk, Inc. Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft
WO2018190943A1 (en) * 2017-04-13 2018-10-18 Orbital Atk, Inc. Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft and related methods
CN110891863A (en) * 2017-04-13 2020-03-17 诺思路·格鲁曼创新系统公司 Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft and related methods
JP2020516524A (en) * 2017-04-13 2020-06-11 ノースロップ・グラマン・イノベーション・システムズ・インコーポレーテッド Electrostatic discharge mitigation and related methods for a first spacecraft operating in proximity to a second spacecraft
US10850871B2 (en) 2017-04-13 2020-12-01 Northrop Grumman Innovation Systems, Inc. Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft
JP2022028902A (en) * 2017-04-13 2022-02-16 ノースロップ グラマン システムズ コーポレーション Electrostatic discharge mitigation for first spacecraft operating in proximity to second spacecraft, and related method
US11434026B2 (en) 2017-04-13 2022-09-06 Northrop Grumman Systems Corporation Systems, assemblies, and methods for system for mitigating electrostatic discharge between space vehicles
CN110891863B (en) * 2017-04-13 2023-11-28 诺思路·格鲁曼系统公司 Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft and related methods
EP4342803A3 (en) * 2017-04-13 2024-05-01 Northrop Grumman Systems Corporation Electrostatic discharge mitigation for a first spacecraft operating in proximity to a second spacecraft and related methods

Similar Documents

Publication Publication Date Title
US5947421A (en) Electrostatic propulsion systems and methods
US8210480B2 (en) Hybrid electrostatic space tug
US8205838B2 (en) Electrostatic spacecraft reorbiter
EP2411284B1 (en) Spacecraft shield
WO1989005404A1 (en) Electrostatic ion thruster with improved thrust modulation
US6362574B1 (en) System for emitting electrical charge from a space object in a space plasma environment using micro-fabricated gated charge emission devices
Kuninaka et al. Assessment of plasma interactions and flight status of the HAYABUSA asteroid explorer propelled by microwave discharge ion engines
US3177654A (en) Electric aerospace propulsion system
US3984730A (en) Method and apparatus for neutralizing potentials induced on spacecraft surfaces
CN109319172B (en) Method for controlling on-orbit surface charging effect of spacecraft
JPH08130097A (en) Discharge preventive apparatus for aerospace vehicle
Banks et al. Results from the vehicle charging and potential experiment on STS-3
US11136147B2 (en) Oriented wire electrostatic radiation protection system and method for spacecraft
US7934685B1 (en) Methods to actively protect spacecraft from damage due to collision with ions
US6459206B1 (en) System and method for adjusting the orbit of an orbiting space object using an electrodynamic tether and micro-fabricated field emission device
US9119277B2 (en) Passive charge neutralization system for mitigating electrostatic discharge in space
Toki et al. Electric propulsion experiment (EPEX) of a repetitively pulsed MPD thruster system onboard Space Flyer Unit (SFU)
Wallace et al. The design and performance of the T6 ion thruster
Fehringer et al. Micronewton Indium ion thrusters
RU2020776C1 (en) Method of spacecraft electrization control and device for its accomplishment
Kuriki The MPD thruster test on the space shuttle
Katz et al. Interactions between the space experiments with particle plasma contactor and the ionosphere
Neubert et al. Observations of plasma wave turbulence generated around large ionospheric spacecraft: Effects of motionally induced EMF and of electron beam emission
Walker et al. Active Charge Control Using an Electron Beam and Ultraviolet Light Source
Krause et al. Survey of DSCS-III B-7 differential surface charging