JPH0812309A - Element crystal superfine particulate encapsulated in carbon wall capsule - Google Patents

Element crystal superfine particulate encapsulated in carbon wall capsule

Info

Publication number
JPH0812309A
JPH0812309A JP6163095A JP16309594A JPH0812309A JP H0812309 A JPH0812309 A JP H0812309A JP 6163095 A JP6163095 A JP 6163095A JP 16309594 A JP16309594 A JP 16309594A JP H0812309 A JPH0812309 A JP H0812309A
Authority
JP
Japan
Prior art keywords
carbon
arc discharge
crystal
composite electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6163095A
Other languages
Japanese (ja)
Inventor
Yoshitaka Yoshida
喜孝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP6163095A priority Critical patent/JPH0812309A/en
Publication of JPH0812309A publication Critical patent/JPH0812309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce crystal superfine particulates of 3d transition metal element encapsulated in a carbon wall capsule and stabilized by executing arc discharge between a cathode of pure carbon and an anode using a carbon composite electrode containing 3d transition metal element. CONSTITUTION:Powder of a simple substance, a compound such as carbide, oxide or carbonate, or an alloy of an element selected from among 3d transition metals in an amount of 2-15wt.%, a carbon substrate adhesive and graphite at need at mixed to form a carbon composite electrode. The mixture is pre- heated to 100-140 deg.C for 3-12 hour in the atmosphere and heat treated at 600-1500 deg.C for 0.3-3 hour in vacuum in an arc discharge furnace. By using this carbon composite electrode as an anode and a pure carbon as a cathode, a direct current arc discharge is executed for 1-10min in a gaseous helium atmosphere whose pressure is lower than the atmosphere in the arc discharge furnace. Soot generated at periphery of the electrode is captured and separated to obtain the superfine particulates of the element crystal encapsulated in the capsule having a multi-layer carbon wall. The average grain size is 5-1000nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭素壁包被体に内包さ
れた単体結晶超微粒子に関する。本発明の炭素壁包被体
に内包された単体結晶超微粒子は、その反応性のため、
水素貯蔵材料、超伝導材料、電子材料、磁性材料、磁気
記録材料、光学材料、燒結材料、触媒材料及びセンサー
材料のための素材等としての利用が期待される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to single crystal ultrafine particles encapsulated in a carbon wall envelope. Single crystal ultrafine particles encapsulated in the carbon wall envelope of the present invention, due to its reactivity,
It is expected to be used as a material for hydrogen storage materials, superconducting materials, electronic materials, magnetic materials, magnetic recording materials, optical materials, sintered materials, catalyst materials, sensor materials, and the like.

【0002】[0002]

【従来の技術】従来、単体結晶超微粒子は、気相法と固
相法の二通りの方法で製造されている。気相法とは、液
体原料を気化させ、メタン及びアルゴンの混合ガスをレ
ーザー光もしくはプラズマ中に導入するか、または、固
体原料をスパッタリングして超微粒子を製造する方法で
ある。一方、固相法とは、固体原料の粉砕処理によって
超微粒子化する方法である。
2. Description of the Related Art Conventionally, single crystal ultrafine particles have been produced by two methods, a gas phase method and a solid phase method. The gas phase method is a method in which a liquid material is vaporized and a mixed gas of methane and argon is introduced into laser light or plasma, or a solid material is sputtered to produce ultrafine particles. On the other hand, the solid phase method is a method of pulverizing a solid raw material into ultrafine particles.

【0003】しかしながら、一般に、単体結晶超微粒子
は大気中で不安定なため、取り扱いが困難である。超微
粒子の安定化を図るために、特別な化合物による安定化
処理やカプセル化などの表面処理方法が知られている
が、その方法は煩雑であり、また、欺かる方法では表面
処理に使用した化合物が超微粒子中に混在するため、素
材としての利用が困難となる。
[0003] However, in general, single crystal ultrafine particles are difficult to handle because they are unstable in the atmosphere. In order to stabilize ultrafine particles, surface treatment methods such as stabilization treatment and encapsulation with a special compound are known, but the method is complicated, and the deceptive method used for surface treatment Since the compound is mixed in the ultrafine particles, it is difficult to use the compound as a material.

【0004】[0004]

【発明が解決しようとする課題】従って、超微粒子の素
材としての利用の際に悪影響を与えないように安定化さ
れた単体結晶超微粒子の提供が望まれる。
Accordingly, it is desired to provide single crystal ultrafine particles which are stabilized so as not to adversely affect the use of ultrafine particles as a material.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記の問題
について鋭意研究した結果、3d遷移金属から選ばれる
元素を含む炭素複合電極である陽電極と純粋炭素の陰電
極の間に直流アーク放電を起こさせるか、または、交流
アーク放電において該炭素複合電極を電極に使用するな
らば、多層の炭素壁包被体に内包された単体結晶の超微
粒子を製造し得ることを見い出し、本発明を完成した。
The inventor of the present invention has conducted intensive studies on the above-mentioned problems, and as a result, has found that a direct current arc between a positive electrode, which is a carbon composite electrode containing an element selected from 3d transition metals, and a pure carbon negative electrode. It has been found that, if the carbon composite electrode is used as an electrode in causing an electric discharge or in an AC arc discharge, ultrafine particles of a single crystal encapsulated in a multilayer carbon wall envelope can be produced, and the present invention Was completed.

【0006】すなわち、本発明の要旨は、3d遷移金属
から選ばれる元素の、多層の炭素壁包被体に内包された
単体結晶超微粒子に存する。
That is, the gist of the present invention resides in single crystal ultrafine particles of an element selected from 3d transition metals, which are included in a multilayer carbon wall envelope.

【0007】単体結晶超微粒子を構成する元素は、3d
遷移金属である。
The element constituting the single crystal ultrafine particles is 3d
It is a transition metal.

【0008】超微粒子は、通常、等方的(球形)である
が、長球(回転楕円体)状にもなり得る。超微粒子の換
算平均粒径は、通常、5〜1000nm、好ましくは5
〜100nm、更に好ましくは5〜30nmである。長
球状のものの場合、長軸/単軸比は、通常、1〜100
である。また、元素単体超微粒子は単結晶または単結晶
または多重双晶である。
[0008] The ultrafine particles are usually isotropic (spherical), but can also be elongated (spheroidal). The converted average particle diameter of the ultrafine particles is usually 5 to 1000 nm, preferably 5 to 1000 nm.
To 100 nm, more preferably 5 to 30 nm. In the case of an elongated sphere, the ratio of the long axis to the single axis is usually 1 to 100
It is. The elementary ultrafine particles are a single crystal, a single crystal, or a multiple twin.

【0009】単体結晶超微粒子は、少なくとも金属的な
性質を発揮する大きさであり、通常、104 個以上の原
子から成る。単体結晶超微粒子の原子の数の上限は、通
常、1012である。
The single crystal ultrafine particles are of a size exhibiting at least metallic properties, and usually consist of 10 4 or more atoms. The upper limit of the number of atoms of the single crystal ultrafine particles is usually 10 12 .

【0010】単体結晶超微粒子を内包する包被体は、通
常、5〜50層の多層壁を有している。包被体は、通
常、等方的であるが、円柱形となることもある。
[0010] An envelope body containing single crystal ultrafine particles usually has a multilayer wall of 5 to 50 layers. The envelope is usually isotropic, but may be cylindrical.

【0011】この多層の炭素壁包被体に内包された単体
結晶超微粒子は、以下に説明する方法によって製造でき
る。第一に、直流アーク放電を用いる製造方法について
説明する。
The single crystal ultrafine particles encapsulated in the multilayer carbon wall envelope can be produced by the method described below. First, a manufacturing method using DC arc discharge will be described.

【0012】炭素複合電極に含まれる、3d遷移金属の
元素は、その形態に特に制限はなく、単体、炭化物や酸
化物や炭酸化物などの化合物または合金として使用され
る。具体的には、コバルト、ニッケル、鉄、コバルト−
ニッケル合金、酸化コバルト、炭酸コバルト、酸化ニッ
ケル、炭酸ニッケル、酸化鉄などが使用される。
The form of the 3d transition metal element contained in the carbon composite electrode is not particularly limited, and may be used as a simple substance, a compound such as a carbide, oxide or carbonate, or an alloy. Specifically, cobalt, nickel, iron, cobalt-
Nickel alloy, cobalt oxide, cobalt carbonate, nickel oxide, nickel carbonate, iron oxide and the like are used.

【0013】炭素複合電極は、元素の単体、炭化物や酸
化物や炭酸化物などの化合物または合金の粉末と炭素基
質接着剤との混合物を成形して形成することが出来る。
上記の混合物には、必要に応じ、更に黒鉛を混合しても
よい。欺かる複合マトリックス構造の炭素陽電極の場
合、元素単体の量は、陽電極複合マトリックス部分に対
し、通常2〜15重量%、好ましくは10〜12重量%
である。
The carbon composite electrode can be formed by molding a mixture of a simple substance of an element, a powder of a compound or alloy such as a carbide, an oxide or a carbonate, and a carbon substrate adhesive.
The above mixture may be further mixed with graphite, if necessary. In the case of a carbon positive electrode having a deceptive composite matrix structure, the amount of the elemental element is usually 2 to 15% by weight, preferably 10 to 12% by weight, based on the positive electrode composite matrix portion.
It is.

【0014】また、炭素複合電極は、純粋炭素電極の中
央部に穴をあけ、その内部に炭化物を生成し得る元素の
単体、炭化物もしくは合金、または、上記混合物を充填
して形成することが出来る。欺かるパッキング構造の炭
素複合電極の場合、穴の断面積の電極の断面積に占める
割合は、通常約25%である。充填物に混合物を用いる
場合は、混合物全体に対し30重量%が混合物の粘着性
を維持する上限である。なお、通常、炭素複合電極の形
状は円柱形とされる。
The carbon composite electrode can be formed by forming a hole in the center of a pure carbon electrode and filling the inside with a simple substance, carbide or alloy of an element capable of forming carbide, or a mixture thereof. . In the case of a carbon composite electrode having a deceptive packing structure, the ratio of the sectional area of the hole to the sectional area of the electrode is usually about 25%. When a mixture is used for the filler, 30% by weight based on the whole mixture is the upper limit for maintaining the tackiness of the mixture. In addition, usually, the shape of the carbon composite electrode is cylindrical.

【0015】炭素複合電極は、通常、アーク放電の前
に、1×10-3Torr以下の真空中600〜1500
℃で0.3〜3時間加熱処理される。
The carbon composite electrode is usually placed in a vacuum of 1 × 10 −3 Torr or less in a vacuum of 600 to 1500 before arc discharge.
C. for 0.3 to 3 hours.

【0016】上記の加熱処理は、アーク放電炉内で行な
うのが好ましい。何故ならば、熱処理後、電極を大気に
暴露することなく、直流アーク放電の陽電極として使用
でき、大気に暴露された場合に起こる電極表面の変性を
避けることが出来るからである。更に、パッキング構造
の炭素複合電極の場合は、充填物熱処理時の損失を少な
くするため、充填面を対向する陰電極と接触させて熱処
理を行なうとよい。
The above-mentioned heat treatment is preferably performed in an arc discharge furnace. This is because, after the heat treatment, the electrode can be used as a positive electrode for direct current arc discharge without exposing the electrode to the atmosphere, thereby avoiding denaturation of the electrode surface that occurs when the electrode is exposed to the air. Further, in the case of a carbon composite electrode having a packing structure, in order to reduce the loss during the heat treatment of the filling material, the heat treatment may be performed by bringing the filling surface into contact with the opposite negative electrode.

【0017】上記の加熱処理に先立ち、炭素複合電極の
予備加熱を行なうのが好ましい。そして、大気中100
〜140℃で3〜12時間予備加熱した場合は、混合物
が固化するため、その後の電極の取り扱いが容易にな
る。また、1×10-5Torrの真空中500〜700
℃で24〜70時間予備加熱した場合は、炭素壁包被体
に内包された元素単体の超微粒子の収率が更に向上す
る。特に、元素の単体、炭化物または合金を含む本発明
の炭素複合電極は、酸化物を含む炭素複合電極の場合に
比べ、短時間の加熱処理で欺かる効果を得ることが出来
るので好ましい。因に、欺かる効果は、接着剤中に含ま
れている不純物が除去されることに基づくと推定され
る。
Prior to the above heat treatment, it is preferable to perform preheating of the carbon composite electrode. And in the atmosphere 100
When preheating is performed at ~ 140 ° C for 3 to 12 hours, the mixture is solidified and subsequent handling of the electrode is facilitated. In a vacuum of 1 × 10 −5 Torr, 500 to 700
When preheating at 24 ° C. for 24 to 70 hours, the yield of elemental ultrafine particles contained in the carbon wall envelope is further improved. In particular, the carbon composite electrode of the present invention containing a simple substance, a carbide, or an alloy of an element is preferable since a deceptive effect can be obtained by a short heat treatment as compared with the case of a carbon composite electrode containing an oxide. The deceptive effect is presumed to be based on the removal of impurities contained in the adhesive.

【0018】直流アーク放電は、アーク放電炉内におい
て、適切な間隔を保った炭素複合電極である陽電極と陰
電極の間に直流アーク放電をおこさせることにより行な
う。炭素複合電極として、パッキング構造の電極を使用
する場合には、充填面を陰電極に対向させて直流アーク
放電を行なう。陰電極の材料は、通常、純粋炭素であ
る。
The DC arc discharge is performed by causing a DC arc discharge between a positive electrode and a negative electrode, which are carbon composite electrodes kept at an appropriate distance, in an arc discharge furnace. When an electrode having a packing structure is used as the carbon composite electrode, DC arc discharge is performed with the filling surface facing the negative electrode. The material of the negative electrode is usually pure carbon.

【0019】直流アーク放電において、放電電力、雰囲
気、圧力、時間、電極間距離などの条件は、炭素複合電
極消耗重量に対する陰電極上堆積物重量の比を参考にし
て適宜選択されるが、放電電力は、通常、0.4〜2k
W、雰囲気は、通常、希ガス、好ましくはヘリウムガ
ス、圧力は、通常、大気圧以下であり、時間は、通常、
1〜10分間である。
In DC arc discharge, conditions such as discharge power, atmosphere, pressure, time, and distance between electrodes are appropriately selected with reference to the ratio of the weight of the deposit on the negative electrode to the consumption weight of the carbon composite electrode. Power is typically 0.4-2k
W, atmosphere is usually a rare gas, preferably helium gas, pressure is usually below atmospheric pressure, time is usually
1 to 10 minutes.

【0020】雰囲気としてヘリウムガスを使用する場合
は、炭素複合電極消耗重量に対する陰電極上堆積物重量
の比に圧力が影響を与えないため、放電の条件設定が容
易となる。直流アーク放電の代表的な条件としては、ヘ
リウム雰囲気、圧力100Torr、放電電力0.6k
Wという条件が挙げられる。
When helium gas is used as the atmosphere, since the pressure does not affect the ratio of the weight of the deposit on the negative electrode to the weight of the carbon composite electrode, the discharge conditions can be easily set. Typical conditions for DC arc discharge include a helium atmosphere, a pressure of 100 Torr, and a discharge power of 0.6 k.
The condition of W is mentioned.

【0021】直流アーク放電を行うことにより、陰極上
には、円筒状の堆積物が成長し、また、陽・陰両電極の
周囲にはススが生じる。陰極堆積物は、円筒状であり、
円筒の外側が比較的硬くて灰色、内側が比較的柔らかく
て黒色を呈するという二重構造を有する。ススを補集
し、分離操作をおこなうことにより、多層の炭素壁を有
する包被体(スーパー・フラーレン)に内包された元素
単体結晶の超微粒子を得ることが出来る。
By performing the DC arc discharge, a cylindrical deposit grows on the cathode, and soot is generated around the positive and negative electrodes. The cathode deposit is cylindrical,
The cylinder has a dual structure in which the outside is relatively hard and gray, and the inside is relatively soft and black. By collecting soot and performing a separation operation, ultrafine particles of elemental single crystals encapsulated in an envelope (super fullerene) having a multilayer carbon wall can be obtained.

【0022】包被体は、通常、5〜50層の多層壁を有
している。得られる元素単体結晶超微粒子の形状は、通
常、等方的であるが、長球形のものも生成する。得られ
る超微粒子の換算平均粒径は、通常、5〜1000nm
である。また、元素単体結晶超微粒子は単結晶または単
結晶または多重双晶である。
The envelope usually has a multilayer wall of 5 to 50 layers. The shape of the obtained ultrafine elemental single crystal particles is usually isotropic, but may also be elongated. The converted average particle diameter of the obtained ultrafine particles is usually 5 to 1000 nm.
It is. The element single crystal ultrafine particles are single crystal, single crystal or multiple twin.

【0023】多層の炭素壁を有する包被体は、電子線の
照射等によって分解することが出来る。内包された元素
単体結晶超微粒子は、水素貯蔵材料、超伝導材料、電子
材料、磁性材料、磁気記録材料、光学材料、燒結材料、
触媒材料及びセンサー材料の製造の際に、大気中で安定
な素材として容易に使用できる。
The envelope having a multilayer carbon wall can be decomposed by irradiation with an electron beam or the like. Encapsulated elementary single crystal ultrafine particles include hydrogen storage materials, superconducting materials, electronic materials, magnetic materials, magnetic recording materials, optical materials, sintered materials,
When producing a catalyst material and a sensor material, it can be easily used as a stable material in the atmosphere.

【0024】包被体は多層の炭素壁を有するため、炭化
物との反応性の高い酸素などを遮断し、その結果、内包
された元素単体結晶超微粒子は、安定に存在できるもの
と推定される。
Since the encapsulant has a multilayered carbon wall, it blocks oxygen and the like having high reactivity with carbides. As a result, it is presumed that the encapsulated ultrafine particles of elemental single crystals can stably exist. .

【0025】さらに、別の製造方法においては、交流ア
ーク放電を用い、炭素壁包被体に内包された元素単体結
晶超微粒子を製造する。即ち、直流アーク放電を用いる
製造方法において説明した炭素複合電極を使用し、これ
らの間に交流アーク放電を起こさせること以外は、直流
アーク放電を用いる製造方法について説明したのと同様
にして、炭素壁包被体に内包された元素単体結晶超微粒
子を製造することが出来る。
In another manufacturing method, ultrafine particles of an elementary single crystal encapsulated in a carbon wall envelope are manufactured by using an AC arc discharge. That is, except that the carbon composite electrode described in the manufacturing method using DC arc discharge is used, and an AC arc discharge is caused between them, the same method as described in the manufacturing method using DC arc discharge is used. Ultrafine particles of elemental single crystals encapsulated in the wall envelope can be produced.

【0026】この場合には、両電極に炭素複合電極を使
用するため、炭素複合電極の消耗量に対する元素単体結
晶超微粒子を内包する包被体の収率は不変であるが、一
回の放電で得られる超微粒子の量は、直流アーク放電の
場合に比べ、約2倍になる。
In this case, since the carbon composite electrode is used for both electrodes, the yield of the encapsulating body containing the elementary single crystal ultrafine particles with respect to the consumption amount of the carbon composite electrode is not changed. The amount of the ultrafine particles obtained by the above method is about twice as large as that in the case of DC arc discharge.

【0027】[0027]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.

【0028】実施例1 コバルト単体Co(関東化学(株)、純度99.0%)
と還元性グラファイ・ボンド(アムコ社、551−R
(商品名))を重量比で約0.3:1の割合で混合し
た。これを外径6mm長さ8cmのカーボン棒(日本カ
ーボン社、純度99.999%)に開けた直径3mm長
さ4cmの穴に充填した。
Example 1 Cobalt simple substance Co (Kanto Chemical Co., Ltd., purity 99.0%)
And reducing graphite bond (Amco, 551-R)
(Trade name)) were mixed at a weight ratio of about 0.3: 1. This was filled in a hole of 3 mm in diameter and 4 cm in length formed in a carbon rod (external diameter: 6 mm, length: 8 cm, purity: 99.999%, Nippon Carbon Co., Ltd.).

【0029】次いで、上記のカーボン棒を大気中120
℃で3時間加熱した後、1×10-5Torrの真空中6
00℃で24時間加熱して陽極を得た。アーク放電炉の
中において、陽極の充填部分が純粋炭素の陰極に対向す
るよう設置して両者を接触状態に保ち、1×10-3To
rrの真空中1200〜1450℃で1時間加熱した。
Next, the above-mentioned carbon rod was placed in the atmosphere for 120 hours.
After heating for 3 hours at ° C., in a vacuum of 1 × 10 -5 Torr 6
Heating was performed at 00 ° C. for 24 hours to obtain an anode. In the arc discharge furnace, the charged portion of the anode is installed so as to face the cathode of pure carbon, and the two are kept in contact with each other, and 1 × 10 −3 To
Heated at 1200-1450 ° C. in rr vacuum for 1 hour.

【0030】次いで、両極を非接触状態に保ち、30A
の一定電流、15〜20Vの電圧の条件でアーク放電を
起こさせた。約8分間の放電により、陰極上には4cm
の長さの円筒状の堆積物、陽・陰両電極の周囲にはスス
が生成した。堆積物とススの重量比は約1.5:1であ
った。円筒状堆積物は、その縦断面から明瞭に識別し得
る構造を有していた。即ち、外側は比較的硬く、灰色で
あり、内側は比較的柔らかく、黒色であった。この黒色
部分と灰色部分の重量比は約1:4であった。
Next, both electrodes are kept in a non-contact state, and 30 A
Arc discharge was caused under the condition of a constant current of 15 to 20 V. About 8 minutes of discharge, 4 cm on the cathode
Soot was formed around the positive and negative electrodes of a cylindrical deposit with a length of. The weight ratio of sediment to soot was about 1.5: 1. The cylindrical sediment had a structure that could be clearly identified from its longitudinal section. That is, the outside was relatively hard and gray, and the inside was relatively soft and black. The weight ratio of the black part to the gray part was about 1: 4.

【0031】また、結晶を内包した多層の炭素壁を有す
る包被体は、上記の黒色部分内に少量、上記のスス中に
多量認められた。特に、スス中に存在する多層の炭素壁
を有する包被体の内約80%が結晶を内包していること
が認められた。結晶を内包する多層の炭素壁を有する包
被体の収率は、複合電極の消耗量に対して41重量%で
あり、また、結晶は、下記の通りその大部分がβ−C
o、微少量がCo3Cと確認された。
Further, a small amount of the encapsulant having a multi-layered carbon wall enclosing a crystal was observed in the black portion, and a large amount was observed in the soot. In particular, it was found that about 80% of the encapsulant having multiple carbon walls present in the soot contained crystals. The yield of the envelope having the multilayered carbon wall enclosing the crystal is 41% by weight based on the consumption of the composite electrode, and most of the crystal has β-C
o, a very small amount was confirmed to be Co 3 C.

【0032】電子線励起X線分析により、黒色物質およ
びススの元素分析を行なった結果、コバルトのみが観測
された。更に、炭素および酸素について分析を行った結
果、炭素の存在は確認されたが酸素は殆どど存在してい
ないことが確認された。この物質の透過型電子顕微鏡写
真(明視野像)から、約10層の炭素壁を有する包被体
の内部に結晶の格子縞が認められた。
Elemental analysis of black matter and soot by electron beam X-ray analysis showed that only cobalt was observed. Further, as a result of analysis of carbon and oxygen, it was confirmed that carbon was present but oxygen was hardly present. From a transmission electron micrograph (bright field image) of this substance, lattice fringes of crystals were observed inside the envelope having about 10 layers of carbon walls.

【0033】内包された結晶物質を電子線回折法および
X線回折法により分析した結果、大部分を占める物質の
結晶構造は面心立方晶であり、格子定数は、a=3.5
44±0.003Åと求められた。これは、β−Co結
晶についての文献値と1.7%の精度で一致した。更
に、微少量の物質の結晶構造は斜方晶であり、格子定数
は、a=4.573±0.046Å、b=5.137±
0.051Å及びc=6.758±0.068Åと求め
られた。これらは、Co3C結晶についての文献値と
1.7%の精度で一致した。β−CoおよびCo3C以
外の候補物質として、α−CoおよびCo2Cについて
検討したが、実験の精度内での文献値との格子定数の一
致は認められなかった。以上から、内包された結晶物質
はその大部分がβ−Co結晶であり、極く微少量がCo
3C結晶と同定された。
As a result of analyzing the encapsulated crystalline substance by an electron diffraction method and an X-ray diffraction method, the crystal structure of the substance occupying most of the substance is face-centered cubic, and the lattice constant is a = 3.5.
44 ± 0.003 °. This agreed with the literature value for the β-Co crystal with an accuracy of 1.7%. Further, the crystal structure of a very small amount of substance is orthorhombic, and the lattice constants are a = 4.573 ± 0.046 ° and b = 5.137 ±.
0.051 ° and c = 6.758 ± 0.068 °. These agreed with the literature values for the Co 3 C crystal with an accuracy of 1.7%. α-Co and Co 2 C were examined as candidate substances other than β-Co and Co 3 C, but no agreement in lattice constant with literature values was found within the precision of the experiment. From the above, most of the encapsulated crystalline material is β-Co crystal, and a very small amount is Co-crystal.
It was identified as a 3 C crystal.

【0034】上記の複合電極を1300〜1450℃の
温度、10-3Torrの真空度で10〜60分間加熱後
(アーク放電なし)、電極内部の混合物を電子顕微鏡で
調べた。その結果、結晶を内包する多層の炭素壁を有す
る包被体の生成が認められた。その生成率は、加熱温度
の上昇および加熱持続時間の増加と共に上昇する傾向が
見られた。約1450℃、10〜20分の条件では、結
晶を内包する多層の炭素壁を有する包被体は、複合電極
の消耗量に対して約8重量%生成されたに過ぎなかっ
た。なお、この場合の結晶も大部分がβ−Co、微少量
がCo3Cであることが、電子線回折およびX線回折の
結果、判明した。
After heating the above composite electrode at a temperature of 1300 to 1450 ° C. and a degree of vacuum of 10 −3 Torr for 10 to 60 minutes (no arc discharge), the mixture inside the electrode was examined with an electron microscope. As a result, generation of an envelope having a multilayered carbon wall enclosing the crystal was observed. Its production rate tended to increase with increasing heating temperature and heating duration. Under the conditions of about 1450 ° C. and 10 to 20 minutes, the wrapping body having the multilayered carbon wall containing the crystal was only about 8% by weight based on the consumption of the composite electrode. As a result of electron beam diffraction and X-ray diffraction, it was found that most of the crystal in this case was β-Co and a very small amount was Co 3 C.

【0035】実施例2 酸化コバルトCo34(関東化学(株)、純度99.9
5%)と還元性グラファイ・ボンド(アムコ社、551
−R(商品名))を重量比で約0.3:1の割合で混合
した。複合電極の作製、熱処理およびアーク放電条件
は、1×10-5Torrの真空中600℃での加熱を7
0時間とした以外は、実施例1と同様である。約8分間
の放電により、陰極上には4cmの長さの円筒状の堆積
物、陽・陰両電極の周囲にはススが生成した。堆積物と
ススの重量比は約1.5:1であった。
Example 2 Cobalt oxide Co 3 O 4 (Kanto Chemical Co., Ltd., purity 99.9)
5%) and reducing graphite bond (Amco, 551)
-R (trade name)) was mixed at a ratio of about 0.3: 1 by weight. The preparation of the composite electrode, heat treatment and arc discharge conditions were as follows: heating at 600 ° C. in vacuum of 1 × 10 −5 Torr
It is the same as Example 1 except that it was set to 0 hours. The discharge for about 8 minutes produced a 4 cm long cylindrical deposit on the cathode and soot around the positive and negative electrodes. The weight ratio of sediment to soot was about 1.5: 1.

【0036】上記の円筒状堆積物は、その縦断面から明
瞭に識別し得る構造を有していた。即ち、外側は、比較
的硬く、灰色であり、内側は、比較的柔らかく、黒色で
あった。この黒色部分と灰色部分の重量比は、約1:4
であった。結晶を内包した多層の炭素壁を有する包被体
は、上記の黒色部分内に少量、上記のスス中に比較的多
量認められた。スス中に存在する多層の炭素壁を有する
包被体の内、結晶を内包しているものは約70%であっ
た。結晶を内包する多層の炭素壁を有する包被体の収率
は、複合電極の消耗量に対して約26重量%であった。
結晶は、実施例1と同様の分析によって大部分がβ−C
o、微少量がCo3Cと確認された。
The above-mentioned cylindrical sediment had a structure that could be clearly identified from its longitudinal section. That is, the outside was relatively hard and gray, and the inside was relatively soft and black. The weight ratio of the black part to the gray part is about 1: 4
Met. A small amount of the enveloping body having a multilayered carbon wall containing crystals was observed in the black portion, and a relatively large amount was found in the soot. About 70% of the encapsulants having multiple carbon walls present in the soot contained crystals. The yield of the envelope having multiple layers of carbon walls enclosing the crystal was about 26% by weight based on the consumption of the composite electrode.
Most of the crystals were analyzed by the same analysis as in Example 1 to obtain β-C
o, a very small amount was confirmed to be Co 3 C.

【0037】実施例3 炭酸コバルトCoCO3(関東化学(株)、43%〜4
8%Co含有)と還元性グラファイ・ボンド(アムコ
社、551−R(商品名))を重量比で約0.3:1の
割合で混合した。複合電極の作製、熱処理およびアーク
放電条件は、比較例1と同様である。約8分間の放電に
より、陰極上には4cmの長さの円筒状の堆積物、陽・
陰両電極の周囲にはススが生成した。堆積物とススの重
量比は、約1.5:1であった。
Example 3 Cobalt carbonate CoCO 3 (Kanto Chemical Co., Ltd., 43% to 4%)
8% Co) and reducing graphite bond (Amco, 551-R (trade name)) were mixed at a weight ratio of about 0.3: 1. The preparation of the composite electrode, the heat treatment, and the arc discharge conditions are the same as in Comparative Example 1. After about 8 minutes of discharge, a 4 cm long cylindrical deposit on the cathode, positive and negative
Soot was formed around the negative electrodes. The weight ratio of sediment to soot was about 1.5: 1.

【0038】上記の円筒状堆積物は、その縦断面から明
瞭に識別し得る構造を有していた。即ち、外側は、比較
的硬く、灰色であり、内側は、比較的柔らかく、黒色で
あった。この黒色部分と灰色部分の重量比は約1:4で
あった。結晶を内包した多層の炭素壁を有する包被体
は、上記の黒色部分内に少量、また、上記のスス中に比
較的多量認められた。スス中に存在する多層の炭素壁を
有する包被体の内、結晶を内包しているものは約70%
であった。結晶を内包する多層の炭素壁を有する包被体
の収率は、複合電極の消耗量に対して約16重量%であ
った。結晶は、実施例1と同様の分析によって大部分が
β−Co、微少量がCo3Cと確認された。
The above-mentioned cylindrical deposit had a structure that could be clearly identified from its longitudinal section. That is, the outside was relatively hard and gray, and the inside was relatively soft and black. The weight ratio of the black part to the gray part was about 1: 4. A small amount of the encapsulant having a multilayered carbon wall enclosing the crystal was found in the black portion, and a relatively large amount was found in the soot. Approximately 70% of the encapsulants having multiple carbon walls in soot contain crystals
Met. The yield of the envelope having the multilayered carbon wall enclosing the crystal was about 16% by weight based on the consumption of the composite electrode. Most of the crystals were confirmed to be β-Co and a very small amount was Co 3 C by the same analysis as in Example 1.

【0039】実施例4 ニッケル単体Ni(関東化学(株)、純度99.0%)
と還元性グラファイ・ボンド(アムコ社、551−R
(商品名))を重量比で約0.3:1の割合で混合し
た。複合電極の作製、熱処理およびアーク放電条件は実
施例1と同様である。約8分間の放電により、陰極上に
は4cmの長さの円筒状の堆積物、陽・陰両電極の周囲
にはススが生成した。堆積物とススの重量比は約1.
5:1であった。
Example 4 Nickel simple substance Ni (Kanto Chemical Co., Ltd., purity: 99.0%)
And reducing graphite bond (Amco, 551-R)
(Trade name)) were mixed at a weight ratio of about 0.3: 1. The preparation of the composite electrode, heat treatment, and arc discharge conditions were the same as in Example 1. The discharge for about 8 minutes produced a 4 cm long cylindrical deposit on the cathode and soot around the positive and negative electrodes. The weight ratio of sediment to soot is about 1.
5: 1.

【0040】上記の円筒状堆積物は、その縦断面から明
瞭に識別し得る構造を有していた。即ち、外側は、比較
的硬く、灰色であり、内側は、比較的柔らかく、黒色で
あった。この黒色部分と灰色部分の重量比は約1:4で
あった。結晶を内包した多層の炭素壁を有する包被体
は、上記の黒色部分内に少量、また、上記のスス中に比
較的多量認められた。特に、スス中に存在する多層の炭
素壁を有する包被体の内約80%が結晶を内包している
ことが認められた。結晶を内包する多層の炭素壁を有す
る包被体の収率は、複合電極の消耗量に対して41重量
%であり、そして、結晶は、下記の通り、Niと確認さ
れた。
The above-mentioned cylindrical sediment had a structure that could be clearly identified from its longitudinal section. That is, the outside was relatively hard and gray, and the inside was relatively soft and black. The weight ratio of the black part to the gray part was about 1: 4. A small amount of the encapsulant having a multilayered carbon wall enclosing the crystal was found in the black portion, and a relatively large amount was found in the soot. In particular, it was found that about 80% of the encapsulant having multiple carbon walls present in the soot contained crystals. The yield of the envelope having the multilayered carbon wall enclosing the crystal was 41% by weight based on the consumption of the composite electrode, and the crystal was identified as Ni as described below.

【0041】電子線励起X線分析により、黒色物質およ
びススの元素分析を行なった結果、ニッケルのみが観測
された。更に、炭素および酸素について分析を行った結
果、炭素の存在は確認されたが酸素はほとんど存在して
いないことが確認された。この物質の透過型電子顕微鏡
写真(明視野像)から、約10層の炭素壁を有する包被
体の内部に結晶の格子縞が認められた。
Elemental analysis of black matter and soot by electron beam X-ray analysis showed that only nickel was observed. Further, as a result of analyzing carbon and oxygen, it was confirmed that carbon was present but oxygen was scarcely present. From a transmission electron micrograph (bright field image) of this substance, lattice fringes of crystals were observed inside the envelope having about 10 layers of carbon walls.

【0042】電子線回折法およびX線回折法により、内
包された結晶物質を分析した結果、結晶構造は面心立方
晶であり、格子定数は、a=3.533±0.003Å
と求められた。これらは、Ni単結晶についての文献値
と0.3%の精度で一致した。Ni以外の候補物質とし
て、Ni3Cについて検討したが、実験の精度内での文
献値との格子定数の一致は認められなかった。以上か
ら、内包された結晶物質はNi結晶と同定された。
As a result of analyzing the encapsulated crystalline substance by electron beam diffraction and X-ray diffraction, the crystal structure was face-centered cubic and the lattice constant was a = 3.533 ± 0.003 °.
Was asked. These agreed with the literature values for the Ni single crystal with an accuracy of 0.3%. Ni 3 C was examined as a candidate substance other than Ni, but no agreement in lattice constant with literature values was found within the precision of the experiment. From the above, the included crystalline substance was identified as a Ni crystal.

【0043】上記の複合電極を1300〜1450℃の
温度、10-3Torrの真空度で10〜60分間加熱後
(アーク放電なし)、電極内部の混合物を電子顕微鏡で
調べた。その結果、結晶を内包する多層の炭素壁を有す
る包被体の生成が認められた。その生成率は、加熱温度
の上昇および加熱持続時間の増加と共に上昇する傾向が
見られた。約1450℃、10〜20分の条件では、内
包する多層の炭素壁を有する包被体の収率は、複合電極
の消耗量に対して約8重量%に過ぎなかった。なお、電
子線回折の結果、上記の場合の結晶もNiであることが
判明した。
After heating the above composite electrode at a temperature of 1300 to 1450 ° C. and a degree of vacuum of 10 −3 Torr for 10 to 60 minutes (no arc discharge), the mixture inside the electrode was examined with an electron microscope. As a result, generation of an envelope having a multilayered carbon wall enclosing the crystal was observed. Its production rate tended to increase with increasing heating temperature and heating duration. Under the conditions of about 1450 [deg.] C. and 10 to 20 minutes, the yield of the encapsulating body having the multi-layered encapsulating carbon wall was only about 8% by weight based on the consumption of the composite electrode. As a result of electron beam diffraction, it was found that the crystal in the above case was also Ni.

【0044】実施例5 酸化ニッケルNiO(関東化学(株)、純度97.0
%)と還元性グラファイ・ボンド(アムコ社、551−
R(商品名))を重量比で約0.3:1の割合で混合し
た。複合電極の作製、熱処理およびアーク放電条件は実
施例2と同様である。約8分間の放電により、陰極上に
は4cmの長さの円筒状の堆積物、陽・陰両電極の周囲
にはススが生成した。堆積物とススの重量比は約1.
5:1であった。
Example 5 Nickel oxide NiO (Kanto Chemical Co., Ltd., purity 97.0)
%) And reducing graphite bond (Amco, 551-
R (trade name)) were mixed at a weight ratio of about 0.3: 1. The preparation of the composite electrode, heat treatment, and arc discharge conditions were the same as in Example 2. The discharge for about 8 minutes produced a 4 cm long cylindrical deposit on the cathode and soot around the positive and negative electrodes. The weight ratio of sediment to soot is about 1.
5: 1.

【0045】上記の円筒状堆積物は、その縦断面から明
瞭に識別し得る構造を有していた。即ち、外側は、比較
的硬く、灰色であり、内側は、比較的柔らかく、黒色で
あった。この黒色部分と灰色部分の重量比は約1:4で
あった。結晶を内包した多層の炭素壁を有する包被体
は、上記の黒色部分内に少量、また、スス中に比較的多
量認められた。スス中に存在する多層の炭素壁を有する
包被体の内、結晶を内包しているものは約70%であっ
た。結晶を内包する多層の炭素壁を有する包被体の収率
は、複合電極消耗量に対して約40重量%であった。結
晶は、実施例4と同様の分析によってNiと確認され
た。
The above-mentioned cylindrical sediment had a structure that could be clearly identified from its longitudinal section. That is, the outside was relatively hard and gray, and the inside was relatively soft and black. The weight ratio of the black part to the gray part was about 1: 4. A small amount of the encapsulant having a multilayered carbon wall enclosing the crystal was found in the black portion, and a relatively large amount was found in the soot. About 70% of the encapsulants having multiple carbon walls present in the soot contained crystals. The yield of the envelope having the multilayered carbon wall enclosing the crystal was about 40% by weight based on the consumption of the composite electrode. The crystal was identified as Ni by the same analysis as in Example 4.

【0046】実施例6 炭酸ニッケルNiCO3(関東化学(株)、45%〜5
0%Ni含有)と還元性グラファイ・ボンド(アムコ
社、551−R(商品名))を重量比で約0.3:1の
割合で混合した。複合電極の作製、熱処理およびアーク
放電条件は実施例2と同様である。約8分間の放電によ
り、陰極上には4cmの長さの円筒状の堆積物、陽・陰
両電極の周囲にはススが生成した。堆積物とススの重量
比は約1.5:1であった。
Example 6 Nickel carbonate NiCO 3 (Kanto Chemical Co., Ltd., 45% to 5%)
0% Ni) and reducing graphite bond (Amco 551-R (trade name)) were mixed at a weight ratio of about 0.3: 1. The preparation of the composite electrode, heat treatment, and arc discharge conditions were the same as in Example 2. The discharge for about 8 minutes produced a 4 cm long cylindrical deposit on the cathode and soot around the positive and negative electrodes. The weight ratio of sediment to soot was about 1.5: 1.

【0047】上記の円筒状堆積物は、その縦断面から明
瞭に識別し得る構造を有していた。即ち、外側は、比較
的硬く、灰色であり、内側は、比較的柔らかく、黒色で
あった。この黒色部分と灰色部分の重量比は約1:4で
あった。結晶を内包した多層の炭素壁を有する包被体
は、上記の黒色部分内に少量、また、上記のスス中に比
較的多量認められた。スス中に存在する多層の炭素壁を
有する包被体の内、結晶を内包しているものは約70%
であった。結晶を内包する多層の炭素壁を有する包被体
の収率は、複合電極の消耗量に対して約25重量%であ
った。結晶は、実施例4と同様の分析によってNiと確
認された。
The above-mentioned cylindrical sediment had a structure that could be clearly identified from its longitudinal section. That is, the outside was relatively hard and gray, and the inside was relatively soft and black. The weight ratio of the black part to the gray part was about 1: 4. A small amount of the encapsulant having a multilayered carbon wall enclosing the crystal was found in the black portion, and a relatively large amount was found in the soot. Approximately 70% of the encapsulants having multiple carbon walls in soot contain crystals
Met. The yield of the envelope having the multilayered carbon wall enclosing the crystal was about 25% by weight based on the consumption of the composite electrode. The crystal was identified as Ni by the same analysis as in Example 4.

【0048】実施例7 鉄単体Fe(関東化学(株)、純度98.0%)と還元
性グラファイ・ボンド(アムコ社、551−R(商品
名))を重量比で約0.3:1の割合で混合した。複合
電極の作製、熱処理およびアーク放電条件は実施例1と
同様である。約8分間の放電により、陰極上に4cmの
長さの円筒状の堆積物、陽・陰両電極の周囲にはススが
生成した。堆積物とススの重量比は約1.5:1であっ
た。
Example 7 A simple substance of Fe (Kanto Chemical Co., Ltd., purity: 98.0%) and a reducing graphite bond (Amco, 551-R (trade name)) were added in a weight ratio of about 0.3: 1. At a rate of The preparation of the composite electrode, heat treatment, and arc discharge conditions were the same as in Example 1. The discharge for about 8 minutes produced a 4 cm long cylindrical deposit on the cathode and soot around the positive and negative electrodes. The weight ratio of sediment to soot was about 1.5: 1.

【0049】上記の円筒状堆積物は、その縦断面から明
瞭に識別し得る構造を有していた。即ち、外側は、比較
的硬く、灰色であり、内側は、比較的柔らかく、黒色で
あった。この黒色部分と灰色部分の重量比は約1:4で
あった。結晶を内包した多層の炭素壁を有する包被体
は、上記の黒色部分内に少量、また、上記のスス中に比
較的多量認められた。特に、スス中に存在する多層の炭
素壁を有する包被体の内約80%が結晶を内包している
ことが認められた。結晶を内包する多層の炭素壁を有す
る包被体の収率は、複合電極の消耗量に対して41重量
%であり、そして、結晶は、下記の通り、大部分がα−
Fe、微少量がγ−Feと確認された。
The above-mentioned cylindrical sediment had a structure that could be clearly identified from its longitudinal section. That is, the outside was relatively hard and gray, and the inside was relatively soft and black. The weight ratio of the black part to the gray part was about 1: 4. A small amount of the encapsulant having a multilayered carbon wall enclosing the crystal was found in the black portion, and a relatively large amount was found in the soot. In particular, it was found that about 80% of the encapsulant having multiple carbon walls present in the soot contained crystals. The yield of the envelope having multiple carbon walls enclosing the crystal is 41% by weight based on the amount of consumption of the composite electrode, and the crystal is mostly α-
Fe and a small amount were confirmed to be γ-Fe.

【0050】電子線励起X線分析により、黒色物質およ
びススの元素分析を行なった結果、鉄のみが観測され
た。更に、炭素および酸素について分析を行った結果、
炭素の存在は確認されたが酸素はほとんど存在していな
いことが確認された。この物質の透過型電子顕微鏡写真
(明視野像)から、約10層の炭素壁を有する包被体の
内部に結晶の格子縞が認められた。なお、透過型電子顕
微鏡写真撮影の前には、像を鮮明にするため、1450
℃で1時間、試料を加熱した。
Elemental analysis of black matter and soot by electron beam X-ray analysis showed that only iron was observed. Furthermore, as a result of analyzing carbon and oxygen,
It was confirmed that carbon was present but oxygen was hardly present. From a transmission electron micrograph (bright field image) of this substance, lattice fringes of crystals were observed inside the envelope having about 10 layers of carbon walls. In addition, before photographing with a transmission electron microscope, in order to make the image clear, 1450 is used.
The sample was heated at 0 C for 1 hour.

【0051】電子線回折法およびX線回折法により、内
包された結晶物質を分析した結果、大部分を占める物質
の結晶構造は体心立方晶であり、格子定数はa=2.8
66±0.003Åと求められた。これは、α−Feに
ついての文献値と1.1%の精度で一致した。更に、微
少量の物質の結晶構造は面心立方晶であり、格子定数
は、a=3.560±0.014Åと求められた。これ
は、γ−Feについての文献値と1.1%の精度で一致
した。α−Feおよびγ−Fe以外の9種類の鉄炭化物
相について検討したが、実験の精度内での文献値との格
子定数の一致は認められなかった。以上から、内包され
た結晶物質は大部分がα−Fe、微少量がγ−Feと同
定された。
As a result of analyzing the encapsulated crystal substance by electron beam diffraction and X-ray diffraction, the crystal structure of the substance occupying most of the substance is body-centered cubic, and the lattice constant is a = 2.8.
66 ± 0.003 °. This agreed with the literature value for α-Fe with an accuracy of 1.1%. Further, the crystal structure of the minute amount of the substance was face-centered cubic, and the lattice constant was determined to be a = 3.560 ± 0.014 °. This agreed with the literature value for γ-Fe with an accuracy of 1.1%. Nine types of iron carbide phases other than α-Fe and γ-Fe were examined, but the agreement of the lattice constant with the literature value within the precision of the experiment was not recognized. From the above, most of the included crystalline substance was identified as α-Fe, and a very small amount was identified as γ-Fe.

【0052】上記の複合電極を1300〜1450℃の
温度、10-3Torrの真空度で10〜60分間加熱後
(アーク放電なし)、電極内部の混合物を電子顕微鏡で
調べた。その結果、結晶を内包する多層の炭素壁を有す
る包被体の生成が認められた。その生成率は、加熱温度
の上昇および加熱持続時間の増加と共に上昇する傾向が
見られた。約1450℃、10〜20分の条件では、内
包する多層の炭素壁を有する包被体の収率は、複合電極
の消耗量に対して約8重量%に過ぎなかった。なお、電
子線回折の結果、上記の場合の結晶も大部分がα−F
e、微少量がγ−Feであることが判明した。
After heating the above composite electrode at a temperature of 1300 to 1450 ° C. and a degree of vacuum of 10 −3 Torr for 10 to 60 minutes (no arc discharge), the mixture inside the electrode was examined with an electron microscope. As a result, generation of an envelope having a multilayered carbon wall enclosing the crystal was observed. Its production rate tended to increase with increasing heating temperature and heating duration. Under the conditions of about 1450 [deg.] C. and 10 to 20 minutes, the yield of the encapsulating body having the multi-layered encapsulating carbon wall was only about 8% by weight based on the consumption of the composite electrode. As a result of electron diffraction, most of the crystals in the above case were also α-F
e, a very small amount was found to be γ-Fe.

【0053】実施例8 酸化鉄Fe23(関東化学(株)、純度99.0%)と
還元性グラファイ・ボンド(アムコ社、551−R(商
品名))を重量比で約0.3:1の割合で混合した。複
合電極の作製、熱処理およびアーク放電条件は実施例2
と同様である。約8分間の放電により、陰極上には4c
mの長さの円筒状の堆積物、陽・陰両電極の周囲にはス
スが生成した。堆積物とススの重量比は約1.5:1で
あった。
Example 8 A weight ratio of iron oxide Fe 2 O 3 (Kanto Chemical Co., Ltd., purity 99.0%) and reducing graphite bond (Amco 551-R (trade name)) was about 0. The mixture was mixed at a ratio of 3: 1. Preparation of composite electrode, heat treatment and arc discharge conditions were as in Example 2.
Is the same as About 8 minutes of discharge, 4c on the cathode
Soot was formed around the m-length cylindrical deposit and the positive and negative electrodes. The weight ratio of sediment to soot was about 1.5: 1.

【0054】上記の円筒状堆積物は、その縦断面から明
瞭に識別し得る構造を有していた。即ち、外側は、比較
的硬く、灰色であり、内側は、比較的柔らかく、黒色で
あった。この黒色部分と灰色部分の重量比は約1:4で
あった。結晶を内包した多層の炭素壁を有する包被体
は、上記の黒色部分内に少量、また、スス中に比較的多
量認められた。スス中に存在する多層の炭素壁を有する
包被体の内、結晶を内包しているものは約70%であっ
た。結晶を内包する多層の炭素壁を有する包被体の収率
は、複合電極の消耗量に対して約26重量%であった。
結晶は、実施例7と同様の分析によって大部分がα−F
e、微少量がγ−Feと確認された。
The above-mentioned cylindrical deposit had a structure that could be clearly identified from its longitudinal section. That is, the outside was relatively hard and gray, and the inside was relatively soft and black. The weight ratio of the black part to the gray part was about 1: 4. A small amount of the encapsulant having a multilayered carbon wall enclosing the crystal was found in the black portion, and a relatively large amount was found in the soot. About 70% of the encapsulants having multiple carbon walls present in the soot contained crystals. The yield of the envelope having multiple layers of carbon walls enclosing the crystal was about 26% by weight based on the consumption of the composite electrode.
Most of the crystals were found to be α-F by the same analysis as in Example 7.
e, a very small amount was confirmed to be γ-Fe.

【0055】[0055]

【発明の効果】本発明の炭素壁包被体に内包された単体
結晶の超微粒子は、種々の技術分野における応用が期待
される。
The ultrafine particles of a single crystal encapsulated in the carbon wall envelope of the present invention are expected to be applied in various technical fields.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3d遷移金属から選ばれる元素の、炭素
壁包被体に内包された単体結晶超微粒子。
1. Single crystal ultrafine particles of an element selected from 3d transition metals encapsulated in a carbon wall envelope.
JP6163095A 1994-06-22 1994-06-22 Element crystal superfine particulate encapsulated in carbon wall capsule Pending JPH0812309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6163095A JPH0812309A (en) 1994-06-22 1994-06-22 Element crystal superfine particulate encapsulated in carbon wall capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6163095A JPH0812309A (en) 1994-06-22 1994-06-22 Element crystal superfine particulate encapsulated in carbon wall capsule

Publications (1)

Publication Number Publication Date
JPH0812309A true JPH0812309A (en) 1996-01-16

Family

ID=15767093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6163095A Pending JPH0812309A (en) 1994-06-22 1994-06-22 Element crystal superfine particulate encapsulated in carbon wall capsule

Country Status (1)

Country Link
JP (1) JPH0812309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068084A (en) * 2007-09-14 2009-04-02 Ritsumeikan Method for producing carbon-coated fine metallic particle
KR101108905B1 (en) * 2009-05-19 2012-02-06 니혼 고꾸 덴시 고교 가부시끼가이샤 Optical connector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068084A (en) * 2007-09-14 2009-04-02 Ritsumeikan Method for producing carbon-coated fine metallic particle
KR101108905B1 (en) * 2009-05-19 2012-02-06 니혼 고꾸 덴시 고교 가부시끼가이샤 Optical connector

Similar Documents

Publication Publication Date Title
JP2546114B2 (en) Foreign substance-encapsulated carbon nanotubes and method for producing the same
Seraphin et al. Filling the carbon nanocages
Scott et al. Morphology, structure, and growth of nanoparticles produced in a carbon arc
US5456986A (en) Magnetic metal or metal carbide nanoparticles and a process for forming same
Saito et al. Cobalt particles wrapped in graphitic carbon prepared by an arc discharge method
Saito et al. Correlation between volatility of rare-earth metals and encapsulation of their carbides in carbon nanocapsules
JP3986711B2 (en) Method for producing single-walled carbon nanotube
Host et al. Graphite encapsulated nanocrystals produced using a low carbon: metal ratio
JPH0494731A (en) Syhthesis of diamond single crystal having high thermal conductivity
JP2002320848A (en) Hydrogen storage material
CN108517470A (en) A kind of yttrium-zirconium-iron alloy material storing hydrogen and preparation method thereof
JPH0570117A (en) Electric conductivity in carbonaceous compound and apparatus using such compound
CN103764882B (en) Single-crystal diamond and its manufacture method
JPH0812309A (en) Element crystal superfine particulate encapsulated in carbon wall capsule
WO2005117032A1 (en) METHOD FOR PRODUCING Nb3Sn SUPERCONDUCTIVE WIRE BY POWDER PROCESS
Saito et al. Crystallographic structure and magnetic properties of Co fine particles encaged in carbon nanocapsules
Saito et al. Synthesis, crystal structures and magnetic properties of Co particles encapsulated in carbon nanocapsules
JPH0768160A (en) Production of superfine particles of carbide or single element enhanced in carbon wall coating
JP3038371B2 (en) Silicon carbide nanoparticle-encapsulated carbon nanoparticle structure
Ushakov et al. Magnetic state of the nickel oxide nanoparticles formed in low-pressure arc discharge plasma
KR101972659B1 (en) Method for manufacturing rod-like carbon-germanium composite and rod-like carbon-germanium composite
Masuda et al. Synthesis, crystal structure and magnetic properties of iron particles encaged in carbon nanocapsules
JP2004210555A (en) Manufacturing method for carbon nanotube
JPS63236707A (en) Black phosphorus-silicon crystal
Yang et al. The effects of hydrogen disproportionation, desorption, and recombination on the structure and magnetic properties of Sm2Fe17N x and NdFe10Mo2N x compounds

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021018