JPH0812456A - High-strength refractory - Google Patents

High-strength refractory

Info

Publication number
JPH0812456A
JPH0812456A JP6154971A JP15497194A JPH0812456A JP H0812456 A JPH0812456 A JP H0812456A JP 6154971 A JP6154971 A JP 6154971A JP 15497194 A JP15497194 A JP 15497194A JP H0812456 A JPH0812456 A JP H0812456A
Authority
JP
Japan
Prior art keywords
carbon
fibers
fiber
refractory
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6154971A
Other languages
Japanese (ja)
Other versions
JP3018904B2 (en
Inventor
Atsuya Kasai
篤也 葛西
Yuji Narita
雄司 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6154971A priority Critical patent/JP3018904B2/en
Publication of JPH0812456A publication Critical patent/JPH0812456A/en
Application granted granted Critical
Publication of JP3018904B2 publication Critical patent/JP3018904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve pulling resistance of fiber by strengthening bond strength between carbon fibers as a reinforcing material and a parent material matrix. CONSTITUTION:This high-strength refractory is obtained by blending a refractory aggregate with carbon fibers and optionally carbon raw material powder/ molding. The carbon fibers are at least one kind selected from carbon fibers obtained by carbonizing an organic resin applied to the surface of fibers and carbon fibers and carbon yarn obtained by knitting carbon yarns.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属の精錬、運搬
用容器および連続鋳造用部材等を構成する高強度耐火物
に関する。より詳細には母材マトリックスに対する引抜
き抵抗性を高めた炭素繊維を配合して高強度化した耐火
物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength refractory material which is used for refining molten metal, a container for transportation, a member for continuous casting and the like. More specifically, the present invention relates to a refractory material having a high strength by incorporating carbon fibers having enhanced pull-out resistance to a matrix matrix.

【0002】[0002]

【従来の技術】MgO-C 、Al2O3-C レンガ等の炭素含有耐
火物は、MgO 、Al2O3 等の耐火性骨材に土壌黒鉛、鱗状
黒鉛、人造黒鉛等の炭素原料を配合することで、スラグ
に対する濡れ性を悪くし、また熱伝導率を上昇させて耐
食性並びに耐熱衝撃性の向上を図った複合耐火物であ
る。かかる長所により炭素含有耐火物は現在では転炉、
電炉、混銑車、鍋等の内張り材、あるいは浸漬ノズル等
の鉄鋼用耐火物として幅広く使用されている。
Carbon-containing refractory materials such as MgO-C, Al 2 O 3 -C bricks, etc. are made of refractory aggregates such as MgO and Al 2 O 3 with carbon raw materials such as soil graphite, scaly graphite and artificial graphite. By compounding, it is a composite refractory in which the wettability to slag is deteriorated and the thermal conductivity is increased to improve the corrosion resistance and the thermal shock resistance. Due to these advantages, carbon-containing refractories are now
It is widely used as a refractory material for steel such as electric furnaces, towing cars, pots and other lining materials, and immersion nozzles.

【0003】かかる炭素含有耐火物の耐熱衝撃性の向上
には、耐火物中の黒鉛の配合量を増加させて熱伝導率を
上昇させることが考えられる。しかし過剰な黒鉛の配合
は黒鉛の酸化消失を起こし、強度・耐食性を劣化させ
る。このため例えば、MgO-C レンガの黒鉛配合量は通常
20%前後に留まっている。この点、転炉羽口部などの特
に耐熱衝撃性が要求される部位では、他よりも数%黒鉛
量を増加することで耐酸化性には劣るものの、耐熱衝撃
性に優れたMgO-C レンガを張り分けして使用している
が、耐火レンガ施工に際して、そのように部位によって
耐火レンガの種類を変えることは現場での作業が必要と
なることからコスト的にも不利である。
In order to improve the thermal shock resistance of such a carbon-containing refractory material, it is considered to increase the thermal conductivity by increasing the compounding amount of graphite in the refractory material. However, an excessive amount of graphite compound causes the oxidation and disappearance of graphite, which deteriorates the strength and corrosion resistance. Therefore, for example, the graphite content of MgO-C bricks is usually
It remains around 20%. In this respect, MgO-C, which is excellent in thermal shock resistance, is inferior in oxidation resistance by increasing the graphite content by several% compared to other parts, such as converter tuyere, where thermal shock resistance is particularly required. Although the bricks are divided and used, it is costly to change the type of the refractory bricks depending on the site when constructing the refractory bricks, since the work on site is required.

【0004】このような欠点があることから耐食性・耐
酸化性を維持しつつ耐熱衝撃性を向上させた耐火物の開
発が望まれる。
Due to these drawbacks, it is desired to develop a refractory material having improved thermal shock resistance while maintaining corrosion resistance and oxidation resistance.

【0005】従来より耐火物の機械的特性を向上させる
手段の一つとして各種繊維の添加がある。金属繊維やセ
ラミックス繊維等の繊維の添加で機械的特性を向上さ
せ、耐衝撃性を改善する手段は従来より検討されてお
り、不定形耐火物においては鉄鋼、ステンレス鋼等の金
属繊維の添加は一般的であり、既に実用化されている。
Conventionally, the addition of various fibers has been one of the means for improving the mechanical properties of refractory materials. Means for improving mechanical properties and impact resistance by adding fibers such as metal fibers and ceramic fibers have been studied so far, and in the case of irregular shaped refractories, addition of metal fibers such as steel and stainless steel is not recommended. It is general and already in practical use.

【0006】一方、炭素繊維は金属繊維に比較して熱間
強度に優れており、また炭素含有耐火物では母材マトリ
ックスが炭素質であり繊維と同質であることから材質的
に容易に一体化を図れる等の長所を有しており、金属繊
維以上の補強効果が期待できる。
On the other hand, carbon fiber is superior in hot strength as compared with metal fiber, and in a carbon-containing refractory, the matrix of the base material is carbonaceous and is the same as the fiber, so that it is easily integrated in terms of material. It has advantages such as being able to achieve the above, and can be expected to have a reinforcing effect over metal fibers.

【0007】この効果から特開昭56−140080号公報には
スライディングノズルプレート用の炭素含有耐火物に炭
素繊維を添加してプレート材の耐熱衝撃性の向上を図る
手段が開示されている。
From this effect, JP-A-56-140080 discloses a means for improving the thermal shock resistance of the plate material by adding carbon fiber to the carbon-containing refractory material for the sliding nozzle plate.

【0008】これら繊維の添加による強化機構は耐火物
中に亀裂 (クラック) が発生し、マトリックス中を伝播
する際に配合繊維が橋掛け (ブリッジング) 、あるいは
引き抜け (プルアウト) 抵抗を示すことによって耐火物
マトリックス部分の破壊エネルギーを増加させてクラッ
クの進展を阻害する機械的な補強効果である。この効果
を充分に得るには、添加する繊維材は短繊維であるより
も長繊維が、そして母材のマトリックス中に3次元的に
均一に分散しているほうが望ましい。
The strengthening mechanism by the addition of these fibers is that cracks occur in the refractory, and the compounded fibers show resistance to bridging or pulling out when propagating in the matrix. This is a mechanical reinforcing effect that increases the fracture energy of the refractory matrix portion and inhibits the progress of cracks. In order to sufficiently obtain this effect, it is desirable that the fiber material to be added has long fibers rather than short fibers and is three-dimensionally uniformly dispersed in the matrix of the matrix.

【0009】しかしながら現実には、長繊維の添加は耐
火物作製工程の通常の一般的な混練方法では均一な分散
が困難であること、また混練の際に骨材粒子により切断
されてしまうとの問題がある。このため短繊維 (チョッ
プド・ファイバー) 添加による補強が検討されている。
なお、ここで言う短繊維と長繊維の区別は、便宜上、長
さ10mmより短い、長いをもって行う。
However, in reality, it is difficult to uniformly add the long fibers by a general kneading method in the refractory production process, and the fibers are cut by aggregate particles during the kneading. There's a problem. Therefore, reinforcement by adding chopped fibers is being considered.
For the sake of convenience, the short fiber and the long fiber are referred to as having a length shorter than 10 mm and a long length.

【0010】短繊維を補強材とする時に問題となるの
は、母材マトリックスと繊維との結合力の弱さである。
すなわち、繊維と母材マトリックスとの結合形態は一般
にフェノール・レジン、タール・ピッチ等の有機質バイ
ンダーが炭化することにより生じるカーボン・ボンドで
あり、その強度は比較的弱く炭素繊維の補強効果が発現
する以前に繊維が引き抜けてしまう。
A problem when using short fibers as a reinforcing material is weak bonding force between the matrix and the fibers.
That is, the bond form between the fiber and the matrix is generally a carbon bond generated by carbonization of an organic binder such as phenol resin, tar pitch, etc., whose strength is relatively weak and the reinforcing effect of the carbon fiber is expressed. The fiber pulls out before.

【0011】特公平5−43662 号公報には上述のような
欠点を防止し母材マトリックスと炭素繊維との結合力を
強め、引き抜け抵抗を向上させる手段として、繊維の表
面をホウ素化合物含有有機樹脂により被覆する手段が提
案されている。
In Japanese Patent Publication No. 43662/1993, as a means for preventing the above-mentioned drawbacks, strengthening the bonding force between the matrix of the base material and the carbon fiber, and improving the pull-out resistance, the surface of the fiber is made of a boron compound-containing organic compound. Means for coating with a resin have been proposed.

【0012】これは昇温時に炭素繊維と母材マトリック
スとの間にB4C(s)を生成させ、これを仲立ちとした結合
を作ることで結合力を強め、引き抜け抵抗性を上昇させ
る方法である。
This is because B 4 C (s) is generated between the carbon fiber and the matrix of the base material at the time of temperature rise, and by forming a bond mediated by this, the bond strength is strengthened and pull-out resistance is increased. Is the way.

【0013】しかしながら、稼働中の炭素含有耐火物、
例えばMgO-C レンガでは耐火物中の雰囲気はPco=1(a
tm) と推定されており、熱力学的にB4C(s)は約930 ℃で
CO(g) と反応してB2O3(l) を生成し結合力を失ってしま
う。同様にAl、Si等から生成する金属炭化物で結合の強
化を図る手段、つまりこのような炭化物を生成して結合
の強化を図り、引き抜け抵抗性を高める手段は温度如何
では金属炭化物が酸化物に変化することから、高温下に
おいてはその機能を充分発揮するとは言えず望ましくな
い。
However, a carbon-containing refractory material in operation,
For example, in MgO-C brick, the atmosphere in the refractory is P co = 1 (a
tm), and thermodynamically B 4 C (s) is about 930 ℃
It reacts with CO (g) to form B 2 O 3 (l) and loses its binding strength. Similarly, a means for strengthening the bond with a metal carbide generated from Al, Si, etc., that is, a means for strengthening the bond by generating such a carbide and increasing the pull-out resistance is a metal carbide oxide depending on the temperature. Therefore, it cannot be said that its function is sufficiently exhibited at high temperature, which is not desirable.

【0014】[0014]

【発明が解決しようとする課題】したがって、本発明
は、耐火物の強度および耐熱衝撃性を改善すべく、補強
材として炭素短繊維を用いる際に問題となる母材マトリ
ックスと繊維材間の結合力の弱さを改善し、繊維の引き
抜け抵抗性を向上させる技術を開発することを目的とす
る。
SUMMARY OF THE INVENTION Therefore, the present invention provides a bond between a matrix matrix and a fibrous material, which is a problem when short carbon fibers are used as a reinforcing material in order to improve the strength and thermal shock resistance of refractory materials. The purpose is to develop a technique for improving the weakness of force and improving the pull-out resistance of fibers.

【0015】[0015]

【課題を解決するための手段】ここに、本発明者らは、
上記目的を達成すべく種々検討を重ねた結果、次のよう
な知見を得、本発明を完成した。 (i) 炭素短繊維に予め有機樹脂を被覆し炭化処理を施す
ことで、機械的な引抜き抵抗を高める表面不規則な炭素
繊維が得られること。 (ii)繊維を、例えば三編み、または四編みのように編み
込んだところ、同様な表面不規則性が得られること。
Here, the present inventors
As a result of various studies to achieve the above object, the following findings were obtained and the present invention was completed. (i) A carbon fiber having an irregular surface which enhances mechanical drawing resistance can be obtained by coating a carbon short fiber with an organic resin in advance and carbonizing the same. (ii) The same surface irregularity can be obtained by knitting fibers, for example, in three-knit or four-knit.

【0016】よって、本発明の要旨とするところは、耐
火性骨材と炭素繊維とを混合・成形して成る耐火物であ
って、前記炭素繊維が、繊維表面に被覆した有機樹脂を
炭化させて得た炭素繊維、および炭素繊維を編み込んで
得た炭素繊維から成る群から選んだ少なくとも1種であ
ることを特徴とする高強度耐火物である。
Therefore, the gist of the present invention is a refractory material formed by mixing and molding a refractory aggregate and carbon fibers, wherein the carbon fibers carbonize the organic resin coated on the fiber surface. It is a high-strength refractory material which is at least one selected from the group consisting of carbon fibers obtained by the above and carbon fibers obtained by weaving carbon fibers.

【0017】本発明の好適態様によれば、さらに炭素原
料粉を配合してもよい。このように本発明によれば、上
述のように繊維表面に凹凸が付与された炭素繊維の配合
によって、その強度特性、靱性等の機械的特性の向上が
可能となる。
According to a preferred embodiment of the present invention, carbon raw material powder may be further added. As described above, according to the present invention, it is possible to improve mechanical characteristics such as strength characteristics and toughness by blending the carbon fibers having the fiber surface irregularities as described above.

【0018】[0018]

【作用】以下、本発明による耐火物の作用について詳細
に述べる。炭素繊維としては、既に強度や弾性率といっ
た特定の物性に優れた製品が用途別に市販されている。
The function of the refractory material according to the present invention will be described in detail below. As carbon fibers, products having excellent specific physical properties such as strength and elastic modulus have already been marketed according to their uses.

【0019】一般に高弾性率に設計された炭素繊維は強
度が劣るが、それでも通常2GPa 以上の引張強度をも
つ。これに対して母材となる耐火物の強度は焼成レンガ
においても曲げ強度で数十MPa 程度であり、高弾性炭素
繊維であっても補強材としては充分な強度を有してい
る。このため特に高強度炭素繊維に使用を限定する必要
はない。
Generally, carbon fibers designed to have a high elastic modulus are inferior in strength, but usually have a tensile strength of 2 GPa or more. On the other hand, the strength of the refractory as the base material is about several tens of MPa in terms of bending strength even in the case of fired bricks, and even high elastic carbon fiber has sufficient strength as a reinforcing material. Therefore, it is not necessary to limit the use to high strength carbon fiber.

【0020】サイズとしては単繊維の直径が1〜50μm
のチョップド・ファイバーが好ましい。これはこの範囲
以下の短繊維を作製することが製法上困難であること、
またこの径以上では繊維の柔軟性が失われ破断し易く割
れ易くなるためである。
Regarding the size, the diameter of the single fiber is 1 to 50 μm.
Preferred chopped fiber. This is because it is difficult to produce short fibers in this range or less in terms of the production method,
Also, if the diameter is larger than this, the flexibility of the fiber is lost and the fiber easily breaks and cracks easily.

【0021】フェノール樹脂、フラン樹脂、タール・ピ
ッチ等の有機樹脂を単独、あるいは混合したものを予め
繊維表面に被覆し、これを不活性雰囲気あるいは還元雰
囲気中で500 〜3000℃に加熱して被覆層を炭素化・黒鉛
化させる。またこの繊維の被覆に用いる有機樹脂として
は炭化処理で生成する炭素質が繊維材と同質となるもの
を選択すべきである。すなわち、繊維が黒鉛質のもので
あれば黒鉛化し易いタール・ピッチや塩化ビニール系樹
脂といった易黒鉛化炭素材を、炭素繊維が炭素質であれ
ばガラス状炭素を生成し易いフェノール樹脂、ポリ塩化
ビニリデン等の難黒鉛化炭素材を選択することが望まし
い。
The surface of the fiber is previously coated with a phenol resin, a furan resin, an organic resin such as tar / pitch, or a mixture thereof, and the fiber surface is heated to 500 to 3000 ° C. in an inert atmosphere or a reducing atmosphere for coating. Carbonize / graphitize the layer. The organic resin used for coating the fibers should be selected so that the carbonaceous material produced by the carbonization treatment has the same quality as the fibrous material. That is, if the fiber is a graphitic one, a graphitizable carbon material such as tar / pitch or vinyl chloride resin, which is easily graphitized, is used. It is desirable to select a non-graphitizable carbon material such as vinylidene.

【0022】そして、このどちらのケースにおいても繊
維表面での凹凸の形成量を考慮すれば残炭率が20wt%以
上の有機樹脂を選択するのが好ましい。これは20wt%未
満の残炭率をもつ樹脂を使用する場合、必ずしも充分な
凹凸の付与にはならないためである。
In both cases, it is preferable to select an organic resin having a residual coal rate of 20 wt% or more, considering the amount of irregularities formed on the fiber surface. This is because when a resin having a residual carbon content of less than 20 wt% is used, sufficient unevenness is not always imparted.

【0023】樹脂による繊維表面の被覆は、繊維と有機
樹脂をミキサー等の混練機を用いて混練し、その後乾燥
器中で加熱して硬化させることで行うことができる。樹
脂と繊維を混練する時に繊維がボール状に凝集する場合
には、樹脂をアルコール等の溶剤に希釈した後に溶剤を
揮発させ、繊維表面に樹脂を析出させてもよい。また加
温することで樹脂の見かけ粘性を低下させた後に混練し
てもよい。これらの方法は炭素繊維表面に樹脂から生成
させた黒鉛、あるいは炭素を化学的に成長させて凹凸を
付与させる手段である。
The coating of the fiber surface with the resin can be carried out by kneading the fiber and the organic resin with a kneader such as a mixer and then heating and curing in a dryer. When the fibers are aggregated into a ball shape when kneading the resin and the fibers, the resin may be diluted with a solvent such as alcohol and then the solvent may be volatilized to deposit the resin on the surface of the fiber. Alternatively, the apparent viscosity of the resin may be lowered by heating to knead. These methods are means for chemically growing graphite or carbon generated from a resin on the surface of carbon fiber to impart irregularities.

【0024】次に、本発明の別法として炭素繊維を編み
込んで表面凹凸を有する炭素繊維を製造する場合につい
て説明する。すなわち、単繊維を複数本寄り合わせロー
プ状にすることによって繊維表面に物理的に凹凸を付与
する手段も可能である。この手段によっても繊維の引き
抜け抵抗性は増加する。
Next, as another method of the present invention, a case where carbon fibers are knitted into carbon fibers having surface irregularities will be described. That is, it is possible to provide a means for physically providing unevenness on the fiber surface by forming a plurality of single fibers in a rope shape. This measure also increases the pull-out resistance of the fiber.

【0025】具体的な手段としては、本法における繊維
の編み込み方は一般的な有機繊維 (木綿、ナイロン等)
の紡ぎ方に準じれば良く、例えば三編み、四編み等の編
み方が可能である。ここで注意すべきは炭素繊維の結節
強さの低さである。すなわち炭素繊維においては、折り
曲げた時に繊維が破断する現象 (結節) が起こり易く、
このため上記の編み込みでは炭素繊維を結ぶことは避け
ることが好ましい。
As a concrete means, the method of weaving fibers in this method is a general organic fiber (cotton, nylon, etc.)
The knitting method may be, for example, three-knitting, four-knitting or the like. What should be noted here is the low knot strength of carbon fiber. That is, in the case of carbon fiber, a phenomenon (nodule) in which the fiber breaks when bent is likely to occur,
Therefore, it is preferable to avoid tying carbon fibers in the above braiding.

【0026】それぞれ以上の適宜手段で作成した炭素繊
維を少なくとも1種、重量%で0.3〜20%の割合で、耐
火性骨材あるいは耐火性骨材と炭素原料に結合材ととも
に添加し、常法により混練・成形後、大気中300 ℃以下
の温度で硬化処理を施すか、あるいは還元雰囲気下1500
℃以下の温度で焼成することで目的とする炭素含有耐火
物を作製することができる。本発明にあっては、各原料
粉の配合、混練さらには成形、焼成は慣用法に準じて行
えばよく、特に制限はない。
At least one kind of carbon fiber prepared by the above-mentioned appropriate means is added at a ratio of 0.3 to 20% by weight in a refractory aggregate or a refractory aggregate and a carbon raw material together with a binder, and a conventional method is used. After kneading and molding by the method, perform a curing treatment in the air at a temperature of 300 ° C or less, or in a reducing atmosphere at 1500
The target carbon-containing refractory can be produced by firing at a temperature of ℃ or less. In the present invention, blending, kneading, molding and firing of each raw material powder may be carried out according to a conventional method, and there is no particular limitation.

【0027】本発明に使用できる耐火性骨材としては、
MgO 、CaO 、Al2O3 、ZrO2、SiO2、スピネル等を挙げる
ことができ、また炭素原料としては土壌黒鉛、鱗状黒
鉛、人造黒鉛、無煙炭、カーボンブラック等の使用が可
能である。また酸化防止材としてのAl、Si等の金属粉の
使用も可能である。次に、実施例によって本発明の作用
についてさらに具体的に説明する。
The refractory aggregate that can be used in the present invention includes:
Examples thereof include MgO, CaO 2 , Al 2 O 3 , ZrO 2 , SiO 2 and spinel, and as carbon raw materials, soil graphite, scaly graphite, artificial graphite, anthracite, carbon black and the like can be used. It is also possible to use metal powder such as Al and Si as an antioxidant. Next, the operation of the present invention will be described more specifically with reference to Examples.

【0028】[0028]

【実施例】【Example】

(実施例1)本例では炭素繊維含有MgO-C レンガを試作し
た。まず、直径20μm、長さ3mmのPAN 系炭素質炭素繊
維で繊維全量に対して10wt%になるようにフェノール樹
脂 (残炭率35wt%) を加え、アイリッヒ・ミキサーを使
用して15分間混合した。200 ℃で硬化処理後、窒素雰囲
気中で1000℃×5hr炭化処理することにより、目的とす
る表面処理炭素繊維1を得た。
(Example 1) In this example, a carbon fiber-containing MgO-C brick was prototyped. First, a PAN-based carbonaceous carbon fiber having a diameter of 20 μm and a length of 3 mm was added with a phenol resin (residual carbon ratio 35 wt%) so as to be 10 wt% with respect to the total amount of the fiber, and mixed for 15 minutes using an Erich mixer. . After curing at 200 ° C., carbonization at 1000 ° C. for 5 hours in a nitrogen atmosphere was performed to obtain the target surface-treated carbon fiber 1.

【0029】また熱処理を加えず上述と同様の方法で表
面に樹脂を被覆しただけの炭素繊維2、また表面に被覆
処理を施さなかった炭素繊維3を比較材として用いた。
これら炭素繊維1、2、3をそれぞれ直径0.3 mm以下の
鱗状黒鉛微粉とV型ブレンダーによりプレミックスし、
その後に他成分である電融マグネシアおよび金属Alの全
量とフェノール樹脂を加えて混練した。
Further, carbon fibers 2 whose surface was coated with a resin in the same manner as above without heat treatment and carbon fibers 3 whose surface was not coated were used as comparative materials.
These carbon fibers 1, 2 and 3 are premixed with a scaly graphite fine powder having a diameter of 0.3 mm or less and a V-type blender,
After that, the total amount of electromelted magnesia and metallic Al, which are other components, and a phenol resin were added and kneaded.

【0030】こうして得た原料配合物を真空フリクショ
ン・プレスを用いて2ton/cm2 の成形圧で成形し、230
×114 ×65mmの成形体を作製し、次いでこの成形体を還
元雰囲気中で1000℃×2hr熱処理して焼成レンガを作製
した。
The raw material mixture thus obtained was molded using a vacuum friction press at a molding pressure of 2 ton / cm 2 , and 230
A molded body of × 114 × 65 mm was produced, and then this molded body was heat-treated at 1000 ° C for 2 hours in a reducing atmosphere to produce a fired brick.

【0031】このようにして得た耐火れんがの物性値、
特性についての評価を行った。作製に使用した原料、配
合割合および試験によって得られた各物性値について表
1にまとめて示す。
The physical properties of the refractory brick thus obtained,
The characteristics were evaluated. Table 1 collectively shows the raw materials used for the production, the blending ratio, and the respective physical property values obtained by the test.

【0032】各試験要領は次の通りであった。 (1) 曲げ強度:JIS R 2213に準拠して測定。比較例2の
曲げ強度を100 としてこれに対する比で表記。数値が大
きいほど強度が高い。 (2) 圧縮強さ:JIS R 2206に準拠して測定。比較例であ
る例No.2の圧縮強度を100 としてこれに対する比で表
記。
The test procedures were as follows. (1) Bending strength: Measured according to JIS R 2213. The bending strength of Comparative Example 2 is 100, and the ratio is shown. The higher the value, the higher the strength. (2) Compressive strength: Measured according to JIS R 2206. The compression strength of Example No. 2 which is a comparative example is set to 100 and is expressed as a ratio to this.

【0033】(3) 耐スラグ侵食性高周波誘導炉内に各試
料を張分けし、溶損による断面積減少量を比較すること
で評価を行った。数値は比較例である例No.2の溶損量を
100 とし、これに対する比で表しており、数値が大きい
程耐食性に優れていることを示している。なお、侵食剤
として転炉スラグを使用した。
(3) Slag erosion resistance Each sample was stretched in a high-frequency induction furnace, and the amount of reduction in cross-sectional area due to melting loss was compared and evaluated. The numerical value is the amount of erosion of Example No. 2 which is a comparative example.
It is set to 100 and expressed as a ratio to this, and the larger the value, the better the corrosion resistance. In addition, converter slag was used as an erosion agent.

【0034】(4) 耐熱衝撃性:30×30×120 mmの試料を
電気炉でArガス中、1300℃で5分間加熱した後、液体窒
素中に投下して急冷し、その後に曲げ強度を測定するこ
とで比較した。数値は比較例である例No.2の曲げ強度を
100 とし、これに対する比で表わした。
(4) Thermal shock resistance: A sample of 30 × 30 × 120 mm was heated in an electric furnace in Ar gas at 1300 ° C. for 5 minutes, then dropped in liquid nitrogen to be rapidly cooled, and then the bending strength was increased. It compared by measuring. The numerical value is the bending strength of Example No. 2 which is a comparative example.
It was set to 100 and expressed as a ratio to this.

【0035】(5) 耐酸化性:直径50×60mmの試料を電気
炉中で1000℃×2hr保持し、脱炭層の厚みを比較した。
数値は比較例であるNo.2の脱炭層の厚みを100 とし、こ
れに対する比で表わした。なお炉内へはO2ガスを吹き込
みO2濃度が一定となるよう適時調整を行った。
(5) Oxidation resistance: A sample having a diameter of 50 × 60 mm was held at 1000 ° C. for 2 hours in an electric furnace and the thickness of the decarburized layer was compared.
The values are expressed as a ratio to the thickness of the No. 2 decarburized layer, which is a comparative example, being 100. O 2 gas was blown into the furnace and the O 2 concentration was adjusted to be constant.

【0036】[0036]

【表1】 [Table 1]

【0037】次に、本例で得られた耐火物を実際に10to
n 複合吹錬転炉の羽口部のレンガ材として使用したとこ
ろ、従来材のMgO-C レンガに比較して損耗速度が約50%
低減する効果が認められた。
Next, the refractory material obtained in this example was actually subjected to 10 to
n When used as a brick material for the tuyeres of a composite blowing converter, the wear rate was about 50% compared to the conventional MgO-C brick.
The reducing effect was recognized.

【0038】(実施例2)本例では、炭素繊維含有Al2O3-
SiC-C レンガを作製した。直径15μm、長さ5mmのピッ
チ系炭素質炭素繊維に対して繊維全体に対し10wt%にな
るようにタール・ピッチ (残炭率42wt%) を加え、実施
例1と同様の工程で炭化処理をすることにより目的とす
る表面処理炭素繊維4を得た。また熱処理を加えなかっ
た炭素繊維5を比較材として用いた。
Example 2 In this example, carbon fiber-containing Al 2 O 3-
A SiC-C brick was produced. Tar pitch (residual coal rate 42 wt%) was added to pitch-based carbonaceous carbon fiber having a diameter of 15 μm and a length of 5 mm so as to be 10 wt% with respect to the whole fiber, and carbonized in the same process as in Example 1. By doing so, the target surface-treated carbon fiber 4 was obtained. Further, carbon fiber 5 which was not subjected to heat treatment was used as a comparative material.

【0039】これら炭素繊維4、5をそれぞれ0.3 mm以
下の鱗状黒鉛微粉とプレミックスし、その後に他成分、
つまり電融アルミナおよび炭化珪素の全量とフェノール
樹脂を加えて混練した。
Each of these carbon fibers 4 and 5 was premixed with scaly graphite fine powder of 0.3 mm or less, and then other components,
That is, the total amount of fused alumina and silicon carbide and the phenol resin were added and kneaded.

【0040】この原料配合物を真空フリクション・プレ
スを用いて2ton/cm2 の圧力で成形し、次いでこの成形
体に還元雰囲気中で1000℃×2hr熱処理を加えて焼成レ
ンガを作製した。
This raw material mixture was molded at a pressure of 2 ton / cm 2 using a vacuum friction press, and then this molded body was heat-treated at 1000 ° C. for 2 hours in a reducing atmosphere to produce a fired brick.

【0041】このようにして得られた耐火れんがについ
て強度等の特性を試験した。表2に作製したレンガ材の
原料、配合割合および試験結果について示す。
The refractory bricks thus obtained were tested for properties such as strength. Table 2 shows the raw materials, blending ratios, and test results of the manufactured brick materials.

【0042】[0042]

【表2】 [Table 2]

【0043】表2に表記した試験方法は表1の各試験方
法に準じており、曲げ強度以降の物性値表示は比較例で
あるNo.7の各物性値を100 としてこれに対する比で表現
した。
The test methods shown in Table 2 are in accordance with the test methods of Table 1, and the physical property values after the bending strength are expressed as a ratio to each physical property value of Comparative Example No. 7 as 100. .

【0044】(実施例3)本例では炭素繊維含有MgO-C レ
ンガを作製した。直径7μmのピッチ系炭素繊維を三編
みに編み込み、その後に長さ4mmに裁断して目的とする
炭素繊維6を得た。
(Example 3) In this example, a carbon fiber-containing MgO-C brick was produced. A pitch-based carbon fiber having a diameter of 7 μm was woven into three braids, and then cut into a length of 4 mm to obtain a target carbon fiber 6.

【0045】炭素繊維6を0.3 mm以下の鱗状黒鉛微粉と
プレミックスした後、その他の成分を加えて混錬した。
この原料配合物を真空フリクション・プレスを用いて2
ton/cm2 の圧力で成形し、次いで還元雰囲気で1000℃×
2hrの熱処理を加えて焼成レンガを作製した。
After the carbon fiber 6 was premixed with the fine graphite powder of 0.3 mm or less, the other components were added and kneaded.
This raw material mixture was mixed with a vacuum friction press 2
Molded at a pressure of ton / cm 2 and then 1000 ° C in a reducing atmosphere
A fired brick was produced by adding a heat treatment for 2 hours.

【0046】このようにして得られた耐火レンガについ
て強度等の特性について実施例1に準じて試験した。表
3に作製したレンガ材の原料、配合割合および試験結果
についてまとめて示す。
The refractory bricks thus obtained were tested for properties such as strength in accordance with Example 1. Table 3 shows the raw materials of the brick material, the compounding ratio, and the test results collectively.

【0047】[0047]

【表3】 [Table 3]

【0048】表3に表記した試験方法は表1の各試験方
法に準じており、比較例であるNo.9の各物性値を100 と
してこれに対する比で表現した。
The test methods shown in Table 3 are in accordance with the test methods of Table 1, and each physical property value of Comparative Example No. 9 was set to 100 and expressed as a ratio to this.

【0049】[0049]

【発明の効果】本発明は従来の耐火物の強度特性および
耐熱衝撃性を改善するものであり、本発明によれば、そ
れと同時に耐食性・耐酸化性といった他の特性を従来の
耐火物に比較して全く損なうことなく向上することが可
能である。かかる効果により従来より耐熱衝撃性を重視
して配合炭素量を多くすることでむしろ耐酸化性を低下
させていた転炉羽口部レンガ等の炭素含有耐火物として
有効に利用することができる。またその他にも、混銑
車、転炉湯当たり部、CCノズルといった特に強度と耐熱
衝撃性が要求される部材において寿命を向上させること
が可能である。
INDUSTRIAL APPLICABILITY The present invention improves the strength characteristics and the thermal shock resistance of conventional refractories. According to the present invention, at the same time, other characteristics such as corrosion resistance and oxidation resistance are compared with those of conventional refractories. Therefore, it is possible to improve without any loss. Due to such an effect, it can be effectively used as a carbon-containing refractory material such as a brick for tuyeres of a converter for which the oxidation resistance is lowered by increasing the blended carbon amount by placing emphasis on thermal shock resistance. In addition, in addition, it is possible to improve the life of members such as a hot metal wheel, a converter hot water contact portion, and a CC nozzle that require particularly high strength and thermal shock resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐火性骨材と炭素繊維とを混合・成形し
て成る耐火物であって、前記炭素繊維が、繊維表面に被
覆した有機樹脂を炭化させて得た炭素繊維、および炭素
繊維を編み込んで得た炭素繊維から成る群から選んだ少
なくとも1種であることを特徴とする高強度耐火物。
1. A refractory formed by mixing and molding a refractory aggregate and carbon fibers, wherein the carbon fibers are obtained by carbonizing an organic resin coated on the fiber surface, and carbon fibers. A high-strength refractory material which is at least one kind selected from the group consisting of carbon fibers obtained by knitting.
【請求項2】 さらに炭素原料粉を配合して成る請求項
1記載の高強度耐火物。
2. The high-strength refractory material according to claim 1, further comprising carbon raw material powder.
JP6154971A 1994-07-06 1994-07-06 High strength refractory Expired - Lifetime JP3018904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6154971A JP3018904B2 (en) 1994-07-06 1994-07-06 High strength refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6154971A JP3018904B2 (en) 1994-07-06 1994-07-06 High strength refractory

Publications (2)

Publication Number Publication Date
JPH0812456A true JPH0812456A (en) 1996-01-16
JP3018904B2 JP3018904B2 (en) 2000-03-13

Family

ID=15595892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6154971A Expired - Lifetime JP3018904B2 (en) 1994-07-06 1994-07-06 High strength refractory

Country Status (1)

Country Link
JP (1) JP3018904B2 (en)

Also Published As

Publication number Publication date
JP3018904B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
JP4634263B2 (en) Magnesia carbon brick
JP6354073B2 (en) Carbon-containing fired brick refractories
JP6376102B2 (en) Carbon-containing unfired brick refractory
EP0758632A1 (en) Unshaped refractories and gunning refractories prepared therefrom
JP2006056735A (en) Magnesia-graphite brick
JP4187183B2 (en) Magnesia-carbon brick
JP3018904B2 (en) High strength refractory
JP3638081B2 (en) Refractory material containing low carbonaceous carbon and method for producing the same
JP4945257B2 (en) Refractory
JP3865950B2 (en) Refractory composition and refractory
JP2006021972A (en) Magnesia-carbon brick
JPH05270889A (en) Carbon-containing refractories
JP6361705B2 (en) Lining method of converter charging wall
JP6538584B2 (en) Method of manufacturing refractory for gas injection nozzle
JP6432869B2 (en) Refractory brick manufacturing method
JP2017065978A (en) Manufacturing method of carbon-containing brick refractory
JP3197680B2 (en) Method for producing unburned MgO-C brick
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JPH0354155A (en) Production of graphite-containing brick for lining of melted metallic vessel
JP2005047757A (en) Graphite-containing castable refractory
JP4471254B2 (en) Magnesia-carbon brick
JP6567588B2 (en) High temperature melt refining vessel
JPH09328378A (en) Production of carbon-containing basic refractory
JP2005231953A (en) Graphite-containing brick
JP2006152160A (en) Carbon-black-dispersed organic solvent, carbon-black-dispersed organic resin prepared by adding and mixing the organic solvent, and carbon-containing refractory using the organic resin

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991130