JPH08126836A - Liquid level control mechanism - Google Patents

Liquid level control mechanism

Info

Publication number
JPH08126836A
JPH08126836A JP6290486A JP29048694A JPH08126836A JP H08126836 A JPH08126836 A JP H08126836A JP 6290486 A JP6290486 A JP 6290486A JP 29048694 A JP29048694 A JP 29048694A JP H08126836 A JPH08126836 A JP H08126836A
Authority
JP
Japan
Prior art keywords
liquid level
gas
liquid
reaction tank
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6290486A
Other languages
Japanese (ja)
Inventor
Kenji Kobayashi
健二 小林
Teruo Sugitani
照雄 杉谷
Hiromi Koshizuka
博美 腰塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP6290486A priority Critical patent/JPH08126836A/en
Publication of JPH08126836A publication Critical patent/JPH08126836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE: To provide a liquid level control mechanism having a simple constitution and capable of controlling a liquid level in a short time. CONSTITUTION: This liquid level control mechanism is the one for controlling the level of liquid housed in a tank, which is provided with an insoluble gas holding part 60 having a communicative port 76 communicating with the inside of the tank in the lower part thereof and for hosing liquid flowing in and out through the communicative port 76 in the lower part and for housing insoluble gas above the liquid, a level gage 62 for detecting the liquid level in the tank, inflow means 64, 66, 68 for force feeding gas into the holding part, outflow means 70, 72 for causing gas to flow out to the outside from the gas holding part, and a control means 74 for controlling the inflow means and the outflow means based on a detected value of the level gage. The gas is caused to flow into or out of the gas holding part 60 to lower or raise the liquid level in the lower part of the gas holding part, thereby the liquid level in the tank is lowered or raised. At this time, based on the detected value of the level gage, the inflow or outflow quantity of the gas flowing into or out of the gas holding part is controlled by the control means 74 so that the liquid level in the tank may attain a prescribed liquid level position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、容器に収容された液体
の液面、特に大型容器に収容された液体の液面、例えば
直径10mから50mの大型容器に収容された液体の液
面を調節する液面調節機構に関し、更に詳細には、簡単
な経済的な構成を有し、しかも短時間で液面の調節を行
うことができる液面調節機構、特にジェットバブリング
反応槽の液面を調節するのに適した液面調節機構に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a liquid surface of a liquid contained in a container, particularly a liquid surface of a liquid contained in a large container, for example, a liquid surface contained in a large container having a diameter of 10 to 50 m. Regarding the liquid level adjusting mechanism for adjusting, more specifically, the liquid level adjusting mechanism having a simple and economical structure and capable of adjusting the liquid level in a short time, especially the liquid level of the jet bubbling reaction tank The present invention relates to a liquid level adjusting mechanism suitable for adjusting.

【0002】[0002]

【従来の技術】化学工場或いは石油化学工場を始めとす
る工場では、種々の液体を容器に収容しており、様々な
理由から、容器に収容した液体の液面の設定位置を変
え、短時間でその位置に液面を調節することがしばしば
必要になる。このような急速液面調節の必要性をジェッ
トバブリング反応槽を例にして説明する。ジェットバブ
リング反応槽(以下、簡単に反応槽と略称する)は、排
ガス中に含まれるSO2 、HF、Hcl 、NH3 、ダスト等の環
境汚染物質を除去する排ガス処理装置に使用される、コ
ンパクトで運転費の低い反応槽である。
2. Description of the Related Art In a factory such as a chemical factory or a petrochemical factory, various liquids are contained in a container, and for various reasons, the setting position of the liquid level of the liquid contained in the container is changed and the liquid is stored for a short time. It is often necessary to adjust the liquid level at that position. The necessity of such rapid liquid level adjustment will be described by taking a jet bubbling reaction tank as an example. A jet bubbling reaction tank (hereinafter simply referred to as a reaction tank) is a compact, exhaust gas treatment device used to remove environmental pollutants such as SO 2 , HF, Hcl, NH 3 and dust contained in exhaust gas. It is a reaction tank with low operating cost.

【0003】反応槽12は、図4に示すように、竪型容
器であって、容器下部の吸収液収容部14と、吸収液収
容部14上に設けられ、亜硫酸ガスを含む排ガスを反応
槽内に導入する排ガス入口室16と、排ガス入口室16
から吸収液に排ガスを導入する排ガス分散管20と、排
ガス入口室16上に設けられ、処理された排ガスを系外
に排出する排ガス出口室22とを備えている。排ガス分
散管20は、上端が排ガス入口室16の下隔壁に連結さ
れ、下部が吸収液中に浸漬するようにほぼ垂直に配設さ
れ、かつ下部に多数の貫通孔18を有する。排ガス出口
室22は、排ガス入口室16を貫通する連通管24を介
して吸収液液面上の空間と連通している。吸収液収容部
14には、SO2 固定剤、例えば石灰石を溶解又は懸濁し
た吸収液が収容されている。
As shown in FIG. 4, the reaction tank 12 is a vertical container, which is provided in the lower part of the container with an absorbing liquid storage portion 14 and on the absorbing liquid storage portion 14 for reacting exhaust gas containing sulfurous acid gas. Exhaust gas inlet chamber 16 to be introduced inside, and exhaust gas inlet chamber 16
An exhaust gas dispersion pipe 20 for introducing exhaust gas into the absorption liquid is provided, and an exhaust gas outlet chamber 22 provided on the exhaust gas inlet chamber 16 for discharging the treated exhaust gas to the outside of the system. The exhaust gas dispersion pipe 20 has an upper end connected to the lower partition wall of the exhaust gas inlet chamber 16, a lower part arranged substantially vertically so as to be immersed in the absorption liquid, and a large number of through holes 18 in the lower part. The exhaust gas outlet chamber 22 communicates with the space above the liquid surface of the absorbing liquid via a communication pipe 24 that penetrates the exhaust gas inlet chamber 16. The absorption liquid storage unit 14 stores an SO 2 fixing agent, for example, an absorption liquid in which limestone is dissolved or suspended.

【0004】SO2 を含む排ガスは、排ガス源から排ガス
導入ダクト26を経て排ガス入口室14に送入され、更
に、排ガス分散管20により吸収液収容部14に収容さ
れた吸収液の液面下に導入され、貫通孔18からジェッ
ト状に噴出して吸収液中にバブリングしながら泡出す
る。これにより所謂ジェットバブリング層Aが液面下に
生成される。続いて、排ガスは、吸収液から上昇し、連
通管24を経由して排ガス出口室22に入り、更に排出
ダクト28から系外に排出される。排ガス中のSO2 は、
吸収液中でSO2 固定剤と反応して亜硫酸塩になると同時
に、反応槽の底部に配置した酸素含有ガス導入管30か
ら吹き込まれた酸素含有ガス、例えば空気により酸化さ
れて硫酸塩となり、更に水和して晶析する。晶析した硫
酸塩、例えば石膏を濃厚に含有する吸収液は、図示しな
いが、吸収液排出管を介してポンプにより遠心分離器に
送られ、石膏が分離される。尚、図4中、32は吸収液
を攪拌するための攪拌翼であり、34は透視型液面計で
ある。
Exhaust gas containing SO 2 is sent from the exhaust gas source to the exhaust gas inlet chamber 14 through the exhaust gas introduction duct 26, and further below the liquid surface of the absorption liquid stored in the absorption liquid storage portion 14 by the exhaust gas dispersion pipe 20. And is jetted out from the through-hole 18 in a jet form to bubble while bubbling into the absorbing liquid. As a result, a so-called jet bubbling layer A is generated below the liquid surface. Subsequently, the exhaust gas rises from the absorbing liquid, enters the exhaust gas outlet chamber 22 via the communication pipe 24, and is further discharged from the exhaust duct 28 to the outside of the system. SO 2 in the exhaust gas is
At the same time as reacting with the SO 2 fixing agent in the absorbing solution to form a sulfite, at the same time, it is oxidized by an oxygen-containing gas blown from an oxygen-containing gas introducing pipe 30 arranged at the bottom of the reaction tank, for example, air to be a sulfate, and Hydrate and crystallize. Although not shown, the absorbing solution containing the crystallized sulfate, for example, gypsum in a concentrated manner, is sent to a centrifugal separator by a pump through an absorbing solution discharge pipe to separate gypsum. In FIG. 4, 32 is a stirring blade for stirring the absorbing liquid, and 34 is a transparent liquid level gauge.

【0005】ところで、反応槽の脱硫率は、吸収液のP
H、排ガス流量等の他の条件が一定である限り、図5に
示すように、排ガス分散管の浸液深に依存している。こ
こで、排ガス分散管の浸液深LSとは、排ガスを通して
いない時には図6(a)に示すように排ガス分散管20
の下部に設けられた貫通孔18の上端から吸収液液面ま
での距離で表示され、排ガスを通している時には図6
(b)に示すように透視型液面計34の液面と貫通孔の
上端との距離で表示される。図6(a)及び(b)は、
それぞれ図4の″B″の拡大図である。従来は、脱硫率
を一定の値に維持するために、浸液深を一定、従って、
吸収液の液面を一定の位置に制御していた。
By the way, the desulfurization rate of the reaction tank is determined by the P of the absorption liquid.
As long as other conditions such as H and exhaust gas flow rate are constant, as shown in FIG. 5, it depends on the immersion depth of the exhaust gas dispersion pipe. Here, the immersion liquid depth LS of the exhaust gas dispersion pipe refers to the exhaust gas dispersion pipe 20 as shown in FIG.
It is displayed by the distance from the upper end of the through hole 18 provided in the lower part of the tank to the liquid surface of the absorbing liquid.
As shown in (b), it is displayed by the distance between the liquid level of the transparent liquid level gauge 34 and the upper end of the through hole. 6 (a) and 6 (b),
FIG. 5 is an enlarged view of “B” in FIG. 4, respectively. Conventionally, in order to maintain the desulfurization rate at a constant value, the immersion depth is constant, and therefore
The liquid level of the absorbing liquid was controlled at a fixed position.

【0006】しかし、浸液深を一定にして脱硫率を一定
に維持する反応槽の運転では、反応槽入口での排ガス中
のSO2 濃度が小さい場合、反応槽出口での排ガス中のSO
2 濃度は許容値より遙に低い非常に小さな値となる。逆
に、反応槽入口での排ガス中のSO2 濃度が大きい場合、
反応槽出口での排ガス中のSO2 濃度は許容値より高い値
となる恐れがある。これでは、反応槽入口でのSO2 濃度
が高いときには、環境問題を引き起こすことになり、ま
た反応槽入口でのSO2 濃度が低いときには、公害防止経
済上で不経済になる。
However, in the operation of the reaction tank in which the immersion depth is kept constant and the desulfurization rate is kept constant, when the SO 2 concentration in the exhaust gas at the reaction tank inlet is small, the SO 2 in the exhaust gas at the outlet of the reaction tank is reduced.
2 The concentration is a very small value, which is much lower than the allowable value. Conversely, if the SO 2 concentration in the exhaust gas at the reaction tank inlet is high,
The SO 2 concentration in the exhaust gas at the outlet of the reaction tank may be higher than the allowable value. This causes environmental problems when the SO 2 concentration at the reaction tank inlet is high, and becomes uneconomical in terms of pollution prevention economy when the SO 2 concentration at the reaction tank inlet is low.

【0007】そこで、排ガスの入口SO2 濃度の変動に応
じて脱硫率を変動させ、出口SO2 濃度を一定にすること
が要望されている。脱硫率を変化させるには、図5から
判るように、排ガスの入口SO2 濃度の変動に応じて浸液
深、従って液面の位置を変化させることが必要である。
即ち、入口SO2 ガス濃度が低いときには、浸液深を浅く
して、従って液面を低くして脱硫率を小さくし、入口SO
2 ガス濃度が高いときには、浸液深を深くして、従って
液面を高くして脱硫率を大きくする。しかも、排ガス中
のSO2 濃度の変動に応じて短時間で浸液深、即ち液面の
位置を調節する必要がある。
Therefore, it is required to change the desulfurization rate according to the change in the SO 2 concentration of the exhaust gas to keep the SO 2 concentration of the outlet constant. To change the desulfurization rate, as can be seen from FIG. 5, it is necessary to change the immersion liquid depth and hence the position of the liquid surface according to the variation of the SO 2 concentration at the inlet of the exhaust gas.
That is, when the SO 2 gas concentration at the inlet is low, the depth of the immersion liquid is made shallow, and therefore the liquid surface is lowered to reduce the desulfurization rate,
2 When the gas concentration is high, the depth of immersion is deepened, and therefore the liquid surface is raised to increase the desulfurization rate. Moreover, it is necessary to adjust the immersion liquid depth, that is, the position of the liquid surface in a short time according to the fluctuation of the SO 2 concentration in the exhaust gas.

【0008】[0008]

【発明が解決しようとする課題】ところで、反応槽12
は、吸収液の供給/排出機構として、基本的には、図7
に示すように、吸収液貯槽40、供給ポンプ42、排出
ポンプ44、液面計46、制御装置48、流量制御弁5
0、52を備え、それにより反応槽12内の液面の位置
を制御すると共に、反応槽12の廃吸収液を排出し、そ
れに代わる新しい吸収液を吸収液貯槽40から供給して
いる。上述のように反応槽12の液面を調節する必要が
ある場合、従来の液面調節機構は、液面を上げる場合に
は、制御装置48と流量調節弁50、52の協動によ
り、反応槽12に送入する吸収液の流量を増加させると
共に反応槽12から流出させる吸収液の流量を減少させ
る操作を行う。また、液面を下げる場合には、その逆の
操作が行われる。
By the way, the reaction tank 12
Is basically the absorption liquid supply / discharge mechanism as shown in FIG.
As shown in FIG. 4, the absorption liquid storage tank 40, the supply pump 42, the discharge pump 44, the liquid level gauge 46, the control device 48, the flow control valve 5
0 and 52 are provided to control the position of the liquid surface in the reaction tank 12, discharge the waste absorption liquid from the reaction tank 12, and supply a new absorption liquid instead of the absorption liquid from the absorption liquid storage tank 40. When it is necessary to adjust the liquid level of the reaction tank 12 as described above, the conventional liquid level adjusting mechanism reacts when the liquid level is raised by the cooperation of the controller 48 and the flow rate adjusting valves 50 and 52. The operation of increasing the flow rate of the absorbing solution fed into the tank 12 and decreasing the flow rate of the absorbing solution flowing out of the reaction tank 12 is performed. When lowering the liquid level, the reverse operation is performed.

【0009】例えば、図6に示す例で、反応槽12の直
径が40mとすると、液面の位置を現在の位置から10
cmだけ上、又は下に設定し、1分間で液面を調節する必
要のある場合には、約130m3 /min の流速で吸収液
を流入させたり、流出させたりする必要がある。このた
めには、反応槽12以外に130m3 以上の吸収液を貯
蔵しておく大型の吸収液貯槽40と、吸収液を130m
3 /min の流量で移送する大型の供給及び排出ポンプを
必要と、ポンプの容量が液面調節に要する時間を決定す
る。或いは、別法として130m3 以上の吸収液を貯蔵
しておく容器を反応槽より高い位置に設置し、重力で流
下させる手段もある。
For example, in the example shown in FIG. 6, when the diameter of the reaction tank 12 is 40 m, the position of the liquid surface is 10 from the current position.
When it is necessary to adjust the liquid level in 1 minute by setting it up or down by cm, it is necessary to allow the absorbing solution to flow in and out at a flow rate of about 130 m 3 / min. For this purpose, in addition to the reaction tank 12, a large absorption liquid storage tank 40 for storing 130 m 3 or more of the absorption liquid and 130 m of the absorption liquid are stored.
Large feed and discharge pumps with a flow rate of 3 / min are needed, and the pump capacity determines the time required for liquid level adjustment. Alternatively, as another method, there is a means in which a container for storing the absorption liquid of 130 m 3 or more is installed at a position higher than the reaction tank and gravity flows down.

【0010】しかし、上述した従来のいずれの液面調節
機構も、大きな設備と敷地を必要とし、設備コストが嵩
んで、経済的に負担となる。そこで、本発明の目的は、
簡単な構成で、かつ液面の調節を短時間で行うことがで
きる液面調節機構を提供することである。
However, any of the above-mentioned conventional liquid level adjusting mechanisms requires a large facility and a lot of site, which increases the facility cost and is economically burdensome. Therefore, the purpose of the present invention is to
An object of the present invention is to provide a liquid level adjusting mechanism having a simple structure and capable of adjusting the liquid level in a short time.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る液面調節機構は、容器に収容した液体
の液面位置を調節する機構であって、容器内部との連通
口を下部に有し、連通口を介して流入出する液体及びそ
の液体上に非溶解性の気体をそれぞれ収容するようにし
た気体溜め部と、気体を気体溜め部に流入させる流入手
段と、気体を気体溜め部から外部に流出させる流出手段
とを備え、気体溜め部に気体を流入又は流出させて気体
溜め部内の液面を下降又は上昇させ、それによって容器
内の液面を昇降するようにしたことを特徴としている。
本発明で使用する気体は、非溶解性である限り特に制約
はなく、空気、或いは上述のジェットバブリング反応槽
の場合には排ガスを使用できる。また、流入手段は、例
えば気体ボンベとそれに接続された管で構成しても良
く、また圧縮機とそれに接続された管で構成しても良
い。
In order to achieve the above object, a liquid level adjusting mechanism according to the present invention is a mechanism for adjusting a liquid level position of a liquid contained in a container, which is a communication port with the inside of the container. And a gas reservoir portion for accommodating a liquid that flows in and out through a communication port and an insoluble gas on the liquid, an inflow means for allowing the gas to flow into the gas reservoir portion, and a gas And an outflow means for outflowing the gas from the gas reservoir to the outside so that the gas may flow into or out of the gas reservoir to lower or raise the liquid level in the gas reservoir, thereby raising or lowering the liquid level in the container. It is characterized by having done.
The gas used in the present invention is not particularly limited as long as it is insoluble, and air or exhaust gas in the case of the above-mentioned jet bubbling reaction tank can be used. Further, the inflow means may be composed of, for example, a gas cylinder and a pipe connected to it, or may be composed of a compressor and a pipe connected to it.

【0012】本発明の望ましい実施態様は、更に、容器
内の液体の液面を検出する液面計と、液面計の検出値に
基づいて流入手段と流出手段とを制御する制御手段とを
備え、液面計の検出値に基づいて、容器内の液面が設定
した液面位置に到達するように、気体溜め部に流入又は
流出する気体の流入量又は流出量を制御手段により調節
するようにしたことを特徴としている。
A preferred embodiment of the present invention further comprises a liquid level gauge for detecting the liquid level of the liquid in the container, and a control means for controlling the inflow means and the outflow means based on the detection value of the liquid level gauge. Based on the detection value of the liquid level gauge, the inflow amount or outflow amount of the gas flowing into or out of the gas reservoir is adjusted by the control means so that the liquid level in the container reaches the set liquid level position. It is characterized by doing so.

【0013】本発明に係る液面調節機構は、ジェットバ
ブリング反応槽内の吸収液の液面調節機構として好適に
適用でき、その際、気体溜め部は、ジェットバブリング
反応槽の周壁に沿ってその外側に設けられ、かつ反応槽
周壁と、一方の周縁で反応槽周壁に連結された天板と、
天板の他方の周縁から垂下する側壁と、側壁の下縁と反
応槽周壁とを連結する底板とで形成された環状容器の全
部により、又はその環状の容器を一部形成すると共にそ
の対向する両端面を閉止して構成され、連通口は、天板
と底板との間の反応槽周壁に設けられ、かつ気体を流入
させる流入口と流出させる流出口とが天板に設けてある
ことを特徴している。
The liquid level adjusting mechanism according to the present invention can be suitably applied as a liquid level adjusting mechanism of the absorbing liquid in the jet bubbling reaction tank, in which case the gas reservoir is formed along the peripheral wall of the jet bubbling reaction tank. A reaction tank peripheral wall provided outside, and a top plate connected to the reaction tank peripheral wall at one peripheral edge,
The whole annular container formed by the side wall hanging from the other peripheral edge of the top plate and the bottom plate connecting the lower edge of the side wall and the peripheral wall of the reaction tank, or forming a part of the annular container and facing them. It is configured by closing both end faces, the communication port is provided on the peripheral wall of the reaction tank between the top plate and the bottom plate, and the top plate is provided with an inlet for letting in gas in and an outlet for letting out gas. It features.

【0014】また、ジェットバブリング反応槽内の吸収
液の液面調節機構として好適に適用できる本発明に係る
別の液面調節機構では、気体溜め部は、ジェットバブリ
ング反応槽の周壁に沿ってその内側に設けられ、かつ反
応槽周壁と、一方の周縁が反応槽周壁に連結された天板
と、天板の他方の周縁から垂下する側壁とで形成された
上側が閉の環状体の全部により、又はその環状体を一部
形成すると共にその対向する両端面を閉止して形成さ
れ、連通口として、側壁の下縁と反応槽周壁との開口部
が機能し、気体を流入させる流入口と流出させる流出口
とが天板に設けてあることを特徴としている。
Further, in another liquid level adjusting mechanism according to the present invention which can be suitably applied as a liquid level adjusting mechanism of the absorbing liquid in the jet bubbling reaction tank, the gas reservoir is formed along the peripheral wall of the jet bubbling reaction tank. The reaction vessel peripheral wall is provided inside, the top plate whose one peripheral edge is connected to the reaction chamber peripheral wall, and the side wall hanging from the other peripheral edge of the top plate, the upper side formed by a closed annular body. , Or formed by partially forming the annular body and closing the opposite end surfaces thereof, and the opening of the lower edge of the side wall and the peripheral wall of the reaction tank functions as a communication port, and an inlet for introducing gas. It is characterized in that the top plate is provided with an outlet for letting it flow out.

【0015】[0015]

【作用】図1は本発明に係る液面調節機構の動作原理を
示す概略フローシートである。本発明に係る液面調節機
構は、容器状の気体溜め部60と、容器C内の液体の液
面を検出する液面計62と、自動制御弁64を有する流
入管66と、それに接続された気体ボンベ68とからな
る流入手段と、自動制御弁70を有する流出管72から
なる流出手段と、液面計62の検出値に基づいて流入手
段と流出手段とを制御する制御装置74とを備えてい
る。気体溜め部60の下部と容器Cとは、連通管76に
より連通しており、それによって液体が相互に移送され
る。尚、制御装置74を設けずに手動(マニュアル)に
て操作することもできる。
1 is a schematic flow sheet showing the operating principle of the liquid level adjusting mechanism according to the present invention. The liquid level adjusting mechanism according to the present invention includes a container-shaped gas reservoir 60, a liquid level gauge 62 for detecting the liquid level of the liquid in the container C, an inflow pipe 66 having an automatic control valve 64, and a connection therewith. A gas cylinder 68, an outflow means including an outflow pipe 72 having an automatic control valve 70, and a control device 74 for controlling the inflow means and the outflow means based on the detection value of the liquid level gauge 62. I have it. The lower portion of the gas reservoir 60 and the container C communicate with each other through a communication pipe 76, whereby liquids are transferred to each other. It should be noted that it is also possible to operate manually without providing the control device 74.

【0016】図1(b)に示すように、容器Cの液面の
最低位置を仮にレベル1とし、それに対応する気体溜め
部60内の液面をレベル1とする。この際、容器Cのレ
ベル1は、気体溜め部60のレベル1と同じ高さか、ま
た高い位置になるようにする。容器C内の液面をレベル
2に上昇させたい場合には、制御装置74において液面
の設定値をレベル2に設定し、次いで自動制御弁64を
開放して気体ボンベ68から気体を気体溜め部60に導
入する。これにより、気体溜め部60内の液体の一部
は、連通管76を通って容器Cに移送される。液面計6
2の検出値は、常時、制御装置28に入力され、その検
出値がレベル2に到達した時点で、自動制御弁64は閉
止され、また気体溜め部60の液面は低下してレベル2
に到達している。レベル1又はレベル2からレベル3に
上昇させたい場合にも、上述した方法と同様に操作す
る。
As shown in FIG. 1B, the lowest position of the liquid surface of the container C is assumed to be level 1, and the corresponding liquid surface in the gas reservoir 60 is set to level 1. At this time, the level 1 of the container C is at the same height as the level 1 of the gas reservoir 60 or at a higher position. When it is desired to raise the liquid level in the container C to level 2, the controller 74 sets the liquid level set value to level 2, and then the automatic control valve 64 is opened to collect gas from the gas cylinder 68. Introduced into part 60. As a result, a part of the liquid in the gas reservoir 60 is transferred to the container C through the communication pipe 76. Liquid level gauge 6
The detected value of 2 is always input to the control device 28, and when the detected value reaches the level 2, the automatic control valve 64 is closed and the liquid level of the gas reservoir 60 is lowered to the level 2.
Has reached. When it is desired to increase from level 1 or level 2 to level 3, the same operation as described above is performed.

【0017】逆に、容器C内の液面をレベル3からレベ
ル2又はレベル1に下降させたい場合には、制御装置7
4において液面の設定値をレベル2又はレベル1に設定
し、次いで自動制御弁70を開放して気体溜め部60内
の気体を外部に放出する。これにより、容器C内の液体
の一部は、連通管76を通って気体溜め部60に移送さ
れる。液面計62の検出値がレベル2又はレベル1に到
達した時点で、自動制御弁70は閉止され、気体溜め部
60の液面は、図1(b)に示すように、低下してレベ
ル2又はレベル1に到達している。尚、この場合、液体
は主として容器Cの液面と気体溜め部60の液面との高
低差によって移送される。
On the contrary, when it is desired to lower the liquid level in the container C from level 3 to level 2 or level 1, the controller 7
In 4, the set value of the liquid level is set to level 2 or level 1, and then the automatic control valve 70 is opened to discharge the gas in the gas reservoir 60 to the outside. As a result, a part of the liquid in the container C is transferred to the gas reservoir 60 through the communication pipe 76. When the detection value of the liquid level gauge 62 reaches level 2 or level 1, the automatic control valve 70 is closed, and the liquid level of the gas reservoir 60 is lowered to the level as shown in FIG. 1 (b). Reach 2 or Level 1. In this case, the liquid is mainly transferred due to the difference in height between the liquid surface of the container C and the liquid surface of the gas reservoir 60.

【0018】このように、気体を気体溜め部60に導入
することにより、その気体の圧力で気体溜め部60の液
体を容器Cに移送し、また液面の高低差により容器Cの
液体を気体溜め部60に移送し、容器Cの液面を設定位
置に調節している。しかも、液体を気体溜め部60から
容器Cに移送するのに要する気体圧力は、容器Cの液面
と気体溜め部60の液面との高低差に等しい比較的小さ
な圧力である。従って、従来の液面調節機構のように、
ポンプ等で貯槽から液体を移送する必要がなく、大流量
で流入出させるのに適した気体を利用して液体を移送し
ているので、ポンプ等の容量に依存することなく、気体
の圧力、連通口の寸法等を考慮することにより液面調節
に要する時間を短く定めることができる。また、気体の
圧力又は液面の高低差で液体を移送するので、簡単な機
構で液面を調節することができる。また、設定した液面
位置に液面を到達させた後は、その位置に液面を維持す
るように制御装置に制御させることもできる。
As described above, by introducing the gas into the gas reservoir 60, the liquid in the gas reservoir 60 is transferred to the container C by the pressure of the gas, and the liquid in the container C is vaporized due to the difference in height of the liquid surface. The liquid is transferred to the reservoir 60 and the liquid level of the container C is adjusted to the set position. Moreover, the gas pressure required to transfer the liquid from the gas reservoir 60 to the container C is a relatively small pressure equal to the difference in height between the liquid surface of the container C and the liquid surface of the gas reservoir 60. Therefore, like the conventional liquid level adjustment mechanism,
Since it is not necessary to transfer the liquid from the storage tank with a pump, etc., and the liquid is transferred using a gas suitable for flowing in and out at a large flow rate, the pressure of the gas, regardless of the capacity of the pump, etc. The time required for liquid level adjustment can be set short by considering the dimensions of the communication port. Further, since the liquid is transferred by the pressure of the gas or the height difference of the liquid level, the liquid level can be adjusted by a simple mechanism. Further, after the liquid surface reaches the set liquid surface position, the control device can be controlled to maintain the liquid surface at that position.

【0019】[0019]

【実施例】以下、添付図面を参照し、実施例に基づいて
本発明をより詳細に説明する。実施例1 図2(a)は本発明に係る液面調節機構をジェットバブ
リング反応槽に適用した例を示す概略フローシート、及
び図2(b)は図2(a)の矢視X−Xでの気体溜め部
の平面図であって、両図とも本発明に直接関係しない攪
拌翼等を除外している。尚、図2及び図3に示した部品
のうち図1に示したものと同じものには同じ符号を付
す。本実施例の液面調節機構は、図4に示した反応槽1
2の構成に加えて、気体溜め部60と、容器内の液体の
液面を検出する液面計62と、自動制御弁64を有する
流入管66及びそれに接続された気体ボンペ68とから
なる気体流入手段と、自動制御弁70を有する流出管7
2からなる流出手段と、液面計62の検出値に基づいて
流入手段と流出手段とを制御する制御装置74とを備え
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the accompanying drawings. Example 1 FIG. 2 (a) is a schematic flow sheet showing an example in which the liquid level adjusting mechanism according to the present invention is applied to a jet bubbling reaction tank, and FIG. 2 (b) is an arrow XX of FIG. 2 (a). FIG. 3 is a plan view of the gas reservoir portion in FIG. 2, and both figures exclude the stirring blades and the like that are not directly related to the present invention. The same parts as those shown in FIG. 1 among the parts shown in FIGS. 2 and 3 are designated by the same reference numerals. The liquid level adjusting mechanism of this embodiment is the same as the reaction tank 1 shown in FIG.
In addition to the configuration of 2, a gas including a gas reservoir 60, a liquid level gauge 62 for detecting the liquid level of the liquid in the container, an inflow pipe 66 having an automatic control valve 64, and a gas bomber 68 connected thereto. Outflow pipe 7 having inflow means and automatic control valve 70
It comprises an outflow means consisting of 2 and a control device 74 for controlling the inflow means and the outflow means based on the detection value of the liquid level gauge 62.

【0020】気体溜め部60は、図2(b)に示すよう
に、反応槽12の外側で周壁78の周りに一周して形成
されており、一方の周縁で周壁78と連結している環状
の天板80と、天板80の他方の周縁から垂下する筒状
の側壁82と、側壁82の下端と周壁78とを連結する
底板84とから構成されている。周壁78と底板84と
を連結した連結部上方には、環状の開口部が、連通口7
6として設けられ、気体溜め部60と容器Cの内部とを
連通している。本実施例において、反応槽12の直径4
0m、液面の差(図2で反応槽12のレベル1とレベル
3との差)を20cmとすると、天板80の幅を2mとし
た場合、側壁82の高さは、約2m程度で良く、反応槽
12の液面と気体溜め部60の液面の差(レベル1とレ
ベル3′との差)は95cm程度となる。よって、その液
面を上昇させるのに必要な圧力は、水柱で115cm程度
となる。
As shown in FIG. 2B, the gas reservoir 60 is formed around the peripheral wall 78 on the outside of the reaction tank 12, and is connected to the peripheral wall 78 at one peripheral edge. The top plate 80, a cylindrical side wall 82 that hangs down from the other peripheral edge of the top plate 80, and a bottom plate 84 that connects the lower end of the side wall 82 and the peripheral wall 78. An annular opening is formed above the connecting portion that connects the peripheral wall 78 and the bottom plate 84.
6 is provided to connect the gas reservoir 60 and the inside of the container C. In this embodiment, the diameter of the reaction tank 12 is 4
Assuming that the width of the top plate 80 is 2 m, the height of the side wall 82 is about 2 m, assuming that the height of the top plate 80 is 2 m and the difference in liquid level (difference between the level 1 and the level 3 of the reaction tank 12 in FIG. Good, the difference between the liquid surface of the reaction tank 12 and the liquid surface of the gas reservoir 60 (difference between level 1 and level 3 ') is about 95 cm. Therefore, the pressure required to raise the liquid level is about 115 cm in the water column.

【0021】本実施例の液面調節機構の動作原理及び効
果は図1に示した液面調節機構と同じで、更に、本実施
例の場合、気体溜め部60の側壁82に対向する壁とし
て反応槽12の周壁78が使用されているので、それだ
け経済的である。尚、本実施例では、気体溜め部60
は、反応槽12の外周に沿って一周する形で形成されて
いるが、外周の一部にのみ設けてもよい。また、気体ボ
ンベ68に変えて、空気又は排ガスを圧縮機で送入して
も良く、圧力のある排ガスの場合には圧縮機による圧縮
も必要ではない。更に、反応槽12の入口での排ガスの
SO2濃度の測定値に基づき図5のような関係に従って反
応槽12内の吸収液の液面を自動的に設定するようにす
ることもできる。
The operation principle and effects of the liquid level adjusting mechanism of the present embodiment are the same as those of the liquid level adjusting mechanism shown in FIG. 1, and further, in the case of the present embodiment, as a wall facing the side wall 82 of the gas reservoir 60. Since the peripheral wall 78 of the reaction tank 12 is used, it is economical. In the present embodiment, the gas reservoir 60
Is formed so as to make one round along the outer circumference of the reaction tank 12, but may be provided only on a part of the outer circumference. Further, instead of the gas cylinder 68, air or exhaust gas may be sent in by a compressor, and in the case of exhaust gas having a pressure, compression by the compressor is not necessary. Furthermore, the exhaust gas at the inlet of the reaction tank 12
It is also possible to automatically set the liquid level of the absorbing liquid in the reaction tank 12 according to the relationship shown in FIG. 5 based on the measured value of the SO 2 concentration.

【0022】実施例2 図3はジェットバブリング反応槽(以下、簡単に反応槽
と略称する)に本発明に係る別の液面調節機構を適用し
た実施例2の気体溜め部の構成を示した概略図である。
本実施例の液面調節機構の気体溜め部60は、図3に示
すように反応槽12の内部で周壁78の周りに一周して
形成されていて、一方の周縁で周壁78と連結している
環状の天板90と、天板90の他方の周縁から垂下する
筒状の側壁92とから構成されている。側壁92の下縁
と周壁78との間の環状の開口部は、気体溜め部60と
容器Cの内部とを連通するための連通口76として機能
する。本実施例の液面調節機構の動作原理及び効果は図
1に示した液面調節機構と同じで、更に、本実施例の場
合、気体溜め部60の側壁92に対向する壁として反応
槽12の周壁78が使用されているので、それだけ経済
的である。尚、本実施例では、気体溜め部60は、反応
槽12の内周に沿って一周する形で形成されているが、
内周の一部にのみ設けてもよい。また、実施例1同様
に、気体ボンベ68に変えて、空気又は排ガスを圧縮機
で送入しても良く、圧力のある排ガスの場合には圧縮機
による圧縮も必要ではない。更に、反応槽12の入口で
の排ガスのSO2 濃度の測定値に基づき図5のような関係
に従って反応槽12内の吸収液の液面を自動的に設定す
るようにすることもできる。
Embodiment 2 FIG. 3 shows the structure of a gas reservoir of Embodiment 2 in which another liquid level adjusting mechanism according to the present invention is applied to a jet bubbling reaction tank (hereinafter simply referred to as a reaction tank). It is a schematic diagram.
As shown in FIG. 3, the gas reservoir 60 of the liquid level adjusting mechanism of the present embodiment is formed around the peripheral wall 78 inside the reaction tank 12, and is connected to the peripheral wall 78 at one peripheral edge. It is composed of an annular top plate 90 and a cylindrical side wall 92 that hangs from the other peripheral edge of the top plate 90. An annular opening between the lower edge of the side wall 92 and the peripheral wall 78 functions as a communication port 76 for communicating the gas reservoir 60 with the inside of the container C. The operation principle and effects of the liquid level adjusting mechanism of the present embodiment are the same as those of the liquid level adjusting mechanism shown in FIG. 1, and further, in the case of the present embodiment, the reaction tank 12 is a wall facing the side wall 92 of the gas reservoir 60. Since the peripheral wall 78 is used, it is economical. In the present embodiment, the gas reservoir 60 is formed so as to make one round along the inner circumference of the reaction tank 12.
It may be provided only on a part of the inner circumference. Further, as in the first embodiment, air or exhaust gas may be sent in by a compressor instead of the gas cylinder 68, and in the case of exhaust gas with pressure, compression by the compressor is not necessary. Further, the liquid level of the absorbing liquid in the reaction tank 12 can be automatically set according to the relationship shown in FIG. 5 based on the measured value of the SO 2 concentration of the exhaust gas at the inlet of the reaction tank 12.

【0023】[0023]

【発明の効果】本発明によれば、気体を気体溜め部に流
入又は流出させて気体溜め部の液面を下降又は上昇さ
せ、それによって容器内の液面を昇降するようにしたこ
とにより、従来の液面調節機構のように、貯槽からポン
プ等で液体を移送する必要がなく、気体の圧力で液体を
移送するので、簡単な機構でしかも短時間で液面を調節
することができる。更に、容器内の液体の液面を検出す
る液面計と、液面計の検出値に基づいて流入手段と流出
手段とを制御する制御手段とを備え、液面計の検出値に
基づいて、容器内の液面が設定した液面位置に到達する
ように制御手段により気体溜め部に流入又は流出する気
体の流入又は流出量を調節することにより、更に液面調
節を自動的にかつ急速に行うことができる。また、気体
溜め部を容器の周壁に沿って形成することにより、経済
的な液面調節機構を実現できる。
According to the present invention, gas is caused to flow into or out of the gas reservoir to lower or raise the liquid level in the gas reservoir, thereby raising or lowering the liquid level in the container. Unlike the conventional liquid level adjusting mechanism, it is not necessary to transfer the liquid from the storage tank with a pump or the like, and the liquid is transferred by the pressure of gas, so that the liquid level can be adjusted with a simple mechanism in a short time. Furthermore, a liquid level gauge for detecting the liquid level of the liquid in the container, and a control means for controlling the inflow means and the outflow means on the basis of the detection value of the liquid level gauge are provided, and based on the detection value of the liquid level gauge. By controlling the inflow or outflow amount of gas flowing in or out of the gas reservoir by the control means so that the liquid level in the container reaches the set liquid level position, the liquid level can be adjusted automatically and rapidly. Can be done. Further, by forming the gas reservoir along the peripheral wall of the container, an economical liquid level adjusting mechanism can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)及び(b)は、それぞれ本発明に係
る液面調節機構の動作原理を説明する概略フローシート
である。
FIG. 1 (a) and FIG. 1 (b) are schematic flow sheets for explaining the operation principle of a liquid level adjusting mechanism according to the present invention.

【図2】図2(a)は本発明に係る液面調節機構をジェ
ットバブリング反応槽に適用した例を示す概略フローシ
ート、図2(b)は図2(a)の矢視X−Xでの気体溜
め部の平面図である。
FIG. 2 (a) is a schematic flow sheet showing an example in which the liquid level adjusting mechanism according to the present invention is applied to a jet bubbling reaction tank, and FIG. 2 (b) is an arrow XX of FIG. 2 (a). FIG. 3 is a plan view of a gas reservoir in FIG.

【図3】本発明に係る別の液面調節機構をジェットバブ
リング反応槽に適用した例を示す概略図である。
FIG. 3 is a schematic view showing an example in which another liquid level adjusting mechanism according to the present invention is applied to a jet bubbling reaction tank.

【図4】ジェットバブリング反応槽の構成を示す概略図
である。
FIG. 4 is a schematic diagram showing the configuration of a jet bubbling reaction tank.

【図5】浸液深と脱硫率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between immersion liquid depth and desulfurization rate.

【図6】図6(a)及び(b)は、それぞれ浸液深を説
明する図である。
6 (a) and 6 (b) are diagrams for explaining the immersion liquid depth.

【図7】ジェットバブリング反応槽に吸収液を供給し、
又は排出する機構の概略フローシートである。
FIG. 7: Supplying an absorption liquid to a jet bubbling reaction tank,
Alternatively, it is a schematic flow sheet of the discharging mechanism.

【符号の説明】[Explanation of symbols]

12 ジェットバブリング反応槽 14 吸収液収容部 16 排ガス入口室 18 貫通孔 20 排ガス分散管 22 排ガス出口室 24 連通管 26 排ガス導入ダクト 28 排出ダクト 30 酸素含有ガス導入管 32 攪拌翼 34 透視型液面計 40 吸収液貯槽 42 供給ポンプ 44 排出ポンプ 46 液面計 48 制御装置 50、52 流量制御弁 60 気体溜め部 62 液面計 64、70 自動制御弁 66 流入管 68 気体ボンベ 70 自動制御弁 72 流出管 74 制御装置 76 連通管 78 ジェットバブリング反応槽の周壁 80、90 天板 82、92 側壁 84 底板 12 Jet bubbling reaction tank 14 Absorbing liquid storage part 16 Exhaust gas inlet chamber 18 Through hole 20 Exhaust gas dispersion pipe 22 Exhaust gas outlet chamber 24 Communication pipe 26 Exhaust gas introduction duct 28 Exhaust duct 30 Oxygen-containing gas introduction pipe 32 Stirring blade 34 Perspective liquid level meter 40 Absorbing liquid storage tank 42 Supply pump 44 Discharging pump 46 Liquid level gauge 48 Control device 50, 52 Flow rate control valve 60 Gas reservoir 62 Liquid level gauge 64, 70 Automatic control valve 66 Inflow pipe 68 Gas cylinder 70 Automatic control valve 72 Outflow pipe 74 Control device 76 Communication pipe 78 Peripheral wall of jet bubbling reaction tank 80, 90 Top plate 82, 92 Side wall 84 Bottom plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05D 9/12 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G05D 9/12 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 容器に収容した液体の液面位置を調節す
る機構であって、 容器内部との連通口を下部に有し、連通口を介して流入
出する液体及びその液体上に非溶解性の気体をそれぞれ
収容するようにした気体溜め部と、 気体を気体溜め部に流入させる流入手段と、 気体を気体溜め部から外部に流出させる流出手段とを備
え、 気体溜め部に気体を流入又は流出させて気体溜め部内の
液面を下降又は上昇させ、それによって容器内の液面を
昇降するようにしたことを特徴とする液面調節機構。
1. A mechanism for adjusting the liquid surface position of a liquid contained in a container, the liquid communication device having a communication port with the inside of the container at a lower part, and a liquid which flows in and out through the communication port and is not dissolved on the liquid. Gas reservoirs each containing a volatile gas, inflow means for inflowing the gas into the gas reservoir, and outflow means for outflowing the gas from the gas reservoir to the outside. Alternatively, the liquid level adjusting mechanism is characterized in that the liquid level in the gas reservoir is lowered or raised by causing it to flow out, and thereby the liquid level in the container is raised and lowered.
【請求項2】 更に、容器内の液体の液面を検出する液
面計と、液面計の検出値に基づいて流入手段と流出手段
とを制御する制御手段とを備え、 液面計の検出値に基づいて、容器内の液面が設定した液
面位置に到達するように、気体溜め部に流入又は流出す
る気体の流入量又は流出量を制御手段により調節するよ
うにしたことを特徴とする請求項1に記載の液面調節機
構。
2. A liquid level gauge further comprising: a liquid level gauge for detecting the liquid level of the liquid in the container; and a control means for controlling the inflow means and the outflow means based on the detection value of the liquid level gauge. Based on the detected value, the inflow amount or outflow amount of the gas flowing into or out of the gas reservoir is adjusted by the control means so that the liquid level in the container reaches the set liquid level position. The liquid level adjusting mechanism according to claim 1.
【請求項3】 前記容器は、ジェットバブリング反応槽
であって、 気体溜め部は、ジェットバブリング反応槽の周壁に沿っ
てその外側に設けられ、かつ反応槽周壁と、一方の周縁
で反応槽周壁に連結された天板と、天板の他方の周縁か
ら垂下する側壁と、側壁の下縁と反応槽周壁とを連結す
る底板とで形成された環状容器の全部により、又はその
環状容器を一部形成すると共にその対向する両端面を閉
止して構成され、連通口は、天板と底板との間の反応槽
周壁に設けられ、かつ気体を流入させる流入口と流出さ
せる流出口とが天板に設けてあることを特徴とする請求
項1又は2に記載の液面調節機構。
3. The container is a jet bubbling reaction tank, and the gas reservoir is provided outside along the peripheral wall of the jet bubbling reaction tank, and the peripheral wall of the reaction tank and the peripheral wall of the reaction tank at one peripheral edge. Of the top plate connected to the bottom plate, the side wall hanging from the other peripheral edge of the top plate, and the bottom plate connecting the lower edge of the side wall and the peripheral wall of the reaction vessel, or the whole of the ring container. The communication port is formed on the peripheral wall of the reaction tank between the top plate and the bottom plate, and has an inlet for letting in gas in and an outlet for letting out gas. The liquid level adjusting mechanism according to claim 1 or 2, which is provided on the plate.
【請求項4】 前記容器は、ジェットバブリング反応槽
であって、 気体溜め部は、ジェットバブリング反応槽の周壁に沿っ
てその内側に設けられ、かつ反応槽周壁と、一方の周縁
が反応槽周壁に連結された天板と、天板の他方の周縁か
ら垂下する側壁とで形成された上側が閉の環状体の全部
により、又はその環状体を一部形成すると共にその対向
する両端面を閉止して構成され、連通口として、側壁の
下縁と反応槽周壁との開口部が機能し、気体を流入させ
る流入口と流出させる流出口とが天板に設けてあること
を特徴とする請求項1又は2に記載の液面調節機構。
4. The container is a jet bubbling reaction tank, and the gas reservoir is provided inside the jet bubbling reaction tank along the peripheral wall thereof, and the reaction tank peripheral wall and one peripheral edge are the reaction tank peripheral wall. The top plate connected to the top plate and the side wall hanging from the other peripheral edge of the top plate are formed by the whole closed annular body or by forming a part of the annular body and closing the opposite end surfaces thereof. The opening of the lower edge of the side wall and the peripheral wall of the reaction vessel functions as a communication port, and the top plate is provided with an inlet for letting in gas in and an outlet for letting out gas. Item 3. The liquid level adjusting mechanism according to item 1 or 2.
JP6290486A 1994-10-31 1994-10-31 Liquid level control mechanism Pending JPH08126836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6290486A JPH08126836A (en) 1994-10-31 1994-10-31 Liquid level control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6290486A JPH08126836A (en) 1994-10-31 1994-10-31 Liquid level control mechanism

Publications (1)

Publication Number Publication Date
JPH08126836A true JPH08126836A (en) 1996-05-21

Family

ID=17756650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6290486A Pending JPH08126836A (en) 1994-10-31 1994-10-31 Liquid level control mechanism

Country Status (1)

Country Link
JP (1) JPH08126836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088111A (en) * 2009-10-26 2011-05-06 Chiyoda Kako Kensetsu Kk Exhaust gas treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088111A (en) * 2009-10-26 2011-05-06 Chiyoda Kako Kensetsu Kk Exhaust gas treatment device

Similar Documents

Publication Publication Date Title
CA1060590A (en) Methods and apparatus for controlling the supply of feed gas to dissolution devices
US5089127A (en) Chemical feed apparatus
US5904169A (en) Apparatus for and method of treating substrate
JPH08126836A (en) Liquid level control mechanism
WO2013050981A1 (en) Device and method for dissolving a chemical substance in water
KR100280011B1 (en) Bubble separator for manufacturing semiconductor device, liquid supply device using same and driving method thereof
JPH10128322A (en) Scum separating apparatus
JP3229805B2 (en) Deep aeration equipment for reservoirs, etc.
JP3375348B2 (en) Oxygen replenishment equipment for wastewater purification equipment
JP2654896B2 (en) Flow adjustment device in sewage purification equipment
JPH1190172A (en) Control method and controller for absorbing liquid level in flue gas desulfurizer
JP2002323000A (en) Liquid supply device
KR100344494B1 (en) Unelectrified water sterilization System
JPS64998Y2 (en)
CN220795698U (en) Automatic control model for water level of water tower
KR100626296B1 (en) Apparatus for manufacturing Ozone sterilized water
KR102350100B1 (en) Gas soluble device
JP2010013174A (en) Sealing pot structure of tank exhaust
JPH08145228A (en) Constant flow discharging device
JPH0754282Y2 (en) Alcohol supply device to heat treatment furnace
JP2002205095A (en) Sludge transporting apparatus
SU1344741A1 (en) Liquid aerating device
JPH06285482A (en) Gas-liquid contact device and gas-liquid contact system
JPS60153990A (en) Apparatus for controlling specific resistance of ultra- pure water
JPS5826959Y2 (en) liquid supply device