JPH08128981A - Unburnt component concentration detecting device for combustion equipment - Google Patents

Unburnt component concentration detecting device for combustion equipment

Info

Publication number
JPH08128981A
JPH08128981A JP26709594A JP26709594A JPH08128981A JP H08128981 A JPH08128981 A JP H08128981A JP 26709594 A JP26709594 A JP 26709594A JP 26709594 A JP26709594 A JP 26709594A JP H08128981 A JPH08128981 A JP H08128981A
Authority
JP
Japan
Prior art keywords
unburned component
exhaust gas
correction
component concentration
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26709594A
Other languages
Japanese (ja)
Inventor
Masato Doyama
政人 堂山
Kozo Yoshiyama
孝三 吉山
Toshiya Shirokura
俊也 白倉
Yasushi Maeda
泰史 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Co Ltd
Original Assignee
Harman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman Co Ltd filed Critical Harman Co Ltd
Priority to JP26709594A priority Critical patent/JPH08128981A/en
Publication of JPH08128981A publication Critical patent/JPH08128981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE: To precisely detect the CO concentration in a combustion exhaust gas in the state where its change state can be properly judged. CONSTITUTION: This device has a measuring CO sensor 17 for detecting the CO concentration contained in the combustion exhaust gas passed in the exhaust passage of a burner 3, and a correcting CO sensor 32 for intermittently detecting the CO concentration contained in the combustion exhaust gas on the basis of the correction command by a correction instructing means 101. It also has an exhaust gas flow arresting means C for keeping the non-flowing state where the combustion exhaust gas never flow to the correcting CO sensor 32, and switching the flowing state to the exhaust gas flowing state in which the combustion exhaust gas flows to the correcting CO sensor 32 only when the detecting operation of CO concentration by the correcting CO sensor 32 is executed on the basis of the correction command; and a detected value correcting means 103 for correcting the detected value by the measuring CO sensor 17 on the basis of the detection information of the correcting CO sensor 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バーナの排気路中を通
過する燃焼排ガスに含まれる未燃成分の濃度を検出する
未燃成分濃度検出手段が備えられている燃焼装置の未燃
成分濃度検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unburned component concentration of a combustion device equipped with an unburned component concentration detecting means for detecting the concentration of unburned component contained in a combustion exhaust gas passing through an exhaust passage of a burner. Regarding a detection device.

【0002】[0002]

【従来の技術】上記構成の燃焼装置の未燃成分濃度検出
装置は、前記未燃成分濃度検出手段により燃焼排ガス中
の未燃成分濃度を検出して、その検出値が、例えば、予
め設定された上限値を越えるとバーナが不完全燃焼して
いると判断して、バーナの燃焼を停止させたり、警報手
段を作動させる等の処置を実行することによって、未燃
成分濃度が高い状態が長く続くことを回避させることが
できるようにしたものである。
2. Description of the Related Art An unburned component concentration detecting device for a combustion apparatus having the above structure detects the unburned component concentration in the combustion exhaust gas by the unburned component concentration detecting means, and the detected value is set in advance, for example. If it exceeds the upper limit, it is judged that the burner is incompletely burned, and by taking measures such as stopping the burner combustion and activating the alarm means, the state where the unburned component concentration is high becomes long. This is so that it can be prevented from continuing.

【0003】ところで、バーナの燃焼排ガス中には、例
えば、硫黄成分等の有害物質が含まれており、このよう
な有害物質は、例えば、固形化して未燃ガス濃度検出手
段の表面に付着したり、あるいは、腐食を進行させたり
する等の悪影響を与え、その結果、燃焼排ガス中の未燃
成分濃度の検出作動に伴って、未燃ガス濃度検出手段の
検出感度が劣化するおそれが大となる。
By the way, the combustion exhaust gas of the burner contains, for example, harmful substances such as sulfur components. Such harmful substances are solidified and adhere to the surface of the unburned gas concentration detecting means. Or, it has an adverse effect such as progressing corrosion, and as a result, the detection sensitivity of the unburned gas concentration detection means is likely to deteriorate along with the detection operation of the concentration of unburned component in the combustion exhaust gas. Become.

【0004】そこで、従来では、未燃成分濃度検出手段
による未燃成分濃度の検出作動を、間欠的に行うように
して、検出作動が行われない間は、未燃成分濃度検出手
段に対して燃焼排ガスが流動しないようにして、上述し
たような有害物質による影響を極力少なくさせるように
構成することが考えられた。
Therefore, conventionally, the unburned component concentration detection means intermittently performs the unburned component concentration detection operation, and the unburned component concentration detection means is operated while the detection operation is not performed. It has been considered that the combustion exhaust gas does not flow and the influence of the harmful substances as described above is minimized.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記構成にお
いても、検出作動が実行されている間は、未燃成分濃度
検出手段に対して燃焼排ガスが流動するので、上述した
ような悪影響に起因した感度劣化が避けられないもので
あった。
However, even in the above configuration, the combustion exhaust gas flows to the unburned component concentration detecting means while the detection operation is being executed, which results from the above-mentioned adverse effects. The deterioration of sensitivity was inevitable.

【0006】その結果、使用時間が長くなるに伴って未
燃成分濃度検出手段の検出感度が劣化して、未燃成分濃
度を正確に検出できないおそれが高くなる不利があっ
た。
As a result, there is a disadvantage in that the detection sensitivity of the unburned component concentration detecting means deteriorates as the usage time increases, and the unburned component concentration may not be accurately detected.

【0007】そこで、上記検出作動が実行されてから次
回の検出作動までの待機時間、つまり、未燃成分濃度検
出手段に燃焼排ガスが流動しない時間を極端に長くさせ
ることが考えられるが、このようにすると、燃焼排ガス
中の未燃成分濃度の変化状態を適切に判別できない不利
がある。
Therefore, it is conceivable to make the waiting time from the execution of the above detection operation to the next detection operation, that is, the time during which the combustion exhaust gas does not flow to the unburned component concentration detection means, be extremely long. If this is set, there is a disadvantage that the change state of the concentration of unburned components in the combustion exhaust gas cannot be properly determined.

【0008】又、未燃成分濃度検出手段に燃焼排ガスが
流動する時間の積算時間に対する、上述したような感度
劣化の変化特性を予め設定しておいて、積算時間に伴っ
て、予め設定された変化特性に基づいて、未燃成分濃度
検出手段の検出値を補正することも考えられるが、燃焼
排ガスの流動状態は常に変化するものであり、又、バー
ナの燃焼状態やその他の装置の動作状態の経時変化の度
合いは、燃焼装置の個体差によりバラツキがあり、前記
積算時間と感度劣化の変化特性との関係は、常に一定で
あるとは限らないので、未燃成分濃度の検出精度が低下
してしまうおそれが大となる。
Further, the change characteristic of the sensitivity deterioration as described above with respect to the integration time of the combustion exhaust gas flowing in the unburned component concentration detecting means is set in advance, and is set in advance with the integration time. It is possible to correct the detection value of the unburned component concentration detection means based on the change characteristics, but the flow state of the combustion exhaust gas constantly changes, and the combustion state of the burner and the operating state of other devices The degree of change with time varies due to individual differences in the combustion device, and the relationship between the integration time and the change characteristic of sensitivity deterioration is not always constant, so the detection accuracy of the unburned component concentration decreases. There is a great risk of doing so.

【0009】本発明は、このような点に着目してなされ
たものであり、その目的は、燃焼排ガス中の未燃成分濃
度を、その変化状態を適切に判別できる状態で、精度よ
く検出することが可能となる燃焼装置の未燃成分濃度検
出装置を提供する点にある。
The present invention has been made paying attention to such a point, and an object thereof is to accurately detect the unburned component concentration in the combustion exhaust gas in a state where its change state can be appropriately discriminated. It is an object of the present invention to provide an unburned component concentration detection device for a combustion device that enables the above.

【0010】[0010]

【課題を解決するための手段】第1発明の特徴構成は、
バーナの排気路中を通過する燃焼排ガスに含まれる未燃
成分の濃度を検出する未燃成分濃度検出手段が備えられ
ている燃焼装置の未燃成分濃度検出装置において、前記
未燃成分濃度検出手段が、前記未燃成分の濃度を検出す
る測定用の未燃成分濃度検出手段と、燃焼排ガスに含ま
れる未燃成分の濃度を、補正指令手段による補正指令に
基づいて、間欠的に検出する補正用の未燃成分濃度検出
手段とを備える状態で、複数備えられ、前記補正用の未
燃成分濃度検出手段に対して、前記燃焼排ガスが流動し
ない非流動状態を維持すると共に、前記補正指令に基づ
いて、前記補正用の未燃成分濃度検出手段による未燃成
分の検出作動が実行される際にのみ、前記補正用の未燃
成分濃度検出手段に対して、前記燃焼排ガスが流動する
排ガス流動状態に切り換わる排ガス流動阻止手段が備え
られ、前記補正用の未燃成分濃度検出手段の検出情報に
基づいて、前記測定用の未燃成分濃度検出手段による検
出値を補正する検出値補正手段が備えられている点にあ
る。
The features of the first invention are as follows:
In an unburned component concentration detection device of a combustion device, which is provided with unburned component concentration detection means for detecting the concentration of unburned component contained in the combustion exhaust gas passing through the exhaust passage of the burner, the unburned component concentration detection means However, the unburnt component concentration detection means for measurement to detect the concentration of the unburned component, the concentration of the unburned component contained in the combustion exhaust gas, based on the correction command by the correction command means, the correction to intermittently detect A plurality of unburned component concentration detecting means for use, and a plurality of correction unburned component concentration detecting means are maintained, in which the combustion exhaust gas does not flow, and the correction command Based on the exhaust gas flow, the combustion exhaust gas flows to the correction unburned component concentration detection means only when the correction unburned component concentration detection means performs the unburned component detection operation. To the state Exchanging exhaust gas flow prevention means is provided, and based on the detection information of the correction unburned component concentration detection means, detection value correction means for correcting the detection value by the measurement unburned component concentration detection means is provided. There is a point.

【0011】第2発明の特徴構成は、第1発明の実施に
好適な構成を特定するものであって、前記測定用の未燃
成分濃度検出手段が、前記未燃成分の濃度変化を判別す
るに必要な設定短時間毎に、前記未燃成分の濃度検出作
動を実行するように構成され、前記測定用の未燃成分濃
度検出手段に対して、前記燃焼排ガスが流動しない非流
動状態と、燃焼排ガスが流動する排ガス流動状態とに切
り換え自在な排ガス流動状態切換手段が備えられ、前記
測定用の未燃成分濃度検出手段による検出作動が実行さ
れる際には、前記排ガス流動状態切換手段を前記排ガス
流動状態に切り換え、検出作動が実行されない状態にお
いては、前記排ガス流動状態切換手段を非流動状態に切
り換える切換制御手段が備えられている点にある。
A characteristic configuration of the second invention is to specify a configuration suitable for carrying out the first invention, in which the measuring unburned component concentration detecting means determines a change in concentration of the unburned component. For each setting short time required for, is configured to execute the concentration detection operation of the unburned component, to the measurement unburned component concentration detection means, the non-flowing state in which the combustion exhaust gas does not flow, Exhaust gas flow state switching means is provided that is switchable to an exhaust gas flow state in which combustion exhaust gas flows, and when the detection operation by the measurement unburned component concentration detection means is executed, the exhaust gas flow state switching means is set. A switching control means is provided for switching the exhaust gas flow state switching means to a non-flow state when the exhaust gas flow state is switched to a state where the detection operation is not executed.

【0012】第3発明の特徴構成は、第1又は第2発明
の実施に好適な構成を特定するものであって、前記検出
値補正手段が、同一濃度状態における、前記補正用の未
燃成分濃度検出手段の検出値に対する前記測定用の未燃
成分濃度検出手段の検出値の比率を、補正係数として求
め、この補正係数に基づいて、前記測定用の未燃成分濃
度検出手段による検出値を補正するように構成されてい
る点にある。
The characteristic constitution of the third invention is to specify a constitution suitable for carrying out the first or second invention, wherein the detection value correcting means is the unburned component for correction in the same concentration state. The ratio of the detection value of the measurement unburned component concentration detection means to the detection value of the concentration detection means, as a correction coefficient, based on this correction coefficient, the detection value by the measurement unburned component concentration detection means The point is that it is configured to correct.

【0013】第4発明の特徴構成は、第3発明の実施に
好適な構成を特定するものであって、燃焼運転が開始さ
れた初期状態において、同一濃度状態における、前記補
正用の未燃成分濃度検出手段の検出値に対する、前記測
定用の未燃成分濃度検出手段の検出値の比率を、初期補
正係数として求め、前記初期補正係数に対する、燃焼運
転が継続されるに伴って前記検出値補正手段により求め
られる前記補正係数の比率が、設定値を下回ると、感度
劣化状態であるとして、後処理を実行する後処理実行手
段が備えられている点にある。
The characteristic configuration of the fourth aspect of the invention specifies a configuration suitable for carrying out the third aspect of the invention, wherein the unburned component for correction is in the same concentration state in the initial state when the combustion operation is started. The ratio of the detection value of the measurement unburnt component concentration detection means to the detection value of the concentration detection means is obtained as an initial correction coefficient, and the detection value correction is performed with respect to the initial correction coefficient as combustion operation is continued. When the ratio of the correction coefficient obtained by the means falls below a set value, it is determined that the sensitivity is in a deteriorated state, and a post-processing executing means for executing the post-processing is provided.

【0014】第5発明の特徴構成は、第4発明の実施に
好適な構成を特定するものであって、前記後処理実行手
段が、前記後処理として、前記バーナの燃焼を停止させ
るように構成されている点にある。
The characteristic configuration of the fifth aspect of the invention specifies a configuration suitable for carrying out the fourth aspect of the invention, in which the aftertreatment executing means stops combustion of the burner as the aftertreatment. There is a point.

【0015】第6発明の特徴構成は、第1、第2、第
3、第4又は第5発明の実施に好適な構成を特定するも
のであって、前記補正指令手段は、燃焼積算時間が補正
用の設定時間に達する毎に、前記補正指令を指令するよ
うに構成されている点にある。
A characteristic configuration of the sixth invention is to specify a configuration suitable for carrying out the first, second, third, fourth or fifth invention, wherein the correction command means is arranged to It is configured to issue the correction command every time the set time for correction is reached.

【0016】第7発明の特徴構成は、第1、第2、第
3、第4、第5又は第6発明の実施に好適な構成を特定
するものであって、前記各未燃成分濃度検出手段が、接
触燃焼式COセンサで構成されている点にある。
The characteristic constitution of the seventh invention is to specify the constitution suitable for carrying out the first, second, third, fourth, fifth or sixth invention, and to detect the concentration of each unburned component. The means is that it is composed of a catalytic combustion type CO sensor.

【0017】[0017]

【作用】第1発明の特徴構成によれば、測定用の未燃成
分濃度検出手段は、適宜、燃焼排ガス中の未燃成分の濃
度を検出する。例えば、連続的に、あるいは、未燃成分
の濃度変化を判別するに必要な設定短時間毎に、未燃成
分濃度を検出するのである。
According to the characterizing feature of the first aspect of the invention, the measuring unburned component concentration detecting means appropriately detects the concentration of unburned component in the combustion exhaust gas. For example, the unburned component concentration is detected continuously or at each set short time required to determine the change in the unburned component concentration.

【0018】補正用の未燃成分濃度検出手段に対して
は、排ガス流動阻止手段によって燃焼排ガスが流動しな
い状態が維持される。
With respect to the unburned component concentration detecting means for correction, the state in which the combustion exhaust gas does not flow is maintained by the exhaust gas flow inhibiting means.

【0019】そして、補正指令手段による補正指令に基
づいて、補正用の未燃成分濃度検出手段による検出作動
が間欠的に実行されるが、その検出作動が実行される際
にのみ排ガス流動阻止手段が排ガス流動状態に切り換わ
り、補正用の未燃成分濃度検出手段に対して燃焼排ガス
が流動する。
Then, based on the correction command from the correction command means, the detection operation by the correction unburned component concentration detection means is intermittently executed, but the exhaust gas flow blocking means is executed only when the detection operation is executed. Is switched to the exhaust gas flow state, and the combustion exhaust gas flows to the correction unburned component concentration detecting means.

【0020】従って、補正用の未燃成分濃度検出手段に
対して燃焼排ガスが流動する時間は、測定用の未燃成分
濃度検出手段に対して燃焼排ガスが流動する時間よりも
短くて感度劣化が少なく、精度の高い状態で未燃成分濃
度が検出でき、この補正用の未燃成分濃度検出手段の精
度の高い検出情報に基づいて、測定用の未燃成分濃度検
出手段の検出値を補正するのである。
Therefore, the time for the combustion exhaust gas to flow to the correction unburnt component concentration detection means is shorter than the time for the combustion exhaust gas to flow to the measurement unburned component concentration detection means, resulting in sensitivity deterioration. The unburned component concentration can be detected in a low and highly accurate state, and the detection value of the unburned component concentration detection means for measurement is corrected based on the highly accurate detection information of this unburned component concentration detection means for correction. Of.

【0021】第2発明の特徴構成によれば、第1発明の
特徴構成による作用に加えて次の作用がある。測定用の
未燃成分濃度検出手段は、燃焼排ガス中の未燃成分の濃
度変化を判別するに必要な設定短時間毎に、未燃成分の
濃度検出作動を実行するが、この検出作動が実行される
際において、排ガス流動状態に切り換えられ、検出作動
が実行されない状態においては非流動状態に切り換えら
れることになる。従って、燃焼排ガス中の有害物質によ
る、例えば、固形化して未燃成分濃度検出手段の表面に
付着して、測定用の未燃成分濃度検出手段の検出機能を
低下させたり、あるいは、腐食を進行させたりする等の
悪影響を低減させることが可能となる。
According to the characterizing structure of the second invention, the following function is obtained in addition to the function of the characterizing structure of the first invention. The unburned component concentration detection means for measurement executes the unburned component concentration detection operation at each set short time necessary for distinguishing the concentration change of the unburned component in the combustion exhaust gas, but this detection operation is performed. In this case, the exhaust gas is switched to the flowing state, and is switched to the non-flowing state when the detection operation is not executed. Therefore, due to harmful substances in the combustion exhaust gas, for example, they are solidified and adhere to the surface of the unburned component concentration detection means, which lowers the detection function of the unburned component concentration detection means for measurement, or progresses corrosion. It is possible to reduce the adverse effects such as causing it.

【0022】第3発明の特徴構成によれば、第1又は第
2発明の特徴構成による作用に加えて次の作用がある。
同一濃度状態における、各未燃成分濃度検出手段の検出
値の比率を補正係数として求め、この補正係数に基づい
て、測定用の未燃成分濃度検出手段の検出値を補正する
のである。
According to the characterizing feature of the third invention, the following effect is obtained in addition to the effect of the characterizing feature of the first or second invention.
The ratio of the detection value of each unburned component concentration detection means in the same concentration state is obtained as a correction coefficient, and the detection value of the measurement unburned component concentration detection means is corrected based on this correction coefficient.

【0023】つまり、燃焼排ガスが流動する時間が長い
ことに起因して、検出感度が劣化していると考えられる
測定用の未燃成分濃度検出手段の検出値と、同一濃度状
態で検出される補正用の未燃成分濃度検出手段の検出値
との比率(補正係数)に基づいて、測定用の未燃成分濃
度検出手段の検出値が、補正用の未燃成分濃度検出手段
の検出感度に基づく正確な検出値に対応する適正な値に
補正されることになる。
That is, it is detected in the same concentration state as the detection value of the unburned component concentration detecting means for measurement, which is considered to have deteriorated the detection sensitivity because the combustion exhaust gas flows for a long time. Based on the ratio (correction coefficient) to the detection value of the unburned component concentration detection means for correction, the detection value of the unburned component concentration detection means for measurement becomes the detection sensitivity of the unburned component concentration detection means for correction. It will be corrected to an appropriate value corresponding to the accurate detection value based on the above.

【0024】第4発明の特徴構成によれば、第3発明の
特徴構成による作用に加えて次の作用がある。燃焼運転
が開始された初期状態においては、燃焼排ガス中の有害
物質に起因した感度劣化が生じていないので、前記初期
補正係数は、前記各未燃成分濃度検出手段の初期特性の
個体差の比率として求められることになる。
According to the characterizing structure of the fourth invention, in addition to the function of the characterizing structure of the third invention, there is the following function. In the initial state when the combustion operation is started, sensitivity deterioration due to harmful substances in the combustion exhaust gas does not occur, so the initial correction coefficient is the ratio of individual differences in the initial characteristics of the unburned component concentration detection means. Will be required as.

【0025】そして、燃焼運転の継続に伴って、検出値
補正手段により、補正用の未燃成分濃度検出手段の検出
値に対する測定用の未燃成分濃度検出手段の検出値の比
率(補正係数)が、補正指令に基づいて適宜求められる
が、前記初期補正係数に対するこの補正係数の比率が設
定値を下回ることによって、各未燃成分濃度検出手段の
個体差による誤差を少なくした、より精度の高い状態
で、測定用の未燃成分濃度検出手段の検出感度が劣化し
ていることの判断が実行され、例えば、バーナの燃焼を
停止させたり、警報作動を実行する等の後処理を実行す
るのである。
With the continuation of the combustion operation, the detection value correction means causes the ratio (correction coefficient) of the detection value of the measurement unburned component concentration detection means to the detection value of the correction unburned component concentration detection means. Is appropriately obtained based on the correction command, but the ratio of this correction coefficient to the initial correction coefficient is less than the set value, thereby reducing the error due to the individual difference of each unburned component concentration detecting means, which is more accurate. In this state, it is judged that the detection sensitivity of the unburned component concentration detecting means for measurement is deteriorated, and for example, post-processing such as stopping the combustion of the burner or executing an alarm operation is performed. is there.

【0026】第5発明の特徴構成によれば、第4発明の
特徴構成による作用に加えて次の作用がある。測定用の
未燃成分濃度検出手段の検出感度が劣化していることが
判断されると、バーナの燃焼を停止させるので、検出感
度が劣化して正確に燃焼排ガス中の未燃成分の濃度を検
出することができない状態でバーナの燃焼が継続される
ことが無い。
According to the characterizing feature of the fifth aspect of the invention, there are the following effects in addition to the effects of the characterizing feature of the fourth aspect of the invention. When it is determined that the detection sensitivity of the unburnt component concentration detection means for measurement is degraded, the burner combustion is stopped, so the detection sensitivity is degraded and the concentration of unburned component in the combustion exhaust gas is accurately determined. Burner combustion does not continue in a state that cannot be detected.

【0027】第6発明の特徴構成によれば、第1、第
2、第3、第4又は第5発明の特徴構成による作用に加
えて次の作用がある。燃焼積算時間が補正用の設定時間
に達する毎に、自動的に、測定用の未燃成分濃度検出手
段の検出値が補正されるので、例えば、人為操作により
補正指令する場合等に比較して、操作の煩わしさの無い
状態で、適切に補正作動が実行されることになる。
According to the characterizing feature of the sixth invention, the following effect is obtained in addition to the function according to the characterizing feature of the first, second, third, fourth or fifth invention. Every time the cumulative combustion time reaches the set time for correction, the detection value of the unburned component concentration detection means for measurement is automatically corrected. Therefore, the correction operation is appropriately executed without any troublesome operation.

【0028】第7発明の特徴構成によれば、第1、第
2、第3、第4、第5又は第6発明の特徴構成による作
用に加えて次の作用がある。燃焼排ガス中の未燃成分と
して、人体に最も悪影響を与えるおそれが高い一酸化炭
素(CO)の濃度が、感度劣化による誤差の少ない状態
で有効に検出されることになる。
According to the characteristic construction of the seventh invention, the following operation is provided in addition to the operation of the characteristic construction of the first, second, third, fourth, fifth or sixth invention. As an unburned component in the combustion exhaust gas, the concentration of carbon monoxide (CO), which is most likely to have a bad influence on the human body, is effectively detected with a small error due to sensitivity deterioration.

【0029】[0029]

【発明の効果】第1発明の特徴構成によれば、測定用の
未燃成分濃度検出手段によって、燃焼排ガス中の未燃成
分の濃度変化を適切に判別することが可能な状態で、適
宜検出作動を実行することができると共に、補正用の未
燃成分濃度検出手段による精度の高い検出情報に基づい
て、検出値を補正することによって、燃焼排ガス中の有
害物質に起因した感度劣化にかかわらず、常に検出精度
の高い状態で、未燃成分濃度を検出することが可能とな
る。
According to the characterizing feature of the first invention, the unburned component concentration detecting means for measurement can appropriately detect the change in the concentration of the unburned component in the combustion exhaust gas. In addition to being able to perform the operation, by correcting the detection value based on the highly accurate detection information by the correction unburned component concentration detection means, regardless of the sensitivity deterioration due to the harmful substances in the combustion exhaust gas. It is possible to detect the unburned component concentration with high detection accuracy at all times.

【0030】第2発明の特徴構成によれば、第1発明の
特徴構成による効果に加えて次の効果がある。測定用の
未燃成分濃度検出手段の、上記有害物質に起因した感度
劣化をできるだけ少ないものに抑制して、極力長期間に
わたって検出精度の高い状態で未燃成分の濃度検出を行
えるようになった。
According to the characterizing structure of the second invention, the following effect is obtained in addition to the effect of the characterizing structure of the first invention. The unburned component concentration detection means for measurement suppresses the sensitivity deterioration caused by the harmful substances to as little as possible, and the concentration of the unburned component can be detected with high detection accuracy for a long period of time as much as possible. .

【0031】第3発明の特徴構成によれば、第1又は第
2発明の特徴構成による効果に加えて次の効果がある。
常に同一濃度状態における各未燃成分濃度検出手段の検
出値の比率に基づいて検出値の補正が行われるので、誤
差の少ない状態で適切に補正作動が行われることにな
る。
According to the characterizing structure of the third invention, the following effect is obtained in addition to the effect of the characterizing structure of the first or second invention.
Since the detection value is always corrected based on the ratio of the detection values of the respective unburned component concentration detection means in the same concentration state, the correction operation is appropriately performed in the state where the error is small.

【0032】第4発明の特徴構成によれば、第3発明の
特徴構成による効果に加えて次の効果がある。各未燃成
分濃度検出手段の個体差に起因した誤差が少なく精度の
高い状態で、検出作動が実行され、検出感度の劣化が大
きいときは適切な後処理を実行することで、使用上の安
全性が確保されることになる。
According to the characterizing structure of the fourth invention, the following effect is obtained in addition to the effect of the characterizing structure of the third invention. The detection operation is performed in a state where there are few errors due to individual differences in the unburned component concentration detection means and the accuracy is high, and when the deterioration of the detection sensitivity is large, appropriate post-processing is performed to ensure safety in use. Nature will be secured.

【0033】第5発明の特徴構成によれば、第4発明の
特徴構成による効果に加えて次の効果がある。バーナの
燃焼継続に伴って、燃焼排ガス中の未燃成分濃度が設定
上限値を越えて高くなる等の不利を未然に回避できる。
According to the characterizing feature of the fifth invention, the following effect is obtained in addition to the effect of the characterizing feature of the fourth invention. With the continued combustion of the burner, disadvantages such as the concentration of unburned components in the combustion exhaust gas exceeding the set upper limit and becoming high can be avoided.

【0034】第6発明の特徴構成によれば、第1、第
2、第3、第4又は第5発明の特徴構成による効果に加
えて次の効果がある。人為操作による補正指令の場合に
比較して、操作忘れや煩わしさの無い状態で確実に検出
値補正作動が実行されることになった。
According to the characterizing structure of the sixth invention, the following effects are obtained in addition to the effects of the characterizing structure of the first, second, third, fourth or fifth invention. Compared to the case of the correction command by the manual operation, the detection value correction operation is surely executed without forgetting the operation or in the trouble.

【0035】第7発明の特徴構成によれば、第1、第
2、第3、第4又は第5発明の特徴構成による効果に加
えて次の効果がある。一酸化炭素の濃度を精度よく検出
することで、使用上の安全性を確保できるものとなる。
According to the characterizing structure of the seventh invention, the following effect is obtained in addition to the effect of the characterizing structure of the first, second, third, fourth or fifth invention. By accurately detecting the concentration of carbon monoxide, it is possible to ensure safety in use.

【0036】[0036]

【実施例】以下、実施例を図面に基いて説明する。図1
に本発明に係る燃焼装置の一例としての給湯装置が示さ
れている。この給湯装置は、給湯部Aと、給湯部Aの作
動を制御する制御部Hと、制御部Hに制御情報を指令す
るリモコン装置Rとで構成されている。
Embodiments will be described below with reference to the drawings. FIG.
FIG. 1 shows a hot water supply device as an example of the combustion device according to the present invention. This hot water supply device includes a hot water supply unit A, a control unit H that controls the operation of the hot water supply unit A, and a remote control device R that issues control information to the control unit H.

【0037】前記給湯部Aは、燃焼室1内に、水加熱用
の熱交換器2及びこの熱交換器2に対して加熱作用する
バーナ3が備えられ、燃焼室1内にバーナ3の燃焼用空
気を通風すると共に、バーナ3の燃焼排ガスを燃焼室1
から排気筒4を通して室外に排出させる通風手段として
のファン5が備えられている。燃焼室1内の通風経路に
おけるバーナ3の上手側には、多孔板から成る整風板6
が備えられ、ファン5により生起される風が、ほぼ均一
にバーナ3に通風されるように構成されている。
In the hot water supply unit A, a heat exchanger 2 for heating water and a burner 3 for heating the heat exchanger 2 are provided in the combustion chamber 1, and the burner 3 burns in the combustion chamber 1. Ventilation air is passed and the combustion exhaust gas from the burner 3 is transferred to the combustion chamber 1
A fan 5 is provided as a ventilating means for exhausting the air through the exhaust pipe 4 to the outside of the room. On the upper side of the burner 3 in the ventilation path in the combustion chamber 1, a wind regulating plate 6 made of a perforated plate is provided.
Is provided, and the wind generated by the fan 5 is configured to be substantially evenly passed through the burner 3.

【0038】又、熱交換器2には、水が供給される給水
路7と、加熱された湯を図示しない給湯栓に給湯する給
湯路8が接続され、給水路7には、熱交換器2への入水
温度を検出する入水温センサ9と、熱交換器2への給水
量を検出する水量センサ10とが設けられ、給湯路8に
は、熱交換器2の出湯温を検出する出湯温センサ11が
設けられている。
Further, the heat exchanger 2 is connected to a water supply passage 7 for supplying water and a hot water supply passage 8 for supplying heated hot water to a hot water tap (not shown), and the water supply passage 7 is provided with a heat exchanger. An inlet water temperature sensor 9 for detecting the inlet water temperature to the heat exchanger 2 and a water amount sensor 10 for detecting the amount of water supplied to the heat exchanger 2 are provided, and a hot water outlet 8 for detecting the outlet water temperature of the heat exchanger 2 is provided in the hot water supply passage 8. A temperature sensor 11 is provided.

【0039】バーナ3に対する燃料ガス供給路12に
は、燃料ガス供給を断続する開閉弁13及び燃料ガス供
給量を調整する電磁式のガス量調整弁14が設けられ、
バーナ3の近くには、点火用のイグナイタ15と、バー
ナ3が着火したか否かを検出するフレームロッド16と
が備えられている。
The fuel gas supply passage 12 for the burner 3 is provided with an opening / closing valve 13 for intermittently supplying the fuel gas and an electromagnetic gas amount adjusting valve 14 for adjusting the fuel gas supply amount.
An igniter 15 for ignition and a frame rod 16 for detecting whether or not the burner 3 has ignited are provided near the burner 3.

【0040】又、バーナ3の燃焼排ガスが通過する排気
路L中に、燃焼排ガス中に含まれる未燃成分としての一
酸化炭素(CO)の濃度(CO濃度)を検出する測定用
の未燃成分濃度検出手段としての接触燃焼式の測定用C
Oセンサ17が備えられている。測定用COセンサ17
は、燃焼排ガスが通過する排気路L中において、開口部
18を通して排気路Lに連通するように一部が開放され
た第1箱体19の内部に設置されている。尚、排気路L
の前記開口部18に臨む近接した箇所に、上方に向けて
流動する燃焼排ガスを有効に第1箱体19内に導くため
の案内板20が設けられている。
Further, in the exhaust passage L through which the combustion exhaust gas of the burner 3 passes, an unburned gas for measurement for detecting the concentration (CO concentration) of carbon monoxide (CO) as an unburned component contained in the combustion exhaust gas. Contact combustion type measuring C as a component concentration detecting means
An O sensor 17 is provided. CO sensor for measurement 17
Is installed inside the first box body 19 which is partially opened so as to communicate with the exhaust passage L through the opening 18 in the exhaust passage L through which the combustion exhaust gas passes. The exhaust path L
A guide plate 20 for effectively guiding the combustion exhaust gas flowing upward to the inside of the first box body 19 is provided at a position close to the opening portion 18 of the above.

【0041】又、前記整風板6よりも通風上手側と、前
記第1箱体19の内部、つまり、排気路とを連通させる
状態で、送風源としてのファン5により生起される風の
一部を測定用COセンサ17の近傍に導く第1導風路2
1が形成され、この第1導風路21におけるファン5に
近い箇所には、風が第1箱体19内に導かれるのを許容
する開弁状態と、第1導風路21を遮断して導風を停止
させる閉弁状態とに切り換え自在な電磁操作式の第1風
路開閉弁22が備えられている。風が第1箱体19内に
導かれると、燃焼排ガスが第1箱体19内に流動するこ
とができず、導風が停止されると、燃焼排ガスが第1箱
体19内に流動して循環し、CO濃度測定が可能とな
る。
A part of the wind generated by the fan 5 as a blower source in a state where the upstream side of the air conditioning plate 6 communicates with the inside of the first box body 19, that is, the exhaust passage. First air duct 2 for guiding the air to the vicinity of the measuring CO sensor 17
1 is formed, and a valve open state that allows wind to be guided into the first box body 19 is cut off at a location near the fan 5 in the first air duct 21 and the first air duct 21 is shut off. There is provided an electromagnetically operated first air passage opening / closing valve 22 which can be switched to a closed state in which the air guide is stopped. When the wind is guided into the first box body 19, the combustion exhaust gas cannot flow into the first box body 19, and when the wind guide is stopped, the combustion exhaust gas flows into the first box body 19. It is possible to measure the CO concentration.

【0042】従って、これらの第1導風路21と第1風
路開閉弁22によって、測定用COセンサ17に対し
て、燃焼排ガスが流動する排ガス流動状態と、流動しな
い非流動状態とに切り換え可能な排ガス流動状態切換手
段Bが構成されることになる。
Therefore, the first air passage 21 and the first air passage opening / closing valve 22 switch the exhaust gas flowing state in which the combustion exhaust gas flows and the non-flowing state in which the combustion exhaust gas does not flow to the measuring CO sensor 17. A possible exhaust gas flow state switching means B is configured.

【0043】そして、図2に示すように、前記測定用C
Oセンサ17の横側部には、前記第1箱体19と同様
に、開口部30を通して排気路Lに連通するように一部
が開放された第2箱体31の内部に設置される状態で、
補正用の未燃成分濃度検出手段としての接触燃焼式の補
正用COセンサ32が設けられている。第2箱体31の
内部と、前記整風板6よりも通風上手側とを連通させる
状態で、ファン5により生起される風の一部を補正用C
Oセンサ32の近傍に導く第2導風路33が形成され、
風が第2箱体31内に導かれると、燃焼排ガスが第2箱
体31内に流動することができず、燃焼排ガスが補正用
COセンサ32に流動しない非流動状態となる。
Then, as shown in FIG. 2, the measuring C
As with the first box body 19, the O sensor 17 is installed inside the second box body 31 that is partially opened so as to communicate with the exhaust passage L through the opening 30 as in the case of the first box body 19. so,
A contact combustion type correction CO sensor 32 is provided as a correction unburned component concentration detecting means. In a state where the inside of the second box body 31 and the ventilation side of the air conditioning plate 6 are in communication with each other, a part of the wind generated by the fan 5 is corrected C
A second air duct 33 is formed near the O sensor 32,
When the wind is guided into the second box body 31, the combustion exhaust gas cannot flow into the second box body 31 and the combustion exhaust gas does not flow into the correction CO sensor 32, resulting in a non-flowing state.

【0044】この第2導風路33におけるファン5に近
い箇所には、風が第2箱体31内に導かれるのを許容す
る開弁状態と、第2導風路33を遮断して導風を停止さ
せる閉弁状態とに切り換え自在な電磁操作式の第2風路
開閉弁34が備えられ、この第2風路開閉弁34は、後
述するような補正指令がなければ開弁状態に維持され非
流動状態に維持される。
At a position near the fan 5 in the second air guide path 33, a valve open state that allows the wind to be guided into the second box body 31 and a state where the second air guide path 33 is cut off are introduced. An electromagnetically operated second air passage opening / closing valve 34, which can be switched to a closed state in which the wind is stopped, is provided. The second air passage opening / closing valve 34 is opened when there is no correction command as described later. It is maintained and kept in a non-flowing state.

【0045】前記各COセンサ17,32は、夫々、検
出されるべきCO濃度の変化に対して、ほぼ直線的に出
力が変化する特性を有しており、燃焼排ガス中の硫黄成
分等による感度劣化は、直線状態を維持したままでその
検出特性の傾きが変化するような特性を有している。
Each of the CO sensors 17 and 32 has a characteristic that the output changes substantially linearly with respect to the change in the CO concentration to be detected, and the sensitivity due to the sulfur component etc. in the combustion exhaust gas. The deterioration has a characteristic that the inclination of the detection characteristic changes while maintaining the linear state.

【0046】リモコン装置Rには、運転の開始・停止を
指令する運転スイッチ23、給湯温度を表示する温度表
示部24、目標給湯温度を設定する温度設定スイッチ2
5、運転状態か否かを表示する運転ランプ26、後述す
る異常状態が発生した場合に点灯する異常表示ランプ2
7等が備えられている。
The remote controller R has an operation switch 23 for instructing start / stop of operation, a temperature display section 24 for displaying the hot water supply temperature, and a temperature setting switch 2 for setting a target hot water supply temperature.
5, an operation lamp 26 for displaying whether or not it is in an operating state, and an abnormality display lamp 2 that lights up when an abnormal state described later occurs
7 etc. are provided.

【0047】制御部Hは、マイクロコンピュータを備え
て構成され、上記各センサ9,10,11及びフレーム
ロッド16の検出情報に基づいて、バーナ3の燃焼が適
正燃焼状態になるように、ガス量調節弁14、ファン5
等を制御する燃焼制御手段100と、燃焼積算時間が補
正用の設定時間に達する毎に補正指令を指令する補正指
令手段101と、補正用COセンサ32に対して非流動
状態を維持すると共に、補正指令に基づいて、補正用C
Oセンサ32による検出作動が実行される際にのみ、補
正用COセンサ32に対して燃焼排ガスを流動させる第
1切換制御手段102と、補正指令に基づいて、補正用
COセンサ32の検出情報に基づいて、測定用COセン
サ17の検出値を補正する検出値補正手段103と、検
出値の補正に伴って感度劣化状態であることが判別され
ると、異常状態であるとして、後処理としての、バーナ
3の燃焼停止動作及び異常表示ランプ27点灯動作を実
行する後処理実行手段104と、測定用COセンサ17
による検出作動が実行される際には排ガス流動状態にな
り、検出作動が実行されない状態においては非流動状態
になるように、排ガス流動状態切換手段Bを切り換え制
御する第2切換制御手段105とを備えて構成されてい
る。
The control unit H comprises a microcomputer, and based on the detection information of the sensors 9, 10, 11 and the flame rod 16, the amount of gas is adjusted so that the combustion of the burner 3 is in an appropriate combustion state. Control valve 14, fan 5
And the like, a correction command means 101 for issuing a correction command every time the integrated combustion time reaches a set time for correction, and a non-flowing state for the correction CO sensor 32. C for correction based on the correction command
Only when the detection operation by the O sensor 32 is executed, the first switching control means 102 for flowing the combustion exhaust gas to the correction CO sensor 32 and the detection information of the correction CO sensor 32 based on the correction command. Based on the detection value correction means 103 for correcting the detection value of the measurement CO sensor 17 and the sensitivity deterioration state associated with the correction of the detection value, it is determined as an abnormal state and post-processing is performed. , A post-processing execution means 104 for executing a combustion stop operation of the burner 3 and an operation of lighting the abnormality display lamp 27, and a measuring CO sensor 17
The second switching control means 105 for controlling the switching of the exhaust gas flow state switching means B so that the exhaust gas flow state is set when the detection operation is performed and the non-flow state is set when the detection operation is not performed. It is equipped with.

【0048】従って、第2導風路33、第2風路開閉弁
34及び前記第1切換制御手段102によって、排ガス
流動阻止手段Cが構成されることになる。
Therefore, the exhaust gas flow blocking means C is constituted by the second air guide passage 33, the second air passage opening / closing valve 34 and the first switching control means 102.

【0049】以下、図3、図4に示す制御フローチャー
トに基づいて制御部Hの制御動作について説明する。運
転スイッチ23がON操作された後、水量センサ10の
検出値が設定値を越えることにより給湯栓が開操作され
たことが判断されると、ファン5の通風作動を開始し、
測定用COセンサ17に対する通電を開始させる(ステ
ップ1〜4)。そして、第1、第2風路開閉弁22,3
4を共に開弁させた後(ステップ5)、バーナ3への点
火制御を実行する(ステップ6)。つまり、イグナイタ
15によりバーナ3に点火させ、フレームロッド16に
より着火が確認されると、点火動作を停止させる。
The control operation of the controller H will be described below with reference to the control flowcharts shown in FIGS. When it is determined that the hot water tap has been opened due to the detection value of the water amount sensor 10 exceeding the set value after the operation switch 23 is turned on, the ventilation operation of the fan 5 is started,
Energization of the measuring CO sensor 17 is started (steps 1 to 4). Then, the first and second air passage opening / closing valves 22, 3
After opening both valves 4 (step 5), ignition control for the burner 3 is executed (step 6). That is, when the igniter 15 ignites the burner 3 and the flame rod 16 confirms ignition, the ignition operation is stopped.

【0050】このとき、第1風路開閉弁22は開弁して
おり、ファン5によって生起される風の一部が、第1導
風路21を通して第1箱体19内に導かれるので、バー
ナ3の燃焼排ガスが第1箱体19内に流動することがで
きず、燃焼排ガスは測定用COセンサ17に流動するの
を抑制される。
At this time, the first air passage opening / closing valve 22 is opened, and a part of the wind generated by the fan 5 is introduced into the first box body 19 through the first air passage 21. The combustion exhaust gas of the burner 3 cannot flow into the first box body 19, and the combustion exhaust gas is suppressed from flowing to the measurement CO sensor 17.

【0051】燃焼が開始されると、給湯温度が目標給湯
温度になるようにバーナ3を適正燃焼状態に制御する燃
焼制御を実行する(ステップ7)。即ち、温度設定スイ
ッチ25により設定された目標給湯温度と、入水温セン
サに9より検出される入水温度との偏差、及び、水量セ
ンサ10により検出される給水量に基づいて、フィード
フォワード操作量を求めると共に、目標給湯温度と出湯
温センサ11の検出値との偏差に基づいてフィードバッ
ク操作量を求め、各操作量の加算値に基づいて、ガス量
調節弁14を操作制御してガス量を制御し、且つ、その
ガス量に適した通風量になるようにファン5の回転数を
制御するのである。
When combustion is started, combustion control is executed to control the burner 3 to an appropriate combustion state so that the hot water supply temperature becomes the target hot water supply temperature (step 7). That is, the feedforward operation amount is determined based on the deviation between the target hot water supply temperature set by the temperature setting switch 25 and the incoming water temperature detected by the incoming water temperature sensor 9, and the amount of water supplied by the water amount sensor 10. Along with the calculation, the feedback operation amount is obtained based on the deviation between the target hot water supply temperature and the detected value of the hot water temperature sensor 11, and the gas amount control valve 14 is operated and controlled based on the added value of each operation amount to control the gas amount. In addition, the number of rotations of the fan 5 is controlled so that the amount of ventilation is suitable for the amount of gas.

【0052】そして、第1タイマー、及び第2タイマー
のカウントを開始し(ステップ8)。第1タイマーがカ
ウント終了して第1設定時間T1 (10分)が経過した
ことが判別されると、第1タイマーをリセットした後、
第1風路開閉弁22を閉じて、第1導風路21を通して
の送風を停止させる(ステップ9,10,11)。第1
風路開閉弁22を閉弁させることによって、第1箱体1
9内への導風状態が停止されるから、排気路L内を通過
する燃焼排ガスが第1箱体19内に流れ込み、測定用C
Oセンサ17に向けて流動することになり、測定用CO
センサ17によるCO濃度測定が可能となる。
Then, the counting of the first timer and the second timer is started (step 8). If it is determined that the first timer has finished counting and the first set time T 1 (10 minutes) has elapsed, after resetting the first timer,
The first air passage opening / closing valve 22 is closed to stop the air blowing through the first air passage 21 (steps 9, 10, 11). First
By closing the air passage opening / closing valve 22, the first box 1
9 is stopped, the combustion exhaust gas passing through the exhaust passage L flows into the first box body 19, and the measurement C
As it flows toward the O sensor 17, CO for measurement
The CO concentration can be measured by the sensor 17.

【0053】尚、前記第1設定時間T1 が経過するまで
に、給湯栓が閉じ操作されると、バーナ3の燃焼を停止
して、ポストパージの後にファン5の作動を停止させ、
第1、第2風路開閉弁22,34を閉じて、測定用CO
センサ17への通電を停止させる(ステップ9,17〜
22)。
When the hot water tap is closed by the time the first set time T 1 elapses, the combustion of the burner 3 is stopped and the operation of the fan 5 is stopped after the post-purging,
By closing the first and second air passage opening / closing valves 22 and 34, the measurement CO
The power supply to the sensor 17 is stopped (steps 9 and 17-).
22).

【0054】ステップ11の後、第2タイマーがカウン
ト終了して、補正用の第2設定時間T2 (50時間)が
経過したことが判別される前に、第1箱体19内におい
て燃焼排ガスが均一に混合されるに要する第3設定時間
3 が経過すると、測定用COセンサ17によるCO濃
度測定が実行され、測定されたCO濃度が設定上限値を
越えていないか否かが判別され(ステップ12〜1
5)、第1風路開閉弁22が開操作される(ステップ1
6)。
After step 11, the second timer finishes counting, and before it is determined that the second correction time T 2 (50 hours) has elapsed, the combustion exhaust gas in the first box 19 is exhausted. When the third set time T 3 required for the uniform mixing of CO 2 has elapsed, the CO concentration measurement by the measuring CO sensor 17 is executed to determine whether the measured CO concentration does not exceed the set upper limit value. (Steps 12 to 1
5), the first air passage opening / closing valve 22 is opened (step 1
6).

【0055】その後、測定されたCO濃度が設定上限値
を越えて不完全燃焼であることが判別されることなく、
給湯栓が閉じ操作されなければ(ステップ17,1
8)、ステップ7〜ステップ16が繰り返し実行され、
前記第1設定時間T1 (10分)毎に測定用COセンサ
17によるCO濃度測定(検出作動)が実行されること
になり、CO濃度測定が実行される際にのみ排ガス流動
状態に切り換えられることになる。前記第1設定時間T
1 が、未燃成分(CO)の濃度変化を判別するに必要な
設定短時間に相当する。前記ステップ7〜ステップ16
が繰り返される間、第2風路開閉弁34は開状態に維持
され、補正用COセンサ32には排ガスが流動しない状
態に維持されている。尚、ステップ17において不完全
燃焼であることが判別されると、異常表示ランプ27を
点灯させ、バーナ3の燃焼を停止させる(ステップ2
3,24)。
After that, the measured CO concentration exceeds the set upper limit value and it is not judged that the combustion is incomplete.
If the hot water tap is not closed (steps 17, 1)
8), steps 7 to 16 are repeatedly executed,
The CO concentration measurement (detection operation) by the measurement CO sensor 17 is executed every first set time T 1 (10 minutes), and the exhaust gas flow state is switched only when the CO concentration measurement is executed. It will be. The first set time T
1 corresponds to the set short time required to determine the change in the concentration of the unburned component (CO). Step 7 to Step 16
While the above is repeated, the second air passage opening / closing valve 34 is maintained in the open state, and the correction CO sensor 32 is maintained in a state in which the exhaust gas does not flow. When it is determined in step 17 that the combustion is incomplete, the abnormality display lamp 27 is turned on and the combustion of the burner 3 is stopped (step 2
3, 24).

【0056】ステップ12において、第2タイマーがカ
ウント終了して、補正用の第2設定時間T2 (50時
間)が経過したことが判別されると、補正用COセンサ
32への通電を開始し、燃焼運転が開始された初期状態
であるか否が判断され、初期状態であれば、初期補正係
数を求めてメモリに記憶する(ステップ25,26,2
7)。つまり、各COセンサ17,32により同時に、
つまり、同一濃度状態においてCO濃度測定を実行し、
補正用COセンサ32の検出値bに対する測定用COセ
ンサ17の検出値aの比率(a/b)を初期補正係数k
0 として、メモリに記憶する。
When it is determined in step 12 that the second timer has finished counting and the second correction time T 2 (50 hours) has elapsed, the power supply to the correction CO sensor 32 is started. , It is determined whether or not the combustion operation is in the initial state, and if it is the initial state, an initial correction coefficient is obtained and stored in the memory (steps 25, 26, 2).
7). That is, the CO sensors 17, 32 simultaneously
In other words, CO concentration measurement is performed in the same concentration state,
The ratio (a / b) of the detection value a of the measurement CO sensor 17 to the detection value b of the correction CO sensor 32 is calculated as an initial correction coefficient k.
0 is stored in the memory.

【0057】そして、第2タイマーをリセットして(ス
テップ28)、第2風路開閉弁34を閉じ操作する(ス
テップ29)。第2風路開閉弁34を閉弁させることに
よって、第2箱体31内への導風状態が停止されるか
ら、排気路L内を通過する燃焼排ガスが第2箱体31内
に流れ込み、補正用COセンサ32に向けて流動するこ
とになり、CO濃度測定が可能となる。第2箱体31内
において燃焼排ガスが均一に混合されるに要する第3設
定時間T3 が経過すると、補正用COセンサ32と測定
用COセンサ17により同時に、つまり、同一濃度状態
でCO濃度測定が実行される(ステップ30,31)。
そして、夫々のCO濃度検出値に基づいて、測定用CO
センサ17が感度劣化しているか否かが判別される(ス
テップ32)。つまり、前記各検出値の差が設定値以上
であれば感度劣化していると判別し、設定値未満であれ
ば感度劣化はしていないと判別する。
Then, the second timer is reset (step 28) and the second air passage opening / closing valve 34 is closed (step 29). By closing the second air passage opening / closing valve 34, the air guide state into the second box body 31 is stopped, so the combustion exhaust gas passing through the exhaust passage L flows into the second box body 31, It flows toward the correction CO sensor 32, and the CO concentration can be measured. When the third set time T 3 required for the combustion exhaust gas to be uniformly mixed in the second box 31 has elapsed, the correction CO sensor 32 and the measurement CO sensor 17 simultaneously measure the CO concentration in the same concentration state. Is executed (steps 30 and 31).
Then, based on the respective CO concentration detection values, the measurement CO
It is determined whether or not the sensitivity of the sensor 17 has deteriorated (step 32). That is, if the difference between the detected values is equal to or larger than the set value, it is determined that the sensitivity is deteriorated, and if the difference is less than the set value, it is determined that the sensitivity is not deteriorated.

【0058】感度劣化していると判別されると、補正用
COセンサ32の検出値に基づいて、測定用COセンサ
17の検出値を補正する(ステップ33,34)。つま
り、測定用COセンサ32の検出値に前記初期補正係
数、又は後述する補正作動が実行された後は後述する補
正係数(k0 又はk)の逆数(1/k0 又は1/k)を
掛けた値を、補正後の検出値として用いるのである。例
えば、測定用COセンサの検出値がxであれば、補正後
の検出値yは、
When it is determined that the sensitivity has deteriorated, the detection value of the measuring CO sensor 17 is corrected based on the detection value of the correcting CO sensor 32 (steps 33 and 34). That is, the detection value of the measurement CO sensor 32 is set to the initial correction coefficient or the reciprocal (1 / k 0 or 1 / k) of the correction coefficient (k 0 or k) described below after the correction operation described below is executed. The multiplied value is used as the corrected detection value. For example, if the detection value of the measuring CO sensor is x, the corrected detection value y is

【0059】[0059]

【数1】y=x・(1/k)[Formula 1] y = x · (1 / k)

【0060】又はOr

【0061】[0061]

【数2】y=x・(1/k0 [Number 2] y = x · (1 / k 0)

【0062】となる。It becomes

【0063】ステップ29での測定時における、補正用
COセンサ32の検出値eに対する測定用COセンサの
検出値fの比率(f/e)を補正係数kとして設定し、
この補正係数に対する初期補正係数k0 の比率(k0
k)が「0.5」以下になっていれば、大幅に劣化して
いる異常状態であると判断して、後処理として、異常表
示ランプ27を点灯させ、バーナ3の燃焼を停止させる
(ステップ35,36,37)。上述したような異常状
態が判別されなければ、第1、第2風路開閉弁22,3
4を共に開操作して、補正用COセンサ32への通電を
停止して、補正作動を終了する(ステップ35,38,
39)。
The ratio (f / e) of the detection value f of the measuring CO sensor to the detection value e of the correcting CO sensor 32 during the measurement in step 29 is set as the correction coefficient k,
Ratio of initial correction coefficient k 0 to this correction coefficient (k 0 /
If k) is less than or equal to "0.5", it is determined that the abnormal state is significantly deteriorated, and as an after-treatment, the abnormality display lamp 27 is turned on and the combustion of the burner 3 is stopped ( Steps 35, 36, 37). If the abnormal state as described above is not determined, the first and second air passage opening / closing valves 22, 3
4 is operated together to stop the energization of the correction CO sensor 32, and the correction operation is finished (steps 35, 38,
39).

【0064】第2タイマーは燃焼作動が実行されている
間は、上述した補正作動が実行されない限りカウントを
続行するので、前記補正作動は、第2タイマーがカウン
ト終了する(燃焼積算時間が第2設定時間T2 に達す
る)毎に繰り返し実行されることになる。
Since the second timer continues counting while the combustion operation is being executed unless the above-described correction operation is executed, the correction operation is completed by the second timer (combustion integration time The set time T 2 is reached).

【0065】そして、補正後のCO濃度が設定上限値を
越えて、不完全燃焼であると判別されると、異常表示ラ
ンプ27を点灯させて、バーナ3の燃焼を停止させる
(ステップ17,23,24)。不完全燃焼と判別され
ずに、給湯栓が閉じ操作されなければ、ステップ7に戻
り、閉じ操作されると、バーナ3の燃焼を停止して、ポ
ストパージの後にファン5の作動を停止させ、第1、第
2風路開閉弁22,34を閉じて、測定用COセンサ1
7への通電を停止させる(ステップ19〜22)。
When the corrected CO concentration exceeds the set upper limit value and it is determined that the combustion is incomplete, the abnormality display lamp 27 is turned on and the combustion of the burner 3 is stopped (steps 17 and 23). , 24). If it is not determined that the combustion is incomplete and the hot water supply plug is not closed, the process returns to step 7, and when it is closed, the combustion of the burner 3 is stopped and the operation of the fan 5 is stopped after the post-purge. By closing the first and second air passage opening / closing valves 22 and 34, the measurement CO sensor 1
The power supply to 7 is stopped (steps 19 to 22).

【0066】〔別実施例〕 (1)上記実施例では、測定用COセンサ17に対し
て、間欠的に燃焼排ガスが流動する状態と流動しない状
態とに切り換える構成として、排ガス流動状態において
のみ検出作動を実行する構成としたが、このような構成
に代えて、常に燃焼排ガスが流動する状態にして、所定
短時間毎に、あるいは、連続的にCO濃度の測定を実行
するようにしてもよい。
[Other Embodiments] (1) In the above embodiment, the measurement CO sensor 17 is intermittently switched between a flowing state and a non-flowing state, and is detected only in the exhaust gas flowing state. Although the configuration is such that the operation is executed, instead of such a configuration, the CO concentration may be measured every predetermined short time or continuously with the combustion exhaust gas always flowing. .

【0067】(2)上記実施例では、前記初期補正係数
0 に対する補正係数kの比率が設定値を下回ると、異
常状態であるして、バーナの燃焼を停止させるようにし
たが、前記比率が零又はほぼ零になるまで、前記補正作
動を実行するように構成してもよい。
(2) In the above embodiment, when the ratio of the correction coefficient k to the initial correction coefficient k 0 is below the set value, it is in an abnormal state and the combustion of the burner is stopped. The correction operation may be executed until is zero or almost zero.

【0068】(3)又、上記実施例では、排ガス流動状
態切換手段B及び排ガス流動阻止手段Cが、前記第1、
第2箱体19,31内に送風される状態と送風が停止さ
れる状態とに切り換える場合を例示したが、これに限定
されるものではなく、COセンサの周囲に対する送風に
よって非流動状態に設定し、送風方向を切り換えること
で、排ガス流動状態に設定するように構成するものでも
よい。又、排ガス流動状態切換手段及び排ガス流動阻止
手段を、送風状態を切り換える構成に代えて、図5に示
すように、排気路Lと箱体19内部とを連通させる状態
(イ)と、排気路Lと箱体19内部とを遮蔽すると共
に、箱体19内部と装置外方との連通させる状態(ロ)
とに、切り換え回動操作される切換板28を設け、図示
しないアクチュエータによって、切換板28を回動操作
させて、排ガス流動状態と非流動状態とに切り換えるよ
うに構成するものでもよい。
(3) Further, in the above-mentioned embodiment, the exhaust gas flow state switching means B and the exhaust gas flow blocking means C are the first,
The case where the state in which the air is blown into the second boxes 19 and 31 is switched to the state in which the air is stopped has been illustrated, but the present invention is not limited to this, and the non-flowing state is set by the air blown around the CO sensor. However, the exhaust gas flow state may be set by switching the blowing direction. Further, as shown in FIG. 5, the exhaust gas flow state switching means and the exhaust gas flow blocking means are replaced with a configuration for switching the blowing state, and the exhaust path L and the inside of the box body 19 are communicated with each other (a) and the exhaust path. A state in which L and the inside of the box body 19 are shielded and the inside of the box body 19 and the outside of the device are communicated with each other (b)
Alternatively, a switching plate 28 that is switched and rotated may be provided, and the switching plate 28 may be rotated by an actuator (not shown) to switch between the exhaust gas flowing state and the non-flowing state.

【0069】(4)上記実施例では、後処理として、バ
ーナの燃焼を停止させると共に、異常表示ランプを点灯
させる場合を例示したが、異常表示ランプを用いずにバ
ーナの燃焼を停止させるだけの構成としてもよく、バー
ナの燃焼を停止させずに異常表示ランプを点灯させるか
又は警報ブザー等の警報手段を作動させる構成としても
よい。
(4) In the above embodiment, as the post-treatment, the combustion of the burner is stopped and the abnormality display lamp is turned on, but the combustion of the burner is simply stopped without using the abnormality display lamp. The configuration may be adopted, and the abnormality display lamp may be turned on or the alarm means such as an alarm buzzer may be activated without stopping the combustion of the burner.

【0070】(5)上記実施例では、燃焼積算時間が設
定時間に達する毎に補正指令を指令するようにしたが、
人為操作に基づいて、適宜、補正指令を指令する構成と
してもよい。
(5) In the above embodiment, the correction command is issued every time the integrated combustion time reaches the set time.
A configuration may be adopted in which a correction command is issued as appropriate based on human operation.

【0071】(6)上記実施例では、燃焼排ガス中の未
燃成分の一例として一酸化炭素(CO)を検出する構成
としたが、これに限らず、水素等の他の未燃ガスを検出
するようにしてもよい。
(6) In the above embodiment, carbon monoxide (CO) is detected as an example of unburned components in the combustion exhaust gas, but the invention is not limited to this, and other unburned gases such as hydrogen are detected. You may do it.

【0072】尚、特許請求の範囲の項に図面との対照を
容易にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for facilitating the comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】給湯装置の概略構成図FIG. 1 is a schematic configuration diagram of a hot water supply device.

【図2】COセンサの配設状態を示す平面図FIG. 2 is a plan view showing an arrangement state of a CO sensor.

【図3】制御動作のフローチャートFIG. 3 is a flowchart of control operation

【図4】制御動作のフローチャートFIG. 4 is a flowchart of control operation.

【図5】別実施例の排ガス流動状態切換手段を示す図FIG. 5 is a diagram showing an exhaust gas flow state switching means of another embodiment.

【符号の説明】[Explanation of symbols]

3 バーナ 17 測定用の未燃成分濃度検出手段 32 補正用の未燃成分濃度検出手段 101 補正指令手段 103 後処理実行手段 105 切換制御手段 B 排ガス流動状態切換手段 C 排ガス流動阻止手段 L 排気路 T1 設定短時間3 burner 17 unburned component concentration detection means for measurement 32 unburned component concentration detection means for correction 101 correction command means 103 post-processing execution means 105 switching control means B exhaust gas flow state switching means C exhaust gas flow blocking means L exhaust path T 1 setting short time

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 泰史 大阪府大阪市港区南市岡1丁目1番52号 株式会社ハーマン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Maeda 1-52 Oka 1-chome, Minami-shi, Minato-ku, Osaka

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 バーナ(3)の排気路(L)中を通過す
る燃焼排ガスに含まれる未燃成分の濃度を検出する未燃
成分濃度検出手段が備えられている燃焼装置の未燃成分
濃度検出装置であって、 前記未燃成分濃度検出手段が、 前記未燃成分の濃度を検出する測定用の未燃成分濃度検
出手段(17)と、燃焼排ガスに含まれる未燃成分の濃
度を、補正指令手段(101)による補正指令に基づい
て、間欠的に検出する補正用の未燃成分濃度検出手段
(32)とを備える状態で、複数備えられ、 前記補正用の未燃成分濃度検出手段(32)に対して、
前記燃焼排ガスが流動しない非流動状態を維持すると共
に、前記補正指令に基づいて、前記補正用の未燃成分濃
度検出手段(32)による未燃成分の検出作動が実行さ
れる際にのみ、前記補正用の未燃成分濃度検出手段(3
2)に対して、前記燃焼排ガスが流動する排ガス流動状
態に切り換わる排ガス流動阻止手段(C)が備えられ、 前記補正用の未燃成分濃度検出手段(32)の検出情報
に基づいて、前記測定用の未燃成分濃度検出手段(1
7)による検出値を補正する検出値補正手段(103)
が備えられている燃焼装置の未燃成分濃度検出装置。
1. The unburned component concentration of a combustion device provided with unburned component concentration detection means for detecting the concentration of unburned component contained in the combustion exhaust gas passing through the exhaust passage (L) of the burner (3). In the detection device, the unburned component concentration detection means is a measurement unburned component concentration detection means (17) for detecting the concentration of the unburned component, and the concentration of the unburned component contained in the combustion exhaust gas, A plurality of correction unburned component concentration detection means (32) for intermittent detection based on the correction instruction by the correction instruction means (101) are provided, and the correction unburned component concentration detection means is provided. For (32),
The non-flowing state in which the combustion exhaust gas does not flow is maintained, and the unburned component detection operation by the correction unburned component concentration detection means (32) is executed based on the correction command only when the unburned component detection operation is executed. Unburned component concentration detection means for correction (3
2) is provided with an exhaust gas flow blocking means (C) that switches to an exhaust gas flow state in which the combustion exhaust gas flows, and based on detection information of the correction unburned component concentration detection means (32), Unburned component concentration detection means for measurement (1
Detection value correction means (103) for correcting the detection value by 7)
A device for detecting the concentration of unburned components in a combustion device provided with.
【請求項2】 前記測定用の未燃成分濃度検出手段(1
7)は、 前記未燃成分の濃度変化を判別するに必要な設定短時間
(T1 )毎に、前記未燃成分の濃度検出作動を実行する
ように構成され、 前記測定用の未燃成分濃度検出手段(17)に対して、
前記燃焼排ガスが流動しない非流動状態と、燃焼排ガス
が流動する排ガス流動状態とに切り換え自在な排ガス流
動状態切換手段(B)が備えられ、 前記測定用の未燃成分濃度検出手段(17)による検出
作動が実行される際には、前記排ガス流動状態切換手段
(B)を前記排ガス流動状態に切り換え、検出作動が実
行されない状態においては、前記排ガス流動状態切換手
段(B)を非流動状態に切り換える切換制御手段(10
5)が備えられている請求項1記載の燃焼装置の未燃成
分濃度検出装置。
2. An unburned component concentration detecting means (1) for the measurement.
7) is configured to execute the concentration detection operation of the unburned component for each set short time (T 1 ) required to determine the change in the concentration of the unburned component, and the unburned component for measurement is For the concentration detecting means (17),
An exhaust gas flow state switching means (B) capable of switching between a non-flowing state in which the combustion exhaust gas does not flow and an exhaust gas flow state in which the combustion exhaust gas flows is provided, and the unburned component concentration detection means (17) for measurement is used. The exhaust gas flow state switching means (B) is switched to the exhaust gas flow state when the detection operation is executed, and the exhaust gas flow state switching means (B) is set to the non-flow state when the detection operation is not executed. Switching control means for switching (10
5) The unburned component concentration detecting device for a combustion device according to claim 1, further comprising:
【請求項3】 前記検出値補正手段(103)は、 同一濃度状態における、前記補正用の未燃成分濃度検出
手段(32)の検出値に対する前記測定用の未燃成分濃
度検出手段(17)の検出値の比率を、補正係数として
求め、この補正係数に基づいて、前記測定用の未燃成分
濃度検出手段(17)による検出値を補正するように構
成されている請求項1又は2記載の燃焼装置の未燃成分
濃度検出装置。
3. The detection value correction means (103) includes the measurement unburned component concentration detection means (17) for the detection value of the correction unburned component concentration detection means (32) in the same concentration state. 3. The ratio of the detected values of 1. is obtained as a correction coefficient, and the detection value by the measuring unburned component concentration detecting means (17) is corrected based on the correction coefficient. Unburned component concentration detection device of the combustion device.
【請求項4】 燃焼運転が開始された初期状態におい
て、 同一濃度状態における、前記補正用の未燃成分濃度検出
手段(32)の検出値に対する、前記測定用の未燃成分
濃度検出手段(17)の検出値の比率を、初期補正係数
として求め、 前記初期補正係数に対する、燃焼運転が継続されるに伴
って前記検出値補正手段(103)により求められる前
記補正係数の比率が、設定値を下回ると、感度劣化状態
であるとして、後処理を実行する後処理実行手段(10
4)が備えられている請求項3記載の燃焼装置の未燃成
分濃度検出装置。
4. In the initial state when combustion operation is started, the unburned component concentration detection means for measurement (17) with respect to the detection value of the unburned component concentration detection means for correction (32) in the same concentration state ) Is obtained as an initial correction coefficient, and the ratio of the correction coefficient obtained by the detection value correction means (103) with respect to the initial correction coefficient is set to a preset value. If it falls below, it is determined that the sensitivity is in a deteriorated state, and the post-processing executing means (10) that executes the post-processing is executed.
4) The unburned component concentration detecting device for the combustion device according to claim 3, further comprising:
【請求項5】 前記後処理実行手段(104)は、前記
後処理として、前記バーナ(3)の燃焼を停止させるよ
うに構成されている請求項4記載の燃焼装置の未燃成分
濃度検出装置。
5. The unburned component concentration detecting device for a combustion device according to claim 4, wherein the post-processing executing means (104) is configured to stop combustion of the burner (3) as the post-processing. .
【請求項6】 前記補正指令手段(101)は、 燃焼積算時間が補正用の設定時間に達する毎に、前記補
正指令を指令するように構成されている請求項1、2、
3、4又は5記載の燃焼装置の未燃成分濃度検出装置。
6. The correction instruction means (101) is configured to issue the correction instruction every time the combustion integrated time reaches a set time for correction.
The unburned component concentration detection device of the combustion device according to 3, 4, or 5.
【請求項7】 前記各未燃成分濃度検出手段(17),
(32)が、接触燃焼式COセンサで構成されている請
求項1、2、3、4、5又は6記載の燃焼装置の未燃成
分濃度検出装置。
7. The unburned component concentration detecting means (17),
The unburned component concentration detecting device for a combustion device according to claim 1, wherein (32) is composed of a catalytic combustion type CO sensor.
JP26709594A 1994-10-31 1994-10-31 Unburnt component concentration detecting device for combustion equipment Pending JPH08128981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26709594A JPH08128981A (en) 1994-10-31 1994-10-31 Unburnt component concentration detecting device for combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26709594A JPH08128981A (en) 1994-10-31 1994-10-31 Unburnt component concentration detecting device for combustion equipment

Publications (1)

Publication Number Publication Date
JPH08128981A true JPH08128981A (en) 1996-05-21

Family

ID=17439988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26709594A Pending JPH08128981A (en) 1994-10-31 1994-10-31 Unburnt component concentration detecting device for combustion equipment

Country Status (1)

Country Link
JP (1) JPH08128981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282425A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Hydrogen generator
JP2009047431A (en) * 2007-08-13 2009-03-05 Rinnai Corp Gas concentration detector and gas concentration detecting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282425A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Hydrogen generator
JP4609157B2 (en) * 2005-03-31 2011-01-12 パナソニック株式会社 Hydrogen generator and fuel cell system
JP2009047431A (en) * 2007-08-13 2009-03-05 Rinnai Corp Gas concentration detector and gas concentration detecting method

Similar Documents

Publication Publication Date Title
US8521400B2 (en) Combustion apparatus and method for combustion control
JPH08128981A (en) Unburnt component concentration detecting device for combustion equipment
JPH05154323A (en) Method for detecting clogging of filter
JPH08233261A (en) Unburnt gas concentration-detecting device for combustion device
JPH08224425A (en) Method for detecting filter clogging
JP3476594B2 (en) Water heater
JP2002022156A (en) Combustion control device for fully primary combustion burner
JP3373936B2 (en) Combustion equipment
JPH08110044A (en) Unburnt component concentration detector of combustion device
JP4553255B2 (en) Method for confirming safety of combustion equipment and combustion system
JP4219102B2 (en) Hot air heater
JP3499281B2 (en) Combustion equipment
JP2724101B2 (en) Combustion equipment
JPH08121754A (en) Device for detecting concentration of unburnt component of combustion equipment
KR0146011B1 (en) Combustion terminating device in incomplete combustion of combustion instrument
KR0170179B1 (en) Burner
JP3693203B2 (en) Incomplete combustion prevention device
JP2851236B2 (en) Combustion equipment
JPH0689942B2 (en) heater
JPH0814555A (en) Unburnt gas concentration detector for combustion device
JPH0842847A (en) Combustion apparatus
JP3143259B2 (en) Combustion device abnormality detection device
JPH08170826A (en) Gas water heater
JPH06323538A (en) Failure detection device for combustion apparatus
JPH07332667A (en) Combustion device