JPH08129712A - Magnetic head and its production - Google Patents

Magnetic head and its production

Info

Publication number
JPH08129712A
JPH08129712A JP26870794A JP26870794A JPH08129712A JP H08129712 A JPH08129712 A JP H08129712A JP 26870794 A JP26870794 A JP 26870794A JP 26870794 A JP26870794 A JP 26870794A JP H08129712 A JPH08129712 A JP H08129712A
Authority
JP
Japan
Prior art keywords
thin film
magnetic head
chromium
chromium oxide
oxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26870794A
Other languages
Japanese (ja)
Inventor
Hiroshi Riyounai
領内  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26870794A priority Critical patent/JPH08129712A/en
Publication of JPH08129712A publication Critical patent/JPH08129712A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve wear resistance while maintaining film thickness not to degrade electromagnetic conversion characteristics. CONSTITUTION: This magnetic head has a chromium oxide thin film 4 and a metal chromium thin film layer 3 between the intersurface of the magnetic head and the chromium oxide thin film 4. The chromium oxide thin film 4 contains chromium and oxygen by 2:3 atomic ratio, shows a diffraction peak observed between 1.43Å and 1.67Å space of diffraction plane in X-ray diffraction spectroscopy, and has >=1500kgf/mm<2> Knoop hardness. The total film thickness of the chromium oxide thin film 4 and metal chromium thin film layer 3 is 10 to 100nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オ−ディオテ−プレコ
−ダ、ビデオテ−プレコ−ダ、デジタルオ−ディオテ−
プレコ−ダ、さらにハ−ドディスクドライブ、フロッピ
ーディスク、磁気カ−ド等の磁気記録再生装置における
磁気ヘッドとその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an audio pre-coder, a video pre-coder and a digital audio recorder.
The present invention relates to a magnetic head in a magnetic recording / reproducing apparatus such as a hard disk drive, a floppy disk, a magnetic card and the like, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】磁気ヘッドは、その摺動面に磁気テ−
プ、磁気ディスク等の磁気記録媒体を摺動させた状態
で、記録、再生及び消去を行うため、摺動面の摩耗を避
けることが困難であり、この摩耗が磁気ヘッドの劣化の
原因となっている。
2. Description of the Related Art A magnetic head has a magnetic tape on its sliding surface.
It is difficult to avoid abrasion of the sliding surface because recording, reproduction and erasing are performed with the magnetic recording medium such as a magnetic disk and a magnetic disk sliding, and this abrasion causes deterioration of the magnetic head. ing.

【0003】この問題を解決するために様々な考案が提
示されている。例えば、磁気ヘッドの摺動面にホウ素賦
与材を塗布し、アニ−リング処理を行ってホウ素拡散層
を形成することによって摺動面を硬化させ耐摩耗性を向
上させる方法がある。(特公昭56−1682号公報)
また、金属硬化原子をイオン注入によって摺動面に注入
硬化させ、耐摩耗性を向上させる方法も提案されてい
る。(特公昭55ー12652号公報)さらに、磁気ヘ
ッド摺動面に硬度の高い薄膜をコ−ティングすることに
よって耐摩耗性を向上させる等の提案がされている。
Various devices have been proposed to solve this problem. For example, there is a method of applying a boron-imparting material to the sliding surface of the magnetic head and performing annealing to form a boron diffusion layer, thereby hardening the sliding surface to improve wear resistance. (Japanese Patent Publication No. 56-1682)
In addition, a method has also been proposed in which hardened metal atoms are injected and hardened into the sliding surface by ion implantation to improve wear resistance. (Japanese Patent Publication No. 55-12652) Further, it has been proposed to improve wear resistance by coating a thin film having high hardness on the sliding surface of the magnetic head.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の方法において、ホウ素の熱拡散やホウ素のイオン注入
による方法は、厳密な温度、冷却速度等の制御が要求さ
れるため生産コストが高価になると同時に十分な耐摩耗
性が得られておらず、さらに高い処理温度やイオンの衝
撃のために磁気ヘッド内部に悪影響を及ぼすという問題
がある。
However, in these methods, the method by thermal diffusion of boron or ion implantation of boron requires strict control of temperature, cooling rate, etc., and therefore the production cost is high and at the same time. There is a problem that sufficient abrasion resistance is not obtained, and the inside of the magnetic head is adversely affected due to higher processing temperature and impact of ions.

【0005】本発明は、上記問題点に鑑み、電磁変換特
性を悪化させずに耐摩耗性を向上させた磁気ヘッドとそ
の製造方法を提供するものである。
In view of the above problems, the present invention provides a magnetic head having improved wear resistance without deteriorating electromagnetic conversion characteristics and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上述する従来の問題点を
解決するため、本発明に係わる磁気ヘッドは、ヘッド摺
動面に酸化クロム薄膜からなる保護膜を形成することを
特徴とする。
In order to solve the above-mentioned conventional problems, the magnetic head according to the present invention is characterized in that a protective film made of a chromium oxide thin film is formed on the head sliding surface.

【0007】[0007]

【作用】磁気ヘッド摺動面に金属クロム薄膜層を介して
酸化クロム薄膜を、酸化クロム薄膜とクロム薄膜層との
膜厚の合計が10〜100nmの範囲で形成することに
より、ヘッドと媒体間のスペ−シングの影響のない膜厚
で極めて優れた耐摩耗性を有する磁気ヘッドを提供でき
る。
By forming a chromium oxide thin film on the sliding surface of the magnetic head through the metal chromium thin film layer so that the total thickness of the chromium oxide thin film and the chromium thin film layer is in the range of 10 to 100 nm, the gap between the head and the medium is reduced. It is possible to provide a magnetic head having a film thickness which is not affected by the spacing and which has extremely excellent wear resistance.

【0008】酸化クロム層としては、特に以下の条件で
優れた耐摩耗性を示す。即ち、クロムと酸素の原子比が
ほぼ2:3であること、X線回折分析において回折面間
隔が1.43Åと1.67Åの間にあること、酸化クロ
ム薄膜のヌープ硬度が1500kgf/mm2以上あること、
がその条件である。
The chromium oxide layer exhibits excellent wear resistance especially under the following conditions. That is, the atomic ratio of chromium to oxygen is approximately 2: 3, the diffraction plane distance is between 1.43Å and 1.67Å in X-ray diffraction analysis, and the Knoop hardness of the chromium oxide thin film is 1500 kgf / mm 2 More than that,
Is the condition.

【0009】[0009]

【実施例】以下、具体例について詳細に述べる。(図
1)は本発明の磁気ヘッドの断面図を示す。(図1)に
おいて、1は基板、2はカバー、3は金属クロム薄膜、
4は酸化クロム薄膜である。この酸化クロム薄膜の作製
には、反応性高周波スパッタ法を用いた。タ−ゲットは
直径3インチのクロムタ−ゲットを用いた。まずアルゴ
ンガス中で高周波放電を行い、金属クロム薄膜を形成
し、さらに放電を中断することなく所定時間後に酸素を
導入し、アルゴンと酸素の混合ガス中で放電させ、金属
クロム薄膜上に連続的に酸化クロム薄膜を形成した。導
入酸素量はスパッタガス中の酸素分圧が5%以上では、
酸化クロム薄膜のクロムと酸素の原子比を変化させない
ことを確認している。基板は水冷、スパッタ電力は20
0W、スパッタ圧力は5mTorr一定とした。また、
酸化膜の硬度、付着力を向上させるために零または負の
直流バイアス電圧を作製時に印加した。酸化クロム薄膜
の構造はX線回折分析によって行い、クロムと酸素の原
子比はオ−ジェ電子分光法によって分析した。
EXAMPLES Specific examples will be described in detail below. FIG. 1 shows a sectional view of the magnetic head of the present invention. In FIG. 1, 1 is a substrate, 2 is a cover, 3 is a metal chrome thin film,
4 is a chromium oxide thin film. A reactive high frequency sputtering method was used for producing the chromium oxide thin film. A chrome target having a diameter of 3 inches was used as the target. First, high frequency discharge is performed in argon gas to form a metal chromium thin film, and oxygen is introduced after a lapse of a predetermined time without interruption of discharge, and discharge is performed in a mixed gas of argon and oxygen to continuously discharge on the metal chromium thin film. A chromium oxide thin film was formed on. When the oxygen partial pressure in the sputtering gas is 5% or more, the amount of introduced oxygen is
It has been confirmed that the atomic ratio of chromium to oxygen in the chromium oxide thin film is not changed. Substrate is water cooled, sputtering power is 20
The sputtering pressure was 0 W and the sputtering pressure was constant at 5 mTorr. Also,
A zero or negative DC bias voltage was applied at the time of fabrication in order to improve the hardness and adhesion of the oxide film. The structure of the chromium oxide thin film was analyzed by X-ray diffraction analysis, and the atomic ratio of chromium and oxygen was analyzed by Auger electron spectroscopy.

【0010】酸化クロム薄膜の硬度は、ヌープ硬度計で
評価した。用いたヌープ硬度計は、明石製作所製マイク
ロハ−ドネステスタ−MVK−1である。
The hardness of the chromium oxide thin film was evaluated with a Knoop hardness meter. The Knoop hardness meter used is Microhardness Tester MVK-1 manufactured by Akashi Seisakusho.

【0011】また、実際の耐摩耗試験には市販のカセッ
トデッキを用い、テープにはBASF社製のクロムスー
パーII(90分)を用いた。テープは100時間走行毎
に新しいテープに交換し、ヘッド表面の摩耗を光学顕微
鏡によって評価した。
A commercially available cassette deck was used for the actual abrasion resistance test, and a chrome super II (90 minutes) manufactured by BASF was used as the tape. The tape was replaced with a new tape every 100 hours running, and the abrasion of the head surface was evaluated by an optical microscope.

【0012】これらの膜は、膜硬度、X線回折分析の場
合はガラス基板に、耐摩耗性評価の場合は磁気ヘッドの
表面に形成した。耐摩耗性評価に用いたヘッドは、基板
及びカバーともにAlTiCを用いたものである。
These films were formed on a glass substrate for film hardness and X-ray diffraction analysis, and on the surface of a magnetic head for wear resistance evaluation. The head used for the abrasion resistance evaluation uses AlTiC for both the substrate and the cover.

【0013】(図2)に、本発明で検討したスパッタ電
力とヌープ硬度の関係を示す。スパッタ電力が50Wの
場合には、十分なヌープ硬度を持った膜が得られない
が、100W以上のスパッタ電力ではほぼ一定値のヌー
プ硬度を示している。
FIG. 2 shows the relationship between the sputtering power and Knoop hardness studied in the present invention. When the sputtering power is 50 W, a film having a sufficient Knoop hardness cannot be obtained, but when the sputtering power is 100 W or more, the Knoop hardness of a substantially constant value is exhibited.

【0014】(図3)には、酸素分圧とヌープ硬度の関
係を示す。酸素量が増すに従ってヌープ硬度が低下して
いることがわかる。
FIG. 3 shows the relationship between oxygen partial pressure and Knoop hardness. It can be seen that the Knoop hardness decreases as the amount of oxygen increases.

【0015】(図4)には、X線回折の回折面間隔とヌ
ープ硬度の関係を示した。回折面間隔が広くなるほどヌ
ープ硬度は大きくなり硬い膜になっていることがわか
る。この関係は、スパッタ電力が100W以上の時に
は、その他の成膜条件が変わった場合でも同一の相関を
示している。
FIG. 4 shows the relationship between the Knoop hardness and the diffractive surface spacing in X-ray diffraction. It can be seen that the Knoop hardness increases as the diffractive surface spacing increases, resulting in a harder film. This relationship shows the same correlation when the sputtering power is 100 W or more, even when other film forming conditions are changed.

【0016】(表1)にこれらの実施例のいくつかの条
件を示す。
Table 1 shows some conditions of these examples.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例1から実施例4はすべて、回折面間
隔が1.43Åから1.67Åの範囲にあり、ヌープ硬
度も1500kgf/mm2以上ある。
In all of Examples 1 to 4, the diffractive surface spacing is in the range of 1.43Å to 1.67Å and the Knoop hardness is 1500 kgf / mm 2 or more.

【0019】次に、比較例のいくつかを(表2)に示
す。
Next, some of the comparative examples are shown in (Table 2).

【0020】[0020]

【表2】 [Table 2]

【0021】比較例1では、成膜の条件は実施例1と全
く同じであるが、ヘッドとの界面層である金属クロム薄
膜を形成後に一旦放電を止め、10%の酸素を導入した
後に再び放電を開始して酸化クロム薄膜を形成したもの
である。
In Comparative Example 1, the film forming conditions were exactly the same as in Example 1, but the discharge was stopped once after forming the metallic chromium thin film as the interface layer with the head, and then 10% oxygen was introduced again. The discharge is started to form a chromium oxide thin film.

【0022】実施例及び比較例の耐摩耗性の評価結果を
(表3)に示した。
The results of evaluation of wear resistance of Examples and Comparative Examples are shown in (Table 3).

【0023】[0023]

【表3】 [Table 3]

【0024】実施例1と比較例1では、ヘッド表面にク
ロム薄膜を成膜した後に放電を止めるか止めないかの差
以外は全く同様である。このことから、クロム薄膜から
酸化クロム薄膜への移行の際の放電の停止は耐摩耗性に
大きな欠陥を与えることがわかる。
Example 1 and Comparative Example 1 are exactly the same except that the discharge is stopped or not stopped after the chromium thin film is formed on the head surface. From this, it can be seen that stopping the discharge during the transition from the chromium thin film to the chromium oxide thin film causes a large defect in the wear resistance.

【0025】比較例2、実施例1および実施例4の比較
から、膜厚が10nmより薄くなると極端に耐摩耗性が
低下していることがわかる。
From the comparison between Comparative Example 2, Example 1 and Example 4, it can be seen that the wear resistance is extremely lowered when the film thickness is thinner than 10 nm.

【0026】比較例3は成膜条件によって、酸化クロム
のヌープ硬度がきわめて小さくなっている。この場合、
回折面も見られず、非晶質的な膜になっているようであ
る。
In Comparative Example 3, the Knoop hardness of chromium oxide was extremely small depending on the film forming conditions. in this case,
No diffractive surface is seen, and it seems to be an amorphous film.

【0027】比較例4でも、回折面は観察されているも
のの、酸化クロム薄膜のヌープ硬度は十分ではなく、耐
摩耗性も得られていない。このように、回折面が現れて
はいるが、硬度が十分ではない膜ではX線回折強度も弱
く、非晶質的な膜の中に少しの結晶質的な要素が入った
ものであろうと推察する。
In Comparative Example 4, although the diffractive surface was observed, the Knoop hardness of the chromium oxide thin film was not sufficient and the abrasion resistance was not obtained. Thus, although a diffractive surface appears, a film whose hardness is not sufficient has a weak X-ray diffraction intensity, and it may be that a crystalline element is contained in an amorphous film. Guess.

【0028】回折面間隔は、すべて1.43Åと1.6
7Åの間にある。この回折面がどの結晶面に当たるかは
十分分析できていないが、(300)面(面間隔1.431
Å)か(214)面(面間隔1.465Å)のどちらかが内
部応力によりシフトしたものか、あるいは両方の回折ピ
ークが重なったものであろうと考えている。
The diffractive surface intervals are all 1.43Å and 1.6.
It is between 7Å. We have not fully analyzed which crystal plane this diffraction plane hits, but the (300) plane (plane spacing 1.431)
We believe that either the (Å) plane or the (214) plane (plane spacing 1.465Å) is shifted by internal stress, or both diffraction peaks are overlapped.

【0029】また、耐摩耗膜の上限については耐摩耗的
には数μmでも十分な耐摩耗性は得られるが、ヘッドの
再生出力のスペーシングロスを考えると100nm以下
が望ましい。
With respect to the upper limit of the abrasion resistant film, sufficient abrasion resistance can be obtained even if the abrasion resistance is several μm. However, considering the spacing loss of the reproducing output of the head, it is desirable that it be 100 nm or less.

【0030】[0030]

【発明の効果】以上のように、本発明はヘッド摺動面に
酸化クロム薄膜を形成し、その酸化クロム薄膜のクロム
と酸素の原子比が約2:3であること、X線回折におい
て回折面間隔が1.43Åと1.67Åの間にあるこ
と、酸化クロム薄膜のヌープ硬度が1500kgf/mm2
上あること、酸化クロム薄膜とヘッド表面の界面には金
属クロム薄膜が存在すること、酸化クロム薄膜とクロム
薄膜層との膜厚の合計が10〜100nmの範囲である
ことの条件を満足した酸化クロム薄膜を磁気ヘッド摺動
面にコ−ティングすることによって、ヘッドと媒体間の
スペ−シングの影響のない膜厚で極めて優れた耐摩耗性
を有する磁気ヘッドを提供できる。
As described above, according to the present invention, the chromium oxide thin film is formed on the head sliding surface, and the atomic ratio of chromium to oxygen in the chromium oxide thin film is about 2: 3. The surface spacing is between 1.43Å and 1.67Å, the Knoop hardness of the chromium oxide thin film is 1500 kgf / mm 2 or more, and the metallic chromium thin film exists at the interface between the chromium oxide thin film and the head surface. A chromium oxide thin film satisfying the condition that the total thickness of the chromium thin film and the chromium thin film layer is in the range of 10 to 100 nm is coated on the sliding surface of the magnetic head to provide a space between the head and the medium. It is possible to provide a magnetic head having a film thickness that is not affected by singing and having extremely excellent wear resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気ヘッドの断面図FIG. 1 is a sectional view of a magnetic head of the present invention.

【図2】本発明で検討したスパッタ電力とヌープ硬度の
関係を示す図
FIG. 2 is a diagram showing the relationship between sputtering power and Knoop hardness studied in the present invention.

【図3】本発明で検討した酸素分圧とヌープ硬度の関係
を示す図
FIG. 3 is a diagram showing the relationship between oxygen partial pressure and Knoop hardness studied in the present invention.

【図4】本発明で検討したX線回折の回折面間隔とヌー
プ硬度の関係を示す図
FIG. 4 is a diagram showing the relationship between the Knoop hardness and the diffraction plane spacing of X-ray diffraction studied in the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 カバー 3 金属クロム薄膜 4 酸化クロム薄膜 1 substrate 2 cover 3 metal chrome thin film 4 chrome oxide thin film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】磁気記録媒体との摺動面に酸化クロム薄膜
が形成されていることを特徴とする磁気ヘッド。
1. A magnetic head comprising a chromium oxide thin film formed on a sliding surface with respect to a magnetic recording medium.
【請求項2】磁気ヘッド表面と酸化クロム薄膜との界面
に金属クロム薄膜層を有しており、酸化クロム薄膜と金
属クロム薄膜層との膜厚の合計が10〜100nmの範
囲にあることを特徴とする請求項1記載の磁気ヘッド。
2. A metal chromium thin film layer is provided at the interface between the magnetic head surface and the chromium oxide thin film, and the total thickness of the chromium oxide thin film and the metal chromium thin film layer is in the range of 10 to 100 nm. The magnetic head according to claim 1, wherein the magnetic head is a magnetic head.
【請求項3】酸化クロム薄膜がクロムと酸素原子の比が
原子比でほぼ2:3であり、X線回折分析において回折
面間隔が1.43Åと1.67Åの間で回折ピークが観
測され、さらにヌ−プ硬度が1500kgf/mm2以上であ
ることを特徴とする請求項1または2記載の磁気ヘッ
ド。
3. The chromium oxide thin film has a ratio of chromium to oxygen atoms of approximately 2: 3 in atomic ratio, and a diffraction peak is observed in X-ray diffraction analysis between diffraction plane intervals of 1.43Å and 1.67Å. The magnetic head according to claim 1 or 2, wherein the Knoop hardness is 1500 kgf / mm 2 or more.
【請求項4】磁気ヘッド表面に金属クロム薄膜層と酸化
クロム薄膜とを有した磁気ヘッドの製造方法であって、
酸化クロム薄膜および金属クロム薄膜層の形成時に磁気
記録媒体との摺動面に零ボルト以下の負のバイアス電圧
を印加し、金属クロム薄膜層を成膜時にプロセスを中断
することなく酸素を導入し、金属クロム薄膜上に連続的
に酸化クロム薄膜を形成してなる磁気ヘッドの製造方
法。
4. A method of manufacturing a magnetic head having a metal chromium thin film layer and a chromium oxide thin film on the surface of the magnetic head,
When forming the chromium oxide thin film and the metal chromium thin film layer, a negative bias voltage of zero volt or less is applied to the sliding surface with the magnetic recording medium, and oxygen is introduced without interrupting the process when forming the metal chromium thin film layer. A method for manufacturing a magnetic head, which comprises continuously forming a chromium oxide thin film on a metal chromium thin film.
JP26870794A 1994-11-01 1994-11-01 Magnetic head and its production Pending JPH08129712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26870794A JPH08129712A (en) 1994-11-01 1994-11-01 Magnetic head and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26870794A JPH08129712A (en) 1994-11-01 1994-11-01 Magnetic head and its production

Publications (1)

Publication Number Publication Date
JPH08129712A true JPH08129712A (en) 1996-05-21

Family

ID=17462259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26870794A Pending JPH08129712A (en) 1994-11-01 1994-11-01 Magnetic head and its production

Country Status (1)

Country Link
JP (1) JPH08129712A (en)

Similar Documents

Publication Publication Date Title
US4833031A (en) Magnetic recording medium
JP2834392B2 (en) Metal thin film type magnetic recording medium and method of manufacturing the same
US5864452A (en) Thin-film magnetic head and method of forming carbon film
US5636092A (en) Magnetic head having chromium nitride protective film for use in magnetic recording and/or reproducing apparatus and method of manufacturing the same
US5475552A (en) Magnetic head having a chromium nitride protective film for use in a magnetic recording and/or reproducing apparatus and a method of manufacturing the same
US5679454A (en) Magnetic recording medium
JP2006302358A (en) Aluminum alloy substrate for magnetic recording medium and magnetic recording medium
JPH08129712A (en) Magnetic head and its production
EP0298840B1 (en) Magnetic recording medium and manufacturing method thereof
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JPH0652511A (en) Magnetic head and its manufacture
JPH03259419A (en) Maufacture of magnetic disk substrate comprising titanium
JPH06150239A (en) Production of magnetic head and chromium nitride film
US5475551A (en) Magnetic head
JPH07169016A (en) Magnetic head and its manufacture
US5883769A (en) Aluminum head drum with a protective layer which smoothly and continuously varies in hardness for use in a videocassette recorder
JP2623849B2 (en) Manufacturing method of magnetic recording medium
JP2607288B2 (en) Magnetic recording medium and method of manufacturing the same
JP3851673B2 (en) Metal thin film type magnetic recording medium and manufacturing method thereof
JP2513688B2 (en) Magnetic recording media
JP2655587B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPS61107512A (en) Thin film magnetic head
JPH0793720A (en) Magnetic head
JPH07210817A (en) Production of protective film for magnetic head
JPH07169010A (en) Magnetic head using soft magnetic thin film