JPH08125416A - Offset antenna with snow melting device - Google Patents

Offset antenna with snow melting device

Info

Publication number
JPH08125416A
JPH08125416A JP25513894A JP25513894A JPH08125416A JP H08125416 A JPH08125416 A JP H08125416A JP 25513894 A JP25513894 A JP 25513894A JP 25513894 A JP25513894 A JP 25513894A JP H08125416 A JPH08125416 A JP H08125416A
Authority
JP
Japan
Prior art keywords
reflecting mirror
primary radiator
infrared ray
offset
far infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25513894A
Other languages
Japanese (ja)
Other versions
JP2744590B2 (en
Inventor
Masaaki Tabata
雅章 田畑
Kazutaka Katayama
和孝 片山
Fumiaki Konishi
文昭 小西
Tatsuo Minagawa
辰雄 皆川
Toshio Masujima
俊雄 増島
Akira Okuyama
明 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Electric Corp
Priority to JP6255138A priority Critical patent/JP2744590B2/en
Publication of JPH08125416A publication Critical patent/JPH08125416A/en
Application granted granted Critical
Publication of JP2744590B2 publication Critical patent/JP2744590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE: To prevent and reduce deposited snow onto a reflecting mirror by mounting one or plural far-infrared ray generating means to a lower side of the reflecting mirror to the reflecting mirror at the primary radiator side and at the outside of a propagation path of a radio wave from a focus via the reflecting mirror. CONSTITUTION: A far infrared ray generating means 11 is arranged to an offset reflecting mirror 2 at primary radiator 2 side and at the outside of a propagation path 5 of a radio wave from a focus via the offset reflecting mirror 1. The far infrared ray generating means 11 is made up of a far infrared ray generating source 27 consisting of an 8-shaped sheath heater and a semi-spherical or parabolic plane of rotation shaped reflecting plate and a far infrared ray holder 22 holding the source 27. Snow deposition is eminent at the lower part of the offset reflecting mirror 1 and the upper part of the primary radiator 2, and the far infrared ray generating source 27 emits a required part with much snow deposition with the configuration above. Thus, the power consumption is far less in comparison with the case with heating the entire offset reflecting mirror 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は主としてマイクロ波通
信あるいはレーダ等に用いる開口面アンテナに関するも
ので、さらに詳しく言えば衛星通信地球局用オフセット
アンテナの着雪防止に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aperture antenna mainly used for microwave communication or radar, and more particularly to prevention of snow accretion of an offset antenna for satellite communication earth station.

【0002】[0002]

【従来の技術】図9(a)は従来のオフセットアンテナ
の正面図、図9(b)は側面図であり、図において1は
オフセット反射鏡、2は例えば円錐ホーンの一次放射器
で、この一次放射器2の電波位相中心は反射鏡1の焦点
と一致している。3はオフセット反射鏡1と一次放射器
2を結合するフレーム、4は反射鏡1と一次放射器2を
結合するフレーム、5は受信または送信電波の伝送路、
6は反射鏡1の周囲を補強する外周リング、7は反射鏡
1を保持する骨組、8は受信または送信電波の水平面内
の方向を定めるAZ(アジマス)調整機構、9は受信ま
たは送信電波の垂直面内の方向を定めるEL(エレベー
ション)調整機構、10はオフセット反射鏡1を建物、
鉄塔などに設置するための支柱である。
2. Description of the Related Art FIG. 9 (a) is a front view of a conventional offset antenna, and FIG. 9 (b) is a side view. In the figure, 1 is an offset reflecting mirror, and 2 is a primary radiator of a conical horn, for example. The center of the radio wave phase of the primary radiator 2 coincides with the focal point of the reflecting mirror 1. 3 is a frame for coupling the offset reflecting mirror 1 and the primary radiator 2; 4 is a frame for coupling the reflecting mirror 1 and the primary radiator 2; 5 is a transmission path for receiving or transmitting radio waves;
6 is an outer peripheral ring that reinforces the periphery of the reflecting mirror 1, 7 is a skeleton that holds the reflecting mirror 1, 8 is an AZ (azimuth) adjusting mechanism that determines the direction of the received or transmitted radio wave in the horizontal plane, and 9 is the received or transmitted radio wave. An EL (elevation) adjustment mechanism that determines the direction in the vertical plane, 10 is the offset reflecting mirror 1 in the building,
It is a pillar for installing on a steel tower.

【0003】従来のオフセットアンテナは上記のように
構成され、これを衛星通信地球局用受信アンテナとして
考えた場合、人工衛星(図示せず)より到来した電波は
伝送路5を通り、反射鏡1で反射して一次放射器2の電
波位相中心に集束し、受信機(図示せず)に到達する。
オフセットパラボラアンテナは伝送路5がブロックされ
る箇所がなく本質的にブロッキングの存在するパラボラ
アンテナやカセグレンアンテナと比べ、ブロッキングに
よるサイドローブ劣化や利得低下がなく、特性良好なア
ンテナとして衛星通信や高密度通信に利用されている。
The conventional offset antenna is constructed as described above, and when it is considered as a receiving antenna for a satellite communication earth station, radio waves coming from an artificial satellite (not shown) pass through the transmission path 5 and the reflecting mirror 1. It is reflected by and is focused on the radio wave phase center of the primary radiator 2 and reaches a receiver (not shown).
The offset parabolic antenna does not have side lobe deterioration and gain reduction due to blocking as compared to a parabolic antenna or a Cassegrain antenna in which there is essentially no blocking of the transmission line 5 and there is blocking, and satellite communications and high-density antennas have good characteristics. It is used for communication.

【0004】アンテナは屋外に設置されるので、冬期の
降雪による交差偏波特性劣化や利得低下を低減するた
め、使用状態において反射鏡1が垂直に近い角度で立ち
着雪が少なくなるよう反射鏡1の形状を選んでいる。
Since the antenna is installed outdoors, in order to reduce the deterioration of cross-polarization characteristics and the decrease of gain due to snowfall in winter, the reflecting mirror 1 stands up at an angle close to vertical in the use state and the amount of snow landing is reduced. The shape of 1 is selected.

【0005】[0005]

【発明が解決しようとする課題】従来のオフセットアン
テナは、ほぼ全面に着雪するパラボラアンテナやカセグ
レンアンテナに比べて着雪量が格段に少なく、通信回線
に与える影響も少ない。しかし、稀にオフセットアンテ
ナの通信回線が途絶することがある。これは反射鏡1へ
の着雪状態が図10に示すように反射鏡1の下半分、つ
まり反射鏡1に接する平面の角度が垂直に達しない範囲
Aに着雪を生じる傾向があって、この着雪が垂直から角
度の離れた下方より成長し、また一次放射器2の上部B
に着雪した雪が成長し、一次放射器2の開口を塞ぎ利得
低下と偏波面の変化を生じるために起るものである。通
信回線の途絶をなくし稼働率を確保するため着雪を皆無
にすることは、いかに反射鏡1の立つ角度を選んでも雪
質・風向の影響もあって不可能であるので、従来はセラ
ミック系やフッ素の難着雪塗料を反射鏡1に塗布した
り、反射鏡1の背面に電熱線を這わせて融雪する方法が
とられている。しかし、難着雪塗料は今の所その効果が
2年程度であって定期的に塗替えを必要とするし、電熱
線を反射鏡1の背面に装着する方法は、熱的に反射鏡1
が偉大な放熱板であることから、反射鏡1を有効に加温
するには莫大な電力を必要とするし、反射鏡の口径が7
5cmや100cmなど小さいものでは電熱線の布設や
保温、断熱施工の費用が反射鏡の費用よりはるかに高い
ものになる。これらは結局維持経費の増大につながり、
通信回線稼働率の向上を困難なものにしていた。
The conventional offset antenna has a much smaller amount of snowfall than a parabolic antenna or a Cassegrain antenna that snows almost all over, and has less influence on a communication line. However, in rare cases, the communication line of the offset antenna may be lost. As shown in FIG. 10, the snow on the reflecting mirror 1 tends to snow in the lower half of the reflecting mirror 1, that is, in the range A where the angle of the plane in contact with the reflecting mirror 1 does not reach the vertical direction. This snow accretion grows from below at an angle from the vertical, and the upper part B of the primary radiator 2
This occurs because the snow that has fallen on the ground grows, blocks the opening of the primary radiator 2 and reduces the gain and changes the polarization plane. It is impossible to eliminate snow accretion in order to prevent interruption of the communication line and ensure the operation rate, no matter how the angle of the reflector 1 is set, because of the influence of snow quality and wind direction. A method of coating snow on the reflecting mirror 1 with snow or fluorinated snow, or crawling a heating wire on the back surface of the reflecting mirror 1 to melt the snow is used. However, the snow-adhesive paint has been effective for about two years at present and needs to be repainted regularly, and the method of mounting the heating wire on the back surface of the reflecting mirror 1 is the thermal reflecting mirror 1.
Is a great heat sink, it requires enormous electric power to effectively heat the reflecting mirror 1, and the diameter of the reflecting mirror is 7
If the size is as small as 5 cm or 100 cm, the cost of installing heating wires, heat insulation, and heat insulation will be much higher than the cost of the reflector. These eventually lead to increased maintenance costs,
It was difficult to improve the communication line utilization rate.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、上記の着雪による影響を実質的
に防止し、通信回線稼働率の高いオフセットアンテナ、
特に反射鏡の口径が小さな受信専用の衛星通信地球局用
オフセットアンテナを安価に得ることを目的としてい
る。
The present invention has been made in order to solve the above problems, and it substantially prevents the influence of the above-mentioned snow accretion and has a high communication line operating rate.
In particular, the objective is to obtain at low cost an offset antenna for satellite communication earth stations, which has a small reflector diameter and is dedicated to reception.

【0007】[0007]

【課題を解決するための手段】この発明の融雪装置付オ
フセットアンテナは、反射鏡の一次放射器側で反射鏡の
下側に1個または複数個の遠赤外線発生手段を焦点から
反射鏡を経由する電波の伝送路の外側に装着したもので
ある。
In the offset antenna with a snow melting device of the present invention, one or a plurality of far infrared ray generating means is provided on the primary radiator side of the reflecting mirror and below the reflecting mirror from the focal point through the reflecting mirror. It is mounted on the outside of the transmission path of the radio wave.

【0008】またこの発明の融雪装置付オフセットアン
テナは、一次放射器の周囲に間隙を設けて円筒状のヒー
タを配置し、この円筒状のヒータを上記一次放射器の開
口より後側で、焦点から反射鏡を経由する電波の伝送路
の外側に装着したものである。
Further, in the offset antenna with a snow melting device of the present invention, a cylindrical heater is arranged around the primary radiator with a gap, and the cylindrical heater is focused behind the opening of the primary radiator. It is mounted on the outside of the transmission path of the radio wave from the reflector.

【0009】この発明の融雪装置付オフセットアンテナ
は、反射鏡の一次放射器側で反射鏡の下側に1個または
複数個の遠赤外線発生手段を焦点から反射鏡を経由する
電波の伝送路の外側に装着し、さらに一次放射器の周囲
に間隙を設けて円筒状のヒータを配置し、この円筒状の
ヒータを上記一次放射器の開口より後側で、焦点から反
射鏡を経由する電波の伝送路の外側に装着したものであ
る。
The offset antenna with a snow melting device according to the present invention comprises one or a plurality of far infrared ray generating means on the primary radiator side of the reflecting mirror and on the lower side of the reflecting mirror of a radio wave transmission path from the focus to the reflecting mirror. It is mounted on the outside, and a cylindrical heater is arranged with a gap around the primary radiator, and this cylindrical heater is located behind the opening of the primary radiator, and the radio wave from the focal point passes through the reflector. It is mounted on the outside of the transmission line.

【0010】またこの発明の融雪装置付オフセットアン
テナは、反射鏡の一次放射器側で反射鏡の下側に1個ま
たは複数個の8の字状のシーズヒータと回転放物面状あ
るいは半球状の反射板とで構成された遠赤外線発生手段
を焦点から反射鏡を経由する電波の伝送路の外側に装着
し、さらに一次放射器の周囲に間隙を設けて円筒状のヒ
ータを配置し、この円筒状のヒータを上記一次放射器の
開口より後側で、焦点から反射鏡を経由する電波の伝送
路の外側に装着したものである。
Further, the offset antenna with a snow melting device of the present invention comprises one or a plurality of 8-shaped sheathed heaters and a paraboloid of revolution or a hemisphere on the primary radiator side of the reflecting mirror and below the reflecting mirror. The far-infrared ray generating means composed of the reflector plate is attached to the outside of the transmission path of the radio wave from the focus to the reflecting mirror, and a cylindrical heater is arranged with a gap around the primary radiator. A cylindrical heater is mounted on the rear side of the opening of the primary radiator and outside the transmission path of radio waves from the focus to the reflecting mirror.

【0011】この発明の融雪装置付オフセットアンテナ
は、反射鏡の一次放射器側で反射鏡の下側に棒状シーズ
ヒータと柱状放物面の反射板とで構成された遠赤外線発
生手段を焦点から反射鏡を経由する電波の伝送路の外側
に装着し、さらに一次放射器の周囲に間隙を設けて円筒
状のヒータを配置し、この円筒状のヒータを上記一次放
射器の開口より後側で、焦点から反射鏡を経由する電波
の伝送路の外側に装着したものである。
The offset antenna with a snow melting device according to the present invention is provided with a far infrared ray generating means composed of a rod-shaped sheathed heater and a columnar parabolic reflector on the primary radiator side of the reflector below the reflector. It is attached to the outside of the transmission path of radio waves that pass through the reflector, and a cylindrical heater is arranged with a gap around the primary radiator, and this cylindrical heater is located behind the opening of the primary radiator. , Is attached to the outside of the transmission path of radio waves from the focal point through the reflector.

【0012】[0012]

【作用】この発明は遠赤外線発生手段に電力を供給する
ことにより、反射鏡の所要部分を重点的に加温する。
According to the present invention, by supplying electric power to the far infrared ray generating means, the required portion of the reflecting mirror is heated intensively.

【0013】また、この発明は円筒状のヒータに電力を
供給することにより、円筒状のヒータのカバーを加温す
るとともに、一次放射器の開口面付近も暖める。
Further, according to the present invention, by supplying electric power to the cylindrical heater, the cover of the cylindrical heater is heated and the vicinity of the opening surface of the primary radiator is also warmed.

【0014】この発明は遠赤外線発生手段に電力を供給
することにより、反射鏡の所要部分を重点的に加温し、
円筒状のヒータに電力を供給することにより、円筒状の
ヒータのカバーを加温するとともに、一次放射器の開口
面付近も暖める。
According to the present invention, by supplying electric power to the far infrared ray generating means, the required portion of the reflecting mirror is heated intensively,
By supplying electric power to the cylindrical heater, the cover of the cylindrical heater is heated and the vicinity of the opening surface of the primary radiator is also warmed.

【0015】またこの発明は8字状のシーズヒータに電
力を供給することにより、反射鏡の所要部分を重点的に
加温し、円筒状のヒータに電力を供給することにより、
円筒状のヒータのカバーを加温するとともに、一次放射
器の開口面付近も暖める。
Further, according to the present invention, by supplying electric power to the 8-shaped sheathed heater, the required portion of the reflecting mirror is heated intensively, and electric power is supplied to the cylindrical heater.
While heating the cover of the cylindrical heater, the vicinity of the opening surface of the primary radiator is also warmed.

【0016】この発明は棒状シーズヒータに電力を供給
することにより、反射鏡の所要部分を重点的に加温し、
円筒状のヒータに電力を供給することにより、円筒状の
ヒータのカバーを加温するとともに、一次放射器の開口
面付近も暖める。
According to the present invention, by supplying electric power to the rod-shaped sheathed heater, the required portion of the reflecting mirror is intensively heated,
By supplying electric power to the cylindrical heater, the cover of the cylindrical heater is heated and the vicinity of the opening surface of the primary radiator is also warmed.

【0017】[0017]

【実施例】【Example】

実施例1.図1(a)はこの発明の実施例1を示す正面
図、図1(b)は側面図、図2は遠赤外線発生手段27
の詳細図、図3は一次放射器の周囲に間隙を設けた円筒
状のヒータの詳細図、図4は一次放射器に密着した円筒
状ヒータの詳細図であり、図において1〜10は図9、
図10に示した従来装置とまったく同じものである。1
1は焦点から反射鏡を経由する電波の伝送路5の外側に
ある遠赤外線発生手段であり、8の字状のシーズヒータ
23と回転放物面状または半球状の反射板24とで成る
遠赤外線発生源27と、これを保持する遠赤外線ホルダ
22とで構成されている。8の字状のシーズヒータ23
aは回転放物面状または半球状の反射板24を8の字状
のシーズヒータ23aの後側に設けることにより円状で
均等な照射量を得ることができるので特にオフセットア
ンテナの反射鏡のように楕円状の照射面に対して有効に
照射することができる。また同じ回転放物面状または半
球状の反射板24内の面積で棒状シーズヒータより遠赤
外線発生部分を長くすることができ、棒状シーズヒータ
よりも高い放射量を得ることができる。また、この遠赤
外線発生手段11はねじ12を緩めると遠赤外線照射方
向を上下に変えることが可能であり、ねじ13を緩める
と遠赤外線照射方向を水平面内に回転可能な構造となっ
ている。14は白金測温抵抗体やサーモスタットなどの
温度測定手段、15は温度測定手段14の出力により遠
赤外線発生源27に電力を与える制御部である。16は
遠赤外線発生源27に電源を供給する電源ケーブル、1
7は遠赤外線発生手段11を支持する支持棒でねじ18
によりアダプタ19に固定され、ねじ18を緩めること
により水平方向に伸縮可能な構造となっている。20は
アダプタ固定金具で、ねじ21により支柱10に固定さ
れている。このねじ21を緩めることにより支柱10の
上下に移動可能でアダプタ19が水平面内で回転可能と
なる構造となっている。23bは一次放射器2の周囲に
間隙Lを設け、一次放射器2の開口Gより後側に配した
円筒状のヒータで、例えばニクロム線25をシリコンゴ
ム26で絶縁被覆して構成されている。28は金属性の
カバーで円筒状のヒータ23を接着等で固定し、フレー
ム3に固定されている。
Example 1. 1 (a) is a front view showing a first embodiment of the present invention, FIG. 1 (b) is a side view, and FIG. 2 is a far infrared ray generating means 27.
FIG. 3 is a detailed view of a cylindrical heater having a gap around the primary radiator, and FIG. 4 is a detailed view of a cylindrical heater in close contact with the primary radiator. 9,
This is exactly the same as the conventional device shown in FIG. 1
Reference numeral 1 is a far infrared ray generating means located outside the transmission path 5 of the radio wave from the focal point through the reflecting mirror. The far infrared ray generating means is composed of a figure-shaped sheathed heater 23 and a rotary parabolic or hemispherical reflector 24. The infrared source 27 and the far-infrared holder 22 that holds the infrared source 27 are included. Figure-shaped sheathed heater 23
a is a circular parabolic or hemispherical reflection plate 24 provided behind the 8-shaped sheathed heater 23a so that a uniform irradiation amount can be obtained. Thus, it is possible to effectively irradiate the elliptical irradiation surface. Further, the far-infrared ray generating portion can be made longer than the rod-shaped sheathed heater with the same area within the rotary parabolic or hemispherical reflection plate 24, and a higher radiation amount than that of the rod-shaped sheathed heater can be obtained. Further, the far-infrared ray generating means 11 can change the far-infrared ray irradiation direction up and down by loosening the screw 12, and has a structure in which the far-infrared ray irradiation direction can be rotated in a horizontal plane by loosening the screw 13. Reference numeral 14 is a temperature measuring means such as a platinum resistance temperature detector or a thermostat, and 15 is a control section for supplying electric power to the far infrared ray generation source 27 by the output of the temperature measuring means 14. 16 is a power cable for supplying power to the far infrared ray generation source 27
Reference numeral 7 is a support rod for supporting the far infrared ray generating means 11, and a screw 18
It is fixed to the adapter 19 by this, and has a structure that can be expanded and contracted in the horizontal direction by loosening the screw 18. Reference numeral 20 denotes an adapter fixing metal fitting, which is fixed to the column 10 with a screw 21. By loosening the screw 21, the pillar 10 can be moved up and down, and the adapter 19 can rotate in a horizontal plane. Reference numeral 23b denotes a cylindrical heater provided with a gap L around the primary radiator 2 and arranged behind the opening G of the primary radiator 2, and is constituted by, for example, nichrome wire 25 insulatingly coated with silicone rubber 26. . Reference numeral 28 denotes a metallic cover which is fixed to the frame 3 by fixing the cylindrical heater 23 by adhesion or the like.

【0018】上記のように構成された融雪装置付オフセ
ットアンテナにおいて、受信波・送信波の挙動は従来と
全く同様である。降雪の際、すでに説明したとおり着雪
状態は反射鏡1の下部への着雪と一次放射器2の上部が
顕著である。遠赤外線発生源27は反射鏡1の下半分の
なかでも図5(a)で斜線で示す必要部分を照射するこ
とができ、その消費電力は反射鏡1全体を加温するのに
比べはるかに少ないし、難着雪塗料のように定期保守を
必要とするものではないので効果対費用が特に優れてい
る。図5(a)は所望の照射密度を示しており一定の放
射量で反射鏡1と遠赤外線発生源27の距離を約200
mmとした場合反射鏡1の下約1/3は410W/m
2 、反射鏡1の下約1/2〜約1/3までは330W/
2 の実験結果を得た。図5(b)は反射鏡1の断面D
Dの表面温度分布を示し、図5(c)は反射鏡1の断面
EEの表面温度分布を示している。図5(b)、図5
(c)からわかるように反射鏡1の表面温度が緩やかに
変化し、反射鏡1の熱変形を防止していることがわか
る。
In the offset antenna with a snow melting device configured as described above, the behavior of the received wave and the transmitted wave is exactly the same as the conventional one. During snowfall, as already explained, the snow accretion state is remarkable in the lower part of the reflecting mirror 1 and the upper part of the primary radiator 2. The far-infrared ray generation source 27 can irradiate a necessary portion indicated by hatching in the lower half of the reflecting mirror 1 and its power consumption is far higher than that of heating the entire reflecting mirror 1. It is low in cost and does not require regular maintenance like snow-hardening paint, so the cost-effectiveness is particularly excellent. FIG. 5A shows a desired irradiation density, and the distance between the reflecting mirror 1 and the far-infrared ray generating source 27 is about 200 with a constant radiation amount.
In case of mm, about 1/3 below the reflector 1 is 410 W / m
2 , 330W / from about 1/2 to about 1/3 below the reflector 1.
The experimental result of m 2 was obtained. FIG. 5B shows a cross section D of the reflecting mirror 1.
5C shows the surface temperature distribution of D, and FIG. 5C shows the surface temperature distribution of the cross section EE of the reflecting mirror 1. 5 (b) and FIG.
As can be seen from (c), it can be seen that the surface temperature of the reflecting mirror 1 changes gently to prevent thermal deformation of the reflecting mirror 1.

【0019】また一次放射器2の開口への着雪防止とし
て、一次放射器2に密着して円筒状のヒータ23bを取
付けて熱伝導により開口面を暖めようとするものもある
が、開口面には誘電体、例えばテフロン等の熱伝導率の
低いフィドームが挿着されている。一方、一次放射器2
の本体は熱伝導率の高い金属であり、ヒータの熱はフィ
ドームになかなか伝わらず、他方へ多量に逃げるために
大きな電力を必要としていた。また一次放射器2と完全
に密着させるため、一次放射器2の形状にシリコンゴム
をモールドする等高価なものとなっていた。一方、図3
に示すように一次放射器2の周囲に5〜10mmの間隙
Lを設けて円筒状のヒータ23bを取付けることにより
低電力で円筒状のヒータのカバーを加温し一次放射器2
の上部の着雪を防止して雪の成長をなくし、開口面を塞
ぐことがなくなるし、上記円筒状のヒータ23bにより
開口面付近も暖って開口面の着雪を防止することができ
る。図6はフィールド試験の状態を示す図であり、反射
鏡1の上側Fの部分に着雪はあるものの軽微であり、利
得低下や交差偏波特性の劣化は皆無であった。
In order to prevent snow from accumulating in the opening of the primary radiator 2, there is one in which a cylindrical heater 23b is attached in close contact with the primary radiator 2 to heat the opening surface by heat conduction. A dielectric material, for example, a fidome having a low thermal conductivity, such as Teflon, is inserted in this. On the other hand, the primary radiator 2
The main body of is a metal with high thermal conductivity, and the heat of the heater is not easily transmitted to the fidome, and a large amount of electric power is required to escape to the other side. Further, since the primary radiator 2 is completely brought into close contact with the primary radiator 2, it is expensive to mold the shape of the primary radiator 2 with silicone rubber. On the other hand, FIG.
As shown in FIG. 2, the cylindrical radiator 23b is attached with a gap L of 5 to 10 mm around the primary radiator 2 to heat the cylindrical heater cover with low power to heat the primary radiator 2
It is possible to prevent snow from accumulating on the upper part of the sheet to prevent the snow from growing, and to prevent the opening surface from being blocked. The cylindrical heater 23b also warms the vicinity of the opening surface to prevent snow from accumulating on the opening surface. FIG. 6 is a view showing a state of the field test. Snow is slightly present on the upper side F of the reflecting mirror 1, but it is slight, and there is no decrease in gain or deterioration of cross polarization characteristics.

【0020】実施例2.図7(a)はこの発明の実施例
2を示す正面図、図7(b)は側面図であり、反射鏡の
口径が75cm等、反射鏡の下側の融雪が必要な部分が
狭いもので、放射密度が反射鏡1の下約1/3が410
W/m2 、反射鏡1の下約1/2〜約1/3までは33
0W/m2 になるように遠赤外発生手段を1個装着した
ものである。
Example 2. FIG. 7 (a) is a front view showing Embodiment 2 of the present invention, and FIG. 7 (b) is a side view, in which the portion under the reflecting mirror where snow melting is necessary is narrow, such as the aperture of the reflecting mirror is 75 cm. The radiation density is about 1/3 below the reflector 1 at 410
W / m 2 , 33 under the mirror 1 from about 1/2 to about 1/3
One far-infrared ray generating means is attached so as to obtain 0 W / m 2 .

【0021】上記のように構成された融雪装置付オフセ
ットアンテナは、反射鏡の口径の大きさにより効率的な
消費電力とすることができる。
The offset antenna with a snow melting device configured as described above can achieve efficient power consumption due to the size of the aperture of the reflecting mirror.

【0022】実施例3.図8(a)はこの発明の実施例
3を示す正面図、図8(b)は側面図であり、30は遠
赤外線発生手段で棒状シーズヒータ31と柱状放物面の
反射板32とで成る遠赤外線発生源33とそれを保持す
る遠赤外線ホルダ34とで構成されており、放射密度が
反射鏡1の下約1/3が410W/m2 、反射鏡1の下
約1/2〜約1/3までは330W/m2 になるように
装着したものである。
Example 3. 8 (a) is a front view showing a third embodiment of the present invention, and FIG. 8 (b) is a side view. Reference numeral 30 is a far infrared ray generating means, which is a rod-shaped sheathed heater 31 and a columnar parabolic reflector 32. The far-infrared ray generating source 33 and the far-infrared ray holder 34 that holds the far-infrared ray generating source 33 have a radiation density of about ⅓ below the reflecting mirror 1 of 410 W / m 2 , and about ½ below the reflecting mirror 1. Up to about 1/3, it is mounted so that the power becomes 330 W / m 2 .

【0023】上記のように構成された融雪装置付オフセ
ットアンテナは、実施例1と同様の効果が得られる。ま
た棒状シーズヒータは加工が容易という利点もある。
The offset antenna with a snow melting device configured as described above has the same effect as that of the first embodiment. Further, the rod-shaped sheathed heater has an advantage that it can be easily processed.

【0024】[0024]

【発明の効果】この発明は以上説明したとおり、オフセ
ットアンテナの反射鏡の下部の最適な位置に遠赤外線発
生手段を付加するという簡単な構造で反射鏡の着雪を防
止、低減し、通信回線稼働率の高い融雪装置付オフセッ
トアンテナを安価に実現できるという効果がある。
As described above, the present invention has a simple structure in which the far infrared ray generating means is added to the optimum position under the reflecting mirror of the offset antenna to prevent and reduce the snow accretion of the reflecting mirror, and to improve the communication line. There is an effect that an offset antenna with a snow melting device having a high operating rate can be realized at low cost.

【0025】またこの発明はオフセットアンテナの一次
放射器の周囲に円筒状のヒータを付加するという簡単な
構造で、一次放射器の開口面の着雪を防止し、通信回線
稼働率の高い融雪装置付オフセットアンテナを安価に実
現できるという効果がある。
Further, the present invention has a simple structure in which a cylindrical heater is added around the primary radiator of the offset antenna to prevent snow accretion on the opening of the primary radiator, and a snow melting device having a high communication line operating rate. There is an effect that the offset antenna with an antenna can be realized at low cost.

【0026】この発明はオフセットアンテナの反射鏡の
下部の最適な位置に遠赤外線発生手段を付加し、一次放
射器の周囲に円筒状のヒータを付加するという簡単な構
造で、反射鏡と一次放射器の開口面の着雪を防止、低減
し、さらに通信回線稼働率の高い融雪装置付オフセット
アンテナを安価に実現できるという効果がある。
The present invention has a simple structure in which far infrared ray generating means is added at an optimum position below the reflecting mirror of the offset antenna and a cylindrical heater is added around the primary radiator. There is an effect that snow accretion on the opening surface of the device can be prevented and reduced, and an offset antenna with a snow melting device having a high communication line operating rate can be realized at low cost.

【0027】またこの発明はオフセットアンテナの反射
鏡の下部の最適な位置に8の字状のシーズヒータを付加
し、一次放射器の周囲に円筒状のヒータを付加するとい
う簡単な構造で、反射鏡と一次放射器の開口面の着雪を
防止、低減し、通信回線稼働率の高い融雪装置付オフセ
ットアンテナを安価に実現できるという効果がある。
The present invention has a simple structure in which an 8-shaped sheathed heater is added at the optimum position under the reflector of the offset antenna and a cylindrical heater is added around the primary radiator. It is possible to prevent and reduce snow accretion on the openings of the mirror and the primary radiator, and it is possible to inexpensively realize an offset antenna with a snow melting device having a high communication line operating rate.

【0028】この発明はオフセットアンテナの反射鏡の
下部の最適な位置に棒状のシーズヒータを付加し、一次
放射器の周囲に円筒状のヒータを付加するという簡単な
構造で、反射鏡と一次放射器の開口面の着雪を防止、低
減し、通信回線稼働率の高い融雪装置付オフセットアン
テナを安価に実現できるという効果がある。
The present invention has a simple structure in which a rod-shaped sheathed heater is added at an optimum position below the reflecting mirror of the offset antenna and a cylindrical heater is added around the primary radiator. There is an effect that snow accretion on the opening surface of the device can be prevented and reduced, and an offset antenna with a snow melting device having a high communication line operating rate can be realized at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】 遠赤外線発生手段の詳細図である。FIG. 2 is a detailed view of far-infrared ray generating means.

【図3】 円筒状ヒータの詳細図である。FIG. 3 is a detailed view of a cylindrical heater.

【図4】 円筒状ヒータの他の例を示す詳細図である。FIG. 4 is a detailed view showing another example of the cylindrical heater.

【図5】 反射鏡表面の温度分布を示す図である。FIG. 5 is a diagram showing a temperature distribution on a reflecting mirror surface.

【図6】 フィールド試験の状態を示す図である。FIG. 6 is a diagram showing a state of a field test.

【図7】 この発明の実施例2を示す図である。FIG. 7 is a diagram showing a second embodiment of the present invention.

【図8】 この発明の実施例3を示す図である。FIG. 8 is a diagram showing a third embodiment of the present invention.

【図9】 従来のオフセットアンテナを示す図である。FIG. 9 is a diagram showing a conventional offset antenna.

【図10】 従来のオフセットアンテナの着雪状態を示
す図である。
FIG. 10 is a diagram showing a snow accretion state of a conventional offset antenna.

【符号の説明】[Explanation of symbols]

1 オフセット反射鏡、2 一次放射器、3 フレー
ム、4 ステイ、5 伝送路、6 外周リング、7 骨
組、8 AZ調整機構、9 EL調整機構、10支柱、
11 遠赤外線発生手段、12 ねじ、13 ねじ、1
4 温度測定手段、15 制御部、16 電源ケーブ
ル、17 支持棒、18 ねじ、19 アダプタ、20
アダプタ固定金具、21 ねじ、22 遠赤外線ホル
ダ、23a8の字状のシーズヒータ、23b 円筒状の
ヒータ、24 回転放物面状または半球状の反射鏡、2
5 ニクロム線、26 シリコンゴム、27 遠赤外線
発生源、28 カバー、29 フィドーム、30 遠赤
外線発生手段、31 棒状シーズヒータ、32 柱状放
物面状の反射板、33 遠赤外線発生源、34 遠赤外
線ホルダ。
1 offset reflecting mirror, 2 primary radiator, 3 frame, 4 stay, 5 transmission line, 6 outer ring, 7 frame, 8 AZ adjusting mechanism, 9 EL adjusting mechanism, 10 columns,
11 Far infrared ray generating means, 12 screws, 13 screws, 1
4 temperature measuring means, 15 control section, 16 power cable, 17 support rod, 18 screw, 19 adapter, 20
Adapter fixing bracket, 21 screw, 22 far infrared holder, 23a8-shaped sheathed heater, 23b cylindrical heater, 24 rotary parabolic or hemispherical reflector, 2
5 Nichrome wire, 26 Silicon rubber, 27 Far-infrared ray generating source, 28 Cover, 29 Fidome, 30 Far-infrared ray generating means, 31 Rod-shaped sheathed heater, 32 Columnar parabolic reflector, 33 Far-infrared ray source, 34 Far-infrared ray holder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小西 文昭 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 皆川 辰雄 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 (72)発明者 増島 俊雄 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 (72)発明者 奥山 明 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Fumiaki Konishi Inventor Fumiaki Konishi 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Tatsuo Minagawa 325 Kamimachiya, Kamakura Mitsubishi Electric Corporation Kamakura (72) Inventor Toshio Masushima 325 Kamimachiya, Kamakura City Mitsubishi Electric Corporation Kamakura Factory (72) Inventor Akira Okuyama 325 Kamimachiya, Kamakura City Mitsubishi Electric Corporation Kamakura Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 オフセット反射鏡と、上記反射鏡の概略
焦点に配置された一次放射器と、上記反射鏡を支える支
柱とから成るオフセットアンテナにおいて、上記反射鏡
の一次放射器の側で、かつ上記焦点から反射鏡を経由す
る電波の伝送路の外側に位置し、遠赤外線を、上記反射
鏡の表面の下部の照射密度が他の部分よりも高くなるよ
うに上記反射鏡の下側から照射する遠赤外線発生手段を
具備したことを特徴とする融雪装置付オフセットアンテ
ナ。
1. An offset antenna comprising an offset reflecting mirror, a primary radiator arranged at a substantially focal point of the reflecting mirror, and a support for supporting the reflecting mirror, wherein the reflector has a primary radiator side and It is located outside the transmission path of radio waves from the focal point through the reflecting mirror, and irradiates far infrared rays from the lower side of the reflecting mirror so that the irradiation density of the lower part of the surface of the reflecting mirror is higher than that of other parts. An offset antenna with a snow melting device, characterized in that it comprises a far infrared ray generating means.
【請求項2】 オフセット反射鏡と、上記反射鏡の概略
焦点に配置された一次放射器と、上記反射鏡を支える支
柱とから成るオフセットアンテナにおいて、上記焦点か
ら上記反射鏡を経由する電波の伝送路の外側で、かつ上
記一次放射器の開口より後側に位置し、上記一次放射器
の周囲に所定の間隙をもって取付けられた円筒状のヒー
タを具備したことを特徴とする融雪装置付オフセットア
ンテナ。
2. An offset antenna comprising an offset reflecting mirror, a primary radiator arranged at an approximate focal point of the reflecting mirror, and a support for supporting the reflecting mirror, wherein radio waves are transmitted from the focal point through the reflecting mirror. An offset antenna with a snow melting device, characterized in that it comprises a cylindrical heater located outside the road and behind the opening of the primary radiator and mounted around the primary radiator with a predetermined gap. .
【請求項3】 オフセット反射鏡と、上記反射鏡の概略
焦点に配置された一次放射器と、上記反射鏡を支える支
柱とから成るオフセットアンテナにおいて、上記反射鏡
の一次放射器側で、かつ上記焦点から反射鏡を経由する
電波の伝送路の外側に位置し、遠赤外線を、上記反射鏡
の表面の下部の照射密度が他の部分よりも高くなるよう
に上記反射鏡の下側から照射する遠赤外線発生手段と、
上記焦点から反射鏡を経由する電波の伝送路の外側で、
かつ上記一次放射器の開口より後側に位置し、上記一次
放射器の周囲に所定の間隙をもって取付けられた円筒状
のヒータとを具備したことを特徴とする融雪装置付オフ
セットアンテナ。
3. An offset antenna comprising an offset reflecting mirror, a primary radiator arranged at an approximate focal point of the reflecting mirror, and a support for supporting the reflecting mirror, wherein the primary radiator side of the reflecting mirror and the It is located outside the transmission path of radio waves from the focal point through the reflecting mirror, and irradiates far infrared rays from the lower side of the reflecting mirror so that the irradiation density of the lower part of the surface of the reflecting mirror is higher than other parts. Far infrared ray generating means,
Outside the transmission path of radio waves from the focus to the reflector,
An offset antenna with a snow melting device, further comprising: a cylindrical heater located behind the opening of the primary radiator and mounted around the primary radiator with a predetermined gap.
【請求項4】 遠赤外線発生手段を8の字状のシーズヒ
ータと、回転放物面状あるいは半球状の反射板とで構成
したことを特徴とする請求項1または3記載の融雪装置
付オフセットアンテナ。
4. The offset with a snow melting device according to claim 1, wherein the far infrared ray generating means is constituted by a figure-eight sheathed heater and a rotating parabolic or hemispherical reflector. antenna.
【請求項5】 遠赤外線発生手段を、1個あるいは複数
個の棒状シーズヒータと柱状放物面状の反射板とで構成
したことを特徴とする請求項1または3記載の融雪装置
付オフセットアンテナ。
5. The offset antenna with a snow melting device according to claim 1, wherein the far infrared ray generating means is composed of one or a plurality of rod-shaped sheathed heaters and a columnar parabolic reflector. .
JP6255138A 1994-10-20 1994-10-20 Offset antenna with snow melting device Expired - Fee Related JP2744590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6255138A JP2744590B2 (en) 1994-10-20 1994-10-20 Offset antenna with snow melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6255138A JP2744590B2 (en) 1994-10-20 1994-10-20 Offset antenna with snow melting device

Publications (2)

Publication Number Publication Date
JPH08125416A true JPH08125416A (en) 1996-05-17
JP2744590B2 JP2744590B2 (en) 1998-04-28

Family

ID=17274619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6255138A Expired - Fee Related JP2744590B2 (en) 1994-10-20 1994-10-20 Offset antenna with snow melting device

Country Status (1)

Country Link
JP (1) JP2744590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345108A (en) * 2023-05-31 2023-06-27 四川省安道速博科技有限公司 Avionic signal receiving device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168991U (en) * 1983-04-27 1984-11-12 株式会社日立ホームテック heating element
JPS60123981U (en) * 1984-01-30 1985-08-21 株式会社日立ホームテック far infrared heating element
JPS6165688U (en) * 1984-10-05 1986-05-06
JPH0244803A (en) * 1988-08-05 1990-02-14 Takeshi Hatsuda Antenna device
JPH02138906U (en) * 1989-04-24 1990-11-20
JPH02143808U (en) * 1989-04-28 1990-12-06
JPH03266504A (en) * 1990-03-15 1991-11-27 Nec Corp Dual reflecting mirror antenna
JPH052416U (en) * 1991-06-21 1993-01-14 株式会社富士通ゼネラル Snow cover removal device for satellite dish
JPH05191138A (en) * 1992-01-16 1993-07-30 Mitsubishi Electric Corp Offset antenna

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168991U (en) * 1983-04-27 1984-11-12 株式会社日立ホームテック heating element
JPS60123981U (en) * 1984-01-30 1985-08-21 株式会社日立ホームテック far infrared heating element
JPS6165688U (en) * 1984-10-05 1986-05-06
JPH0244803A (en) * 1988-08-05 1990-02-14 Takeshi Hatsuda Antenna device
JPH02138906U (en) * 1989-04-24 1990-11-20
JPH02143808U (en) * 1989-04-28 1990-12-06
JPH03266504A (en) * 1990-03-15 1991-11-27 Nec Corp Dual reflecting mirror antenna
JPH052416U (en) * 1991-06-21 1993-01-14 株式会社富士通ゼネラル Snow cover removal device for satellite dish
JPH05191138A (en) * 1992-01-16 1993-07-30 Mitsubishi Electric Corp Offset antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345108A (en) * 2023-05-31 2023-06-27 四川省安道速博科技有限公司 Avionic signal receiving device

Also Published As

Publication number Publication date
JP2744590B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP6900311B2 (en) Methods for adaptive beam placement in wireless systems
US6844862B1 (en) Wide angle paraconic reflector antenna
EP0372023A1 (en) Multimode dielectric-loaded multi-flare antenna
US6563399B2 (en) Adjustable azimuth and phase shift antenna
KR100311440B1 (en) Single wire spiral antenna
GB2128416A (en) Antenna
JPH05308221A (en) Fixed reflector type antenna for plural radio communication beams
EP0678930B1 (en) Broadband omnidirectional microwave antenna
JPH08125416A (en) Offset antenna with snow melting device
GB2611943A (en) Multisegment array-fed ring-focus reflector antenna for wide-angle scanning
US20220247067A1 (en) Base station antenna
US2549143A (en) Microwave broadcast antenna
Bergmann et al. A single‐reflector design for omnidirectional coverage
JPS61129903A (en) Reflection mirror antenna system
RU2273921C2 (en) Parabolic antenna feed
JP2679436B2 (en) Radome
GB2311169A (en) A broadband omnidirectional microwave antenna with decreased sky radiation and with a simple means of elevation-plane pattern control
JPH05191138A (en) Offset antenna
Barvainis et al. The Haystack Observatory lambda-3-mm Upgrade
JP2680362B2 (en) Antenna device
JPH03267802A (en) Offset antenna
KR100304077B1 (en) Antenna unit for suppression radio radiation to high angle of elevation
JPH0936655A (en) Multi-beam antenna
JPH10145138A (en) Multi-beam antenna
JPH02121506A (en) Antenna having revolution-body reflector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees