JPH081294U - Ampoule tube for measuring gas generation - Google Patents

Ampoule tube for measuring gas generation

Info

Publication number
JPH081294U
JPH081294U JP6092191U JP6092191U JPH081294U JP H081294 U JPH081294 U JP H081294U JP 6092191 U JP6092191 U JP 6092191U JP 6092191 U JP6092191 U JP 6092191U JP H081294 U JPH081294 U JP H081294U
Authority
JP
Japan
Prior art keywords
tube
ampoule
gas generation
ampoule tube
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6092191U
Other languages
Japanese (ja)
Other versions
JP2530801Y2 (en
Inventor
純男 山田
勤 仲川
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP6092191U priority Critical patent/JP2530801Y2/en
Publication of JPH081294U publication Critical patent/JPH081294U/en
Application granted granted Critical
Publication of JP2530801Y2 publication Critical patent/JP2530801Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

(57)【要約】 【目的】 有機材料や高分子材料の耐放射線性を迅速に
測定するために、材料にγ線を照射したとき発生する分
解ガスを簡便に測定することに使用する、γ線照射用ア
ンプル管を提供する。 【構成】 小型の水銀マノメーター(1)を枝管(2)
に設けて、開放端(3)に封管用の絞り部分(4)を備
えたアンプル管(5)と一体化したことを特徴とする気
体発生量測定用のアンプル管。
(57) [Abstract] [Purpose] To measure radiation resistance of organic materials and polymer materials rapidly, it is used to easily measure decomposed gas generated when the material is irradiated with γ-ray. An ampoule tube for irradiation is provided. [Composition] Small mercury manometer (1) with branch pipe (2)
An ampoule tube for measuring gas generation, characterized in that it is integrated with an ampoule tube (5) provided at the open end (3) with a constricted portion (4) for a sealed tube.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は有機材料や高分子材料の耐放射線性、あるいは放射線感受性を迅速に 測定するために、有機材料や高分子材料にγ線を照射したときの分解ガス発生量 を簡便に測定するために使用する、γ線照射用アンプル管に関するものである。 The present invention is intended to measure the amount of decomposed gas generated when an organic material or a polymer material is irradiated with γ-rays in order to quickly measure the radiation resistance or radiation sensitivity of the organic material or the polymer material. The present invention relates to an ampoule tube for γ-ray irradiation used.

【0002】[0002]

【従来の技術及びその問題点】[Prior art and its problems]

耐放射線性に関しては、材料の劣化や物性変化を指標として、いろいろな現象 や性質が測定されているが、このなかで最も鋭敏な測定量として分解ガスの発生 量がある。有機材料や高分子材料は、放射線に暴露されることによって、分子が 励起され、あるいは解裂が起こったり、電子が飛ばされてラジカルやイオンが発 生し、何らかの分解反応が進行する。このとき多くは低分子量物質を生成し、こ れらが気体発生量として検知される。したがって、本考案の気体発生量測定用の アンプル管は、γ線照射のときの分解ガスの発生量だけでなく、α線、β線、紫 外線、電磁波、熱、磁界等によって有機材料や高分子材料に微少な分解反応が起 こってガスが発生した場合にも、応用が可能である。 Regarding radiation resistance, various phenomena and properties have been measured by using the deterioration of materials and changes in physical properties as an index. Among these, the most sensitive measured amount is the amount of decomposed gas generated. When an organic material or a polymer material is exposed to radiation, molecules are excited or cleaved, or electrons are ejected to generate radicals or ions, which causes some decomposition reaction to proceed. At this time, many produce low molecular weight substances, which are detected as the amount of gas generated. Therefore, the ampoule tube for measuring the gas generation amount of the present invention is not limited to the generation amount of the decomposed gas at the time of γ-ray irradiation, but it is not limited to the organic materials and high-grade materials such as α-rays, β-rays, ultraviolet rays, electromagnetic waves, heat, and magnetic fields. It can be applied even when a minute decomposition reaction occurs in the molecular material to generate gas.

【0003】 最近原子力エネルギーの一層の活用に伴い、原子炉はもとより、核燃料の再処 理、放射性廃棄物の処理施設、放射線利用の施設などが、今後ますます増設され ることになる。これらの施設の安全性を確保し、保守管理を円滑に進めるために は、使用される有機材料や高分子材料は耐放射線性を含めた高い信頼性が求めら れる。With the recent further use of nuclear energy, not only nuclear reactors, but also nuclear fuel reprocessing, radioactive waste treatment facilities, radiation utilization facilities, etc. will be expanded in the future. In order to ensure the safety of these facilities and facilitate maintenance and management, the organic materials and polymer materials used must have high reliability including radiation resistance.

【0004】 ここにあげた放射線利用の施設、設備では電気機器やケーブルの絶縁材料、ガ スケット、オーリング、スペーサーなどの構造材料、イオン交換樹脂、フィルタ ー、潤滑油、塗料などに各種の有機材料や高分子材料が使用されている。このよ うに、原子力施設の放射線環境下で使用される有機材料や高分子材料は今後ます ます増大していくものと予想される。しかもこれらの有機材料や高分子材料に要 求される使用環境条件がさらに厳しくなると予想されるので、それらの要求に応 えることのできる耐放射線性を有する材料の開発が一段と必要とされる。In the facilities and equipment using radiation mentioned above, various organic materials such as insulating materials for electric devices and cables, structural materials such as gaskets, O-rings and spacers, ion exchange resins, filters, lubricating oils, paints, etc. Materials and polymer materials are used. Thus, it is expected that the number of organic materials and polymer materials used in the radiation environment of nuclear facilities will continue to increase. Moreover, it is expected that the environmental conditions required for these organic materials and polymer materials will become more severe, so it is necessary to further develop materials having radiation resistance that can meet these requirements.

【0005】 有機材料や高分子材料がどのくらいの放射線の照射線量に耐え得るか、すなわ ち耐放射線性の研究については、既に多くの実用的な報告が出されている。しか しこれらの耐放射線性の検討項目は、問題の性質上次のように物性変化が重要視 されている。すなわち、応力一伸び曲線、引張り強さ、切断時の伸び、弾性率、 せん断強さ、重量変化、比重、吸水率、光透過率、体積比抵抗、電弧抵抗などで ある。[0005] Many practical reports have already been made on researches on how much radiation dose of organic materials and polymer materials can withstand, that is, radiation resistance. However, regarding these radiation resistance examination items, changes in physical properties are emphasized as follows due to the nature of the problem. That is, stress one elongation curve, tensile strength, elongation at break, elastic modulus, shear strength, weight change, specific gravity, water absorption, light transmittance, volume resistivity, arc resistance and the like.

【0006】 このように有機材料や高分子材料の放射線劣化については、これまで概して機 械的性質、あるいは電気的特性の変化が調べられている。しかしこれらの機械的 性質あるいは電気的特性の変化が現れるまでには比較的大きな照射線量が必要で ある。しかも機械的性質や電気的特性などの実用特性の変化が現れる前に、有機 材料や高分子材料の分野、異性化、H2−移動、酸化、架橋、切断などの化学的 変化が起こっている筈であるから、この初期の放射線照射効果を検知する手法が 求められて当然である。As described above, with respect to radiation deterioration of organic materials and polymer materials, changes in mechanical properties or electrical properties have been generally investigated so far. However, a relatively large dose is required before these mechanical or electrical properties change. Moreover, before changes in practical properties such as mechanical properties and electrical properties appear, chemical changes occur in the fields of organic materials and polymer materials, isomerization, H 2 -migration, oxidation, crosslinking, cleavage, etc. Since it should be, it is natural that a method to detect this initial radiation irradiation effect is required.

【0007】 一方、食品に放射線を照射して長期保存をはかる包装材料や、使い捨て医療用 器具、たとえばプラスチック製注射器などを放射線殺菌や滅菌にするときには、 大量の照射線量に耐えなくとも、6〜10Mradの照射で分解生成物の少ない 材料が求められる。 しかしながら、この程度の線量では機械的強度などの実用的物質は殆ど変化し ないのが普通である。On the other hand, when sterilizing or sterilizing a packaging material that irradiates food with radiation for long-term storage or a disposable medical device such as a plastic syringe, even if it cannot withstand a large amount of irradiation dose, A material with less decomposition products by irradiation with 10 Mrad is required. However, it is normal for practical substances such as mechanical strength to change little at this level of dose.

【0008】 機械的性質や電気的特性の変化が現れる前の、分解、異性化、H2−移動、酸 化、架橋、切断などの化学的変化が生じると、一般にはこれに伴って分解生成物 として低分子の気体が発生する。従来、この気体発生量を測定するには、ブレー カブルジョイントを備えたアンプル管に試料を入れて、放射線を照射し、その後 ブレーカブルジョイントを開けて質量分析計で測定する方法が採られていた。When chemical changes such as decomposition, isomerization, H 2 -transfer, acidification, crosslinking, and cleavage occur before the change of mechanical properties and electrical properties appear, generally, decomposition products are generated along with the chemical changes. A low-molecular gas is generated as a substance. Conventionally, in order to measure this gas generation amount, a method was used in which a sample was placed in an ampoule tube equipped with a breakable joint, irradiated with radiation, and then the breakable joint was opened and measurement was performed with a mass spectrometer. .

【0009】[0009]

【考案が解決しようとする課題】[Problems to be solved by the device]

これまでの質量分析計を用いる方法では、一回に一つの放射線量に対する気体 発生量しか測定できず、もし照射線量の変化に対して測定するには、いくつかの 照射線量の気体発生量を何回かに分けて測定しなければならず、大変手間がかか り、面倒であった。また測定には必ず、高級分析機器である質量分析機を使わな ければならず、その点でも制約があり、簡便には有機材料や高分子材料の耐放射 線性が測定できなかった。本考案は、従来の技術の有するこのような問題点に鑑 みてなされたものである。 The conventional methods using mass spectrometers can measure only the gas generation amount for one radiation dose at a time, and to measure the change in irradiation dose, the gas generation amount for several irradiation doses must be measured. It had to be measured several times, which was very time-consuming and troublesome. In addition, mass spectrometry, which is a high-level analytical instrument, must be used for the measurement, and there is a restriction in that point as well, and radiation resistance of organic materials and polymer materials could not be easily measured. The present invention has been made in view of these problems of the conventional technology.

【0010】[0010]

【課題を解決するための手段】[Means for Solving the Problems]

上記課題を解決するために、本考案における気体発生量測定用アンプル管は、 全体をパイレックスガラス製とし、ガラス質の放射線劣化に対処するためある程 度肉厚(0.8mm以上)とすることが必要である。図1に示すように、本考案 は封管用の絞り部分(4)を設けたアンプル管(5)に、小型の水銀マノメータ ー(1)を枝管(2)として付属させたものである。小型と言えども水銀マノメ ーターには、比重の重い水銀が入るので、枝管の付け根の部分(2)は、特に肉 厚(1mm以上)に加工することが好ましい。 図1の封管用の絞り部分(4)の点線(6)は、溶封した後のアンプル管の様 子を示す。 In order to solve the above problems, the ampule tube for measuring the amount of gas generated in the present invention is made entirely of Pyrex glass, and has a certain thickness (0.8 mm or more) to cope with radiation deterioration of glass. is necessary. As shown in FIG. 1, the present invention is an ampoule tube (5) provided with a throttle part (4) for a sealed tube, and a small mercury manometer (1) attached as a branch tube (2). Even though it is small, mercury with a high specific gravity enters the mercury manometer, so it is preferable to process the root portion (2) of the branch pipe to be particularly thick (1 mm or more). The dotted line (6) of the constricted portion (4) for the sealed tube in FIG. 1 shows the appearance of the ampoule tube after fusion sealing.

【0011】[0011]

【作用】[Action]

本考案の気体発生量測定用アンプル管を使った有機材料及び高分子材料の耐放 射線性の測定は、まず本アンプル管に試料(好ましくは約50mg)を入れて、 脱気してくる気体発生が完全になくなるまで、数日間高真空下(<10-5mmH g)で排気してから、封管用の絞り部分(4)をガラス細工で溶封する。これを γ線線源の放射線照射施設で一定線量率で照射し、所要の線量照射ごとに該アン プル管をケースから取り出し、室温を一定に保った後、1/100mm精度の読 取り顕微鏡で正確に小型水銀マノメーターの水銀柱の動き(△h)を読み取り、 気体発生量に換算する。このとき、数10Mradまでの線量照射では、1/1 00mm精度の読取り顕微鏡で検出できるぼどの水銀蒸気の発生はなく、小型水 銀マノメーターの水銀柱の動き(△h)は全て試料から発生した分解生成物によ るものと解釈される。To measure the radiation resistance of organic materials and polymer materials using the ampoule tube for measuring gas generation of the present invention, first put a sample (preferably about 50 mg) into the ampoule tube and degas the gas. It is evacuated under high vacuum (<10 −5 mmHg) for several days until the generation completely disappears, and then the narrowed portion (4) for the sealed tube is sealed by glass work. This is irradiated at a constant dose rate in the radiation irradiation facility of the γ-ray source, the ampoule tube is taken out of the case at each required dose irradiation, the room temperature is kept constant, and then a reading microscope with 1/100 mm accuracy is used. Accurately read the movement (Δh) of the mercury column of the small mercury manometer and convert it to the amount of gas generated. At this time, with irradiation of doses up to several tens of Mrad, no mercury vapor was generated that could be detected by a scanning microscope with an accuracy of 1/100 mm, and the movement (Δh) of the mercury column of the small water silver manometer was all generated from the sample. Interpreted as a product.

【0012】[0012]

【実施例】【Example】

本考案の実施例について図1を参照して説明する。 本考案における気体発生量測定用アンプル管は、全体をパイレクッスガラスで 作成し、肉厚を約0.8mmとした。図1に示すように、封管用の絞り部分(4 )を設けたアンプル管(5)に小型水銀マノメーター(1)を枝管(2)として 付属させたものである。 An embodiment of the present invention will be described with reference to FIG. The ampoule tube for measuring the amount of generated gas in the present invention was entirely made of Pyrex glass and had a wall thickness of about 0.8 mm. As shown in FIG. 1, a small mercury manometer (1) is attached as a branch pipe (2) to an ampoule pipe (5) provided with a narrowed portion (4) for sealing a pipe.

【0013】[0013]

【考案の効果】[Effect of device]

本考案は、上述のとおり構成されているので次に記載する効果を有する。 本考案に係わる気体発生量測定用アンプル管は、小型であるので持ち運びに便 利であり、資料を挿入したγ線照射用アンプル管を一度に多数照射することがで きる利点がある。また放射線照射施設で一定線量の照射を行ったら、その都度取 り出して、小型水銀マノメーターの動きを測定することによって一つの試料で、 いろいろな照射線量におけるガス発生量あるいはガス発生量のG値を求めること ができる。 Since the present invention is configured as described above, it has the following effects. The gas generation amount measuring ampoule tube according to the present invention is small in size and convenient to carry, and has the advantage of being able to irradiate a large number of γ-ray irradiating ampoule tubes with data inserted. In addition, when a certain dose is irradiated at the radiation irradiation facility, it is taken out each time and the movement of the small mercury manometer is measured, so that one sample is used to measure the gas generation amount or the G value of the gas generation amount at various irradiation doses. Can be asked.

【0014】 本考案の気体発生量測定用アンプル管を使って、耐放射線性のよい高分子材料 にγ線照射し、気体発生量を測定した結果の1例を表1に示した。これは室温で 1Mrad/hの線量率の条件で、コバルド60線源からのγ線を、真空下、総 照射量6.5Mradを照射した結果であるが、単位はμmol/gで気体発生 量は非常に少ない。本考案の気体発生量測定用アンプル管を使えば0.1μmo l/gの量まで測定できる。Table 1 shows an example of the results of measuring the gas generation amount by irradiating a polymer material having good radiation resistance with γ-rays using the gas generation amount measuring ampoule tube of the present invention. This is the result of irradiating γ-rays from the Kovardo 60 source under vacuum at a total dose of 6.5 Mrad under the condition of a dose rate of 1 Mrad / h at room temperature. The unit is μmol / g Is very few. If the ampule tube for measuring the amount of generated gas of the present invention is used, it is possible to measure up to an amount of 0.1 μmol / g.

【0015】[0015]

【表1】 [Table 1]

【0016】 次に、表面塩素化ポリエチレンを試料として用い、これに対し、前記と同様に して、室温、真空下でコバルト60からのγ線照射を行った時の照射線量と気体 発生量との関係を表2に示す。Next, surface chlorinated polyethylene was used as a sample, and in the same manner as described above, the irradiation dose and the gas generation amount when γ-ray irradiation from cobalt 60 was performed at room temperature under vacuum. Table 2 shows the relationship.

【0017】[0017]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本考案の実施例を示す正面図である。FIG. 1 is a front view showing an embodiment of the present invention.

【符号の説明】 1 小型水銀マノメーター 2 枝管 3 開放端 4 封管用の絞り部分 5 アンプル管 6 溶融切断部分 7 試料 8 水銀[Explanation of Codes] 1 Small mercury manometer 2 Branch pipe 3 Open end 4 Restriction part for sealing pipe 5 Ampoule pipe 6 Melt cutting part 7 Sample 8 Mercury

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 小型水銀マノメーター(1)を枝管
(2)に設けて、開放端(3)に封管用の絞り部分
(4)を備えたアンプル管(5)と一体化したことを特
徴とする気体発生量測定用のアンプル管。
1. A compact mercury manometer (1) is provided on a branch pipe (2) and is integrated with an ampoule pipe (5) having a constricted portion (4) for a sealed pipe at an open end (3). An ampoule tube for measuring the amount of gas generated.
JP6092191U 1991-07-08 1991-07-08 Ampoule tube for measuring gas generation Expired - Lifetime JP2530801Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092191U JP2530801Y2 (en) 1991-07-08 1991-07-08 Ampoule tube for measuring gas generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092191U JP2530801Y2 (en) 1991-07-08 1991-07-08 Ampoule tube for measuring gas generation

Publications (2)

Publication Number Publication Date
JPH081294U true JPH081294U (en) 1996-08-13
JP2530801Y2 JP2530801Y2 (en) 1997-04-02

Family

ID=13156338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092191U Expired - Lifetime JP2530801Y2 (en) 1991-07-08 1991-07-08 Ampoule tube for measuring gas generation

Country Status (1)

Country Link
JP (1) JP2530801Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871681B1 (en) * 2004-06-18 2006-09-15 Patrick Caceres COOLING COMPRESSOR WITH STERILE PRESENTATION

Also Published As

Publication number Publication date
JP2530801Y2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US5399314A (en) Sterilizing and desorbing equipment
Iyer et al. Application of the fission track registration technique in the estimation of fissile materials: 235U-content in natural and depleted uranium samples and total uranium in solutions
JP2530801Y2 (en) Ampoule tube for measuring gas generation
Miller et al. Quantitative studies of radiation-induced reactions. Part 2.—The oxidation of ferrous sulphate by alpha-particles
Judeikis et al. Free radical yields in polytetrafluoroethylene as the basis for a radiation dosimeter
Sadowski et al. Comparison of responses of CR-39, PM-355, and CN track detectors to energetic hydrogen-, helium-, nitrogen-, and oxygen-ions
Ngono et al. Epoxy‐amine reticulates observed by infrared spectrometry. II. Modifications of structure and of hydration abilities after irradiation in a dry atmosphere
EP0639987A1 (en) Sterilising and desorbing procedures and equipment
JP3130763B2 (en) Radiation dose measuring method and device
Kircher et al. Recent research in high-level gamma dosimetry
Strachan Effect of gamma irradiation on simulated waste glass leaching and on the leach vessel
Benmore et al. Methane as a normalisation standard for gases in thermal neutron experiments
Beach et al. A real-time tritium monitor with an MPC proportional response to airborne mixtures of TH and THO
McLaughlin Radiation processing dosimetry-past, present and future
Tomasella et al. Effect of UV and gamma radiation on Rn222 permeation through polyvinyl chloride (PVC). Application to the packaging of radium sources for the purpose of storage
Jiang et al. A Novel, Rapid Response Renewable Biopolymer Neutron and Gamma Radiation Solid-State Detector for Dosimetry and Nuclear Reactor Flux-Power Mapping
Pawar Polymeric Track Detectors for Neutron and Other Dosimetric Applications
Dove et al. THE ABSOLUTE CALIBRATION OF GAMMA RADIATIOIN DOSIMETERS BY CALORIMETRY
Rálková et al. RADIOISOTOPE INCORPORATION INTO FUSED SILICATE MELTS.(THE INVESTIGATION OF Sr AND Cs ELUTION NAD DIFFUSION
d'Errico et al. Applicability of superheated drop (bubble) detectors to reactor dosimetry
Ismail Determination of a Critical Angle (θc) for Track Revelation for Different CR-39 Nuclear Track Detector Materials
Singh et al. Measurement of fast neutron fluence using a lexan track detector
DeSpain et al. Calibration of detectors for argon-41
Metz RADIATION RESISTANCE TESTS
Von der Ehe et al. Neutron radiation shielding material polyethylene: consequences of gamma irradiation-15062