JPH08122810A - Space light modulating element - Google Patents

Space light modulating element

Info

Publication number
JPH08122810A
JPH08122810A JP25663894A JP25663894A JPH08122810A JP H08122810 A JPH08122810 A JP H08122810A JP 25663894 A JP25663894 A JP 25663894A JP 25663894 A JP25663894 A JP 25663894A JP H08122810 A JPH08122810 A JP H08122810A
Authority
JP
Japan
Prior art keywords
insulating substrate
layer
main surface
insulating
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25663894A
Other languages
Japanese (ja)
Inventor
Kazunori Komori
一徳 小森
Akio Takimoto
昭雄 滝本
Hisanori Sugiura
久則 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25663894A priority Critical patent/JPH08122810A/en
Publication of JPH08122810A publication Critical patent/JPH08122810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE: To provide a space light modulating element which can modulate read light having high luminance. CONSTITUTION: In a display device where the first main flat plane 102 of the primary insulated substrate 101 and the first main flat plane 105 of the secondary insulated substrate 104 are mutually opposite, and a liquid crystal layer 109 is held between the first and the second insulated substrate 101, 104, a transparent electrode 107 is provided on the first main flat plane 102 of the primary insulated substrate 101, and a plurality of metal reflecting films 112 divided into minute shapes is provided on the first main flat plane 105 of the secondary insulated substrate 104, and a photoconductive layer 118 and a transparent electrode 119 are provided on the second main flat plane 106 of the secondary insulated substrate 104, and the metal reflecting film 112 is electrically connected to the photoconductive layer 118 through the connecting wiring 114 in a through hole 113 provided within the secondary insulated substrate 104.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投射型ディスプレイ、
ホログラフィーテレビジョンまたは光演算装置などに用
いられる空間光変調素子に関する。
BACKGROUND OF THE INVENTION The present invention relates to a projection type display,
The present invention relates to a spatial light modulator used in a holographic television or an optical arithmetic device.

【0002】[0002]

【従来の技術】近年、容易に大画面の映像を楽しむため
に投射型のディスプレイ(プロジェクター)の開発が盛
んに行われている。早くからCRTを用いたプロジェク
ターは開発され現在広く生産されている。しかし近年
は、映像の高画質化が進み、より明るい画面が望まれか
つハイビジョンに代表されるような高精細な画像に対応
することが必要となった。CRTは原理上高精細と高輝
度を両立させることは難しいとされる。CRTの場合、
高精細化のためには電子ビーム径を絞る必要がありその
ためには電子ビームの強度をある程度制限する必要があ
る。逆に高輝度化のためには電子ビームの強度を大きく
する必要がありその時どうしても電子ビームの径は広が
ってしまう。
2. Description of the Related Art In recent years, a projection type display (projector) has been actively developed in order to easily enjoy a large screen image. Projectors using CRTs have been developed from an early stage and are now widely produced. However, in recent years, as the image quality of video has advanced, a brighter screen has been desired and it has become necessary to deal with high-definition images represented by high-definition. In principle, it is difficult for a CRT to achieve both high definition and high brightness. In case of CRT,
In order to achieve high definition, it is necessary to reduce the electron beam diameter, and for that reason, it is necessary to limit the intensity of the electron beam to some extent. On the contrary, in order to increase the brightness, it is necessary to increase the intensity of the electron beam, and then the diameter of the electron beam inevitably widens.

【0003】そこで近年CRTと液晶を用いた空間光変
調素子を組み合わせたプロジェクターが開発された[テ
レビジョン学会技術報告、17巻10号11ページ(1
993年)]。この空間光変調素子は、読みだし光を微
弱な書き込み情報光で変調する映像光増幅器であり、前
述のプロジェクタはCRTで高精細な画像を空間光変調
素子へ書き込み、強力な読みだし光を変調することで高
精細化と高輝度化の両立が図れた。
Therefore, in recent years, a projector combining a CRT and a spatial light modulator using a liquid crystal has been developed [Technical Report of the Television Society, Vol. 17, No. 10, page 11 (1).
993)]. This spatial light modulator is a video light amplifier that modulates read light with a weak write information light. The projector described above writes a high-definition image to the spatial light modulator by a CRT and modulates strong read light. By doing so, both high definition and high brightness were achieved.

【0004】前述のプロジェクタに用いられる空間光変
調素子の構造は既に幾つか提案されている。既に本発明
者等はダイオード構造のアモルファスシリコンを光導電
層に用い、微小な金属反射膜を画素として設け、液晶層
に強誘電性液晶を用いた空間光変調素子を提案している
(特開平4−136580号公報)。
Some structures of the spatial light modulator used in the above projector have already been proposed. The present inventors have already proposed a spatial light modulator using amorphous silicon having a diode structure as a photoconductive layer, providing a minute metal reflection film as a pixel, and using a ferroelectric liquid crystal as a liquid crystal layer (Japanese Patent Laid-Open No. Hei 10 (1999) -242242). 4-136580).

【0005】空間光変調素子を用いたプロジェクターの
場合、明るい画面を得るためには読みだし光を強力にす
る必要がある。すなわち、空間光変調素子にとってみれ
ばどれだけ強力な読みだし光を変調できるかが重要な問
題となる。一般に強力な読みだし光を空間光変調素子に
照射した場合、読みだし光が光導電層に漏れ込んで誤ス
イッチングや変調光のコントラストの低下が起きる。
In the case of a projector using a spatial light modulator, it is necessary to make the reading light intense in order to obtain a bright screen. That is, for the spatial light modulator, how important the read light can be modulated is an important issue. In general, when a strong read light is applied to the spatial light modulator, the read light leaks into the photoconductive layer, causing erroneous switching and a decrease in the contrast of the modulated light.

【0006】ここで前述した特開平4−136580号
公報に記載の構造を図5に示す。図5において、501は
透明絶縁性基板、502は透明導電性電極、503は入力遮光
膜、504はp層、505はi層、506はn層、507はアモルフ
ァスシリコン光導電層、508は遮光層、509は金属反射
膜、510は配向膜、511は液晶層、512はスペーサ、513は
配向膜、514は透明導電性電極、515は透明絶縁性基板、
516は空間光変調素子、517は偏光子、518は検光子、519
は読みだし光、520は出力光、521は書き込み光、522は
出力遮光膜である。
FIG. 5 shows the structure described in Japanese Patent Laid-Open No. 4-136580 mentioned above. In FIG. 5, 501 is a transparent insulating substrate, 502 is a transparent conductive electrode, 503 is an input light shielding film, 504 is a p layer, 505 is an i layer, 506 is an n layer, 507 is an amorphous silicon photoconductive layer, and 508 is light shielding. Layer, 509 is a metal reflection film, 510 is an alignment film, 511 is a liquid crystal layer, 512 is a spacer, 513 is an alignment film, 514 is a transparent conductive electrode, 515 is a transparent insulating substrate,
516 is a spatial light modulator, 517 is a polarizer, 518 is an analyzer, 519
Is a reading light, 520 is an output light, 521 is a writing light, and 522 is an output light shielding film.

【0007】この構造において読みだし光の遮光には出
力遮光膜と遮光層が寄与している。遮光層には黒色の顔
料や染料もしくはカーボンなどを含有させ遮光能力を増
大させた絶縁体が用いられる。この遮光層の役割は、
(1) 出力遮光膜の遮光の補助 (2) 金属反射膜と出力反射膜との間隙から光導電層に入
射する光の遮光である。出力遮光膜には通常数十nmか
ら数百nmの厚みの金属薄膜を用いられる。これにより
この出力遮光膜の下部にある光導電層に光が進入するこ
とを防止する。特にアモルファスシリコン光導電層の場
合は、不純物イオンをドーピングしていないi層の遮光
を行う。
In this structure, the output light-shielding film and the light-shielding layer contribute to the shielding of the read light. For the light-shielding layer, an insulator containing a black pigment, dye, carbon or the like to increase the light-shielding ability is used. The role of this light shielding layer is
(1) Auxiliary light-shielding of the output light-shielding film (2) Light-shielding of light incident on the photoconductive layer through the gap between the metal reflection film and the output reflection film. As the output light-shielding film, a metal thin film having a thickness of several tens nm to several hundreds nm is usually used. This prevents light from entering the photoconductive layer below the output light-shielding film. Particularly in the case of an amorphous silicon photoconductive layer, the i layer not doped with impurity ions is shielded from light.

【0008】出力遮光膜の遮光能力は、膜厚が厚いほど
増加する。しかし膜厚が厚すぎると金属反射膜との電気
的な短絡が起き易くなる。これらの短絡がおきると金属
反射膜の電位は正確な書き込み光の変調を受けなくな
る。
The light blocking ability of the output light blocking film increases as the film thickness increases. However, if the film thickness is too thick, an electrical short circuit with the metal reflective film is likely to occur. When these short circuits occur, the potential of the metal reflective film is not accurately modulated by the writing light.

【0009】特に出力遮光膜を微小形状に分割した金属
反射膜をマスクにしたセルフアラインで形成した場合に
は出力遮光膜の膜厚と短絡発生確立との関係がより顕著
となる。上述の様な短絡は、ディスプレイにとって画像
上の欠陥となり画像の品位を大きく低下させる。また高
精細なディスプレイになるほど画素の数が増加する。そ
れゆえに欠陥の発生確立が小さくとも画素数が多ければ
欠陥数が増加し、例えば2000×2000ドット(4
00万ドット)の場合たとえ欠陥の発生確立が10pp
mであっても40ドットの欠陥が画像上に存在する。
In particular, when the output light-shielding film is formed by self-alignment using a metal reflection film divided into minute shapes as a mask, the relationship between the thickness of the output light-shielding film and establishment of short circuit becomes more remarkable. The short circuit as described above causes a defect in the image on the display and greatly deteriorates the image quality. Moreover, the number of pixels increases as the display becomes higher definition. Therefore, if the number of pixels is large even if the probability of occurrence of defects is small, the number of defects increases. For example, 2000 × 2000 dots (4
In case of 1,000,000 dots) Even if the occurrence of defects is 10pp
Even with m, there is a defect of 40 dots on the image.

【0010】[0010]

【発明が解決しようとする課題】近年、ディスプレイに
は、より高輝度でより高精細な画像が求められている。
ところが上記のような構造では、明るくするために強力
な読みだし光を用いるには出力遮光膜の膜厚の増加が必
要となるがこれは欠陥の増加を招くという問題点を有し
ていた。
In recent years, displays are required to have higher brightness and higher definition images.
However, in the structure as described above, it is necessary to increase the film thickness of the output light-shielding film in order to use the strong reading light for brightening, but this has a problem that it causes an increase in defects.

【0011】さらに遮光層もより高い遮光性能が求めら
れ黒色の顔料や染料もしくはカーボンなどの含有量の増
大もしくは遮光層の厚みの増大が必要となるが含有量の
増大にも限度がある。また厚みの増大は光導電層の体積
を減少させ空間光変調素子の感度を低下させ、また金属
反射膜の裏側を彫り込むことが反射電極のたわみを生じ
させることがあり反射光量を低下させることになる。
Further, the light-shielding layer is required to have higher light-shielding performance, and it is necessary to increase the content of the black pigment, dye or carbon, or to increase the thickness of the light-shielding layer, but there is a limit to the increase of the content. In addition, increasing the thickness reduces the volume of the photoconductive layer and lowers the sensitivity of the spatial light modulator, and engraving the back side of the metal reflective film may cause the deflection of the reflective electrode and reduce the amount of reflected light. become.

【0012】本発明は、上記問題点を鑑み、強力な読み
だし光を高コントラストに変調できかつ欠陥のほとんど
無い空間光変調素子を提供するものである。
In view of the above problems, the present invention provides a spatial light modulator capable of modulating strong read light with high contrast and having almost no defects.

【0013】[0013]

【課題を解決するための手段】本発明は上記目的を達成
するため、読みだし光に対して不透明な基板を用い液晶
層と光導電層をそれぞれ基板の第1主平面と第2主平面
にわけて形成し、基板の厚みを利用して読みだし光の遮
光を行う構成である。
In order to achieve the above object, the present invention uses a substrate which is opaque to the reading light and uses a liquid crystal layer and a photoconductive layer on the first and second principal planes of the substrate, respectively. It is formed separately, and the thickness of the substrate is used to shield the read light.

【0014】[0014]

【作用】上記した構成により、読みだし光は従来の薄膜
で形成された遮光層や出力遮光膜とはちがって数mm程
度と言った従来の数千倍にもおよぶ厚みで光を遮光する
ため光導電層はほとんど読みだし光の影響をうけること
がなくなる。
With the above-described structure, the read light blocks the light with a thickness of several thousand times, which is several millimeters different from the conventional light-shielding layer formed of a thin film or the output light-shielding film. The photoconductive layer is almost unaffected by light being read out.

【0015】また、金属反射膜は基板上に形成するた
め、基板の平坦性を反映し鏡面が得易く反射率が向上す
る。また金属反射膜自身は薄膜で十分なため、基板表面
の平坦性が向上し、この上に形成される液晶層の配向性
が向上し、よりコントラスト比の高い空間光変調素子と
なる。
Further, since the metal reflection film is formed on the substrate, the flatness of the substrate is reflected and a mirror surface is easily obtained, and the reflectance is improved. Further, since the metal reflection film itself is sufficiently thin, the flatness of the substrate surface is improved, the orientation of the liquid crystal layer formed thereon is improved, and the spatial light modulator having a higher contrast ratio is obtained.

【0016】[0016]

【実施例】以下に本発明の第1の実施例の空間光変調素
子について、図面を参照しながら説明する。図1は本発
明の第1の実施例における空間光変調素子の断面構造図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A spatial light modulator according to a first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional structural view of a spatial light modulator according to the first embodiment of the present invention.

【0017】図1において、101は第1の絶縁基板、102
は第1の絶縁基板の第1主平面、103は第1の絶縁基板
の第2主平面、104は第2の絶縁基板、105は第2の絶縁
基板の第1主平面、106は第2の絶縁基板の第2主平
面、107は透明電極、108は配向膜、109は液晶層、110は
配向膜、111はスペーサ、112は金属反射膜、113はスル
ーホール、114は接続配線、115はn層、116はi層、117
はp層、118はアモルファスシリコン光導電層、119は透
明電極、120は偏光子、121は検光子、122は読みだし
光、123は出力光、124は書き込み光である。
In FIG. 1, 101 is a first insulating substrate and 102
Is a first main surface of the first insulating substrate, 103 is a second main surface of the first insulating substrate, 104 is a second insulating substrate, 105 is a first main surface of the second insulating substrate, and 106 is a second Second main plane of the insulating substrate, 107 is a transparent electrode, 108 is an alignment film, 109 is a liquid crystal layer, 110 is an alignment film, 111 is a spacer, 112 is a metal reflection film, 113 is a through hole, 114 is a connection wiring, 115 Is n layer, 116 is i layer, 117
Is a p-layer, 118 is an amorphous silicon photoconductive layer, 119 is a transparent electrode, 120 is a polarizer, 121 is an analyzer, 122 is reading light, 123 is output light, and 124 is writing light.

【0018】第1の絶縁基板101と第2の絶縁基板104と
の間に形成されて液晶層109によって読みだし光122を変
調する。その変調信号は、第2の絶縁基板104の第2主
平面上に形成された光導電層と書き込み光124によって
創出される。n層115は、微小領域に分割されていて第
1主平面に形成された金属反射膜112とスルーホール113
中に形成された接続配線114によって電気的に接続され
ている。
The read light 122 is modulated by the liquid crystal layer 109 which is formed between the first insulating substrate 101 and the second insulating substrate 104. The modulated signal is created by the writing light 124 and the photoconductive layer formed on the second main plane of the second insulating substrate 104. The n-layer 115 is divided into minute regions and is formed on the first main plane with the metal reflection film 112 and the through holes 113.
It is electrically connected by the connection wiring 114 formed therein.

【0019】金属反射膜112には、たとえばアルミニウ
ム薄膜や銀薄膜の様な高反射率を有する金属が望まし
い。また膜厚も50nmから500nm程度が望ましく
これによりその上部に形成される液晶層109の配向性が
向上する。第2の絶縁基板104にはセラミック基板や樹
脂基板が用いられこれらに可視光等を吸収する顔料や染
料や色素等を分散させてあってもよい。金属反射膜112
とn層115は接続配線114によって電気的に接続されてい
る。図では1つのスルーホールで接続されているが複数
のスルーホールで接続するようにしていても良い。また
スルーホール113はホールという形状にとらわれること
無くただ第1主平面と第2主平面との方向にだけ異方的
に電気的接続がとれる方法ならばかまわず、例えば樹脂
中に分散された導電性フィラーが1方向につながった場
合でもかまわない。
The metal reflecting film 112 is preferably made of a metal having a high reflectance such as an aluminum thin film or a silver thin film. Also, the film thickness is preferably about 50 nm to 500 nm, which improves the orientation of the liquid crystal layer 109 formed thereover. A ceramic substrate or a resin substrate is used as the second insulating substrate 104, and a pigment, a dye, a pigment or the like that absorbs visible light or the like may be dispersed in these. Metal reflective film 112
The n layer 115 is electrically connected to the n layer 115 by a connection wiring 114. In the figure, one through hole is used for connection, but a plurality of through holes may be used for connection. The through hole 113 may be a method in which the electrical connection is anisotropically made only in the direction of the first main plane and the second main plane without being restricted by the shape of the hole. It does not matter even if the conductive filler is connected in one direction.

【0020】また、図中の光導電層に整流性をもたせて
有るがこれに限定する必要がなくn層115やp層117を省
略しても良い。その時接続配線114はi層116と電気的接
続をとる。また配向膜108は、液晶層109の材料によって
は必要としない場合がある。また、透明電極119の書き
込み光124入射面側に保護層や保護基板等があってもか
まわない。
Although the photoconductive layer in the figure has a rectifying property, the photoconductive layer is not limited to this and the n layer 115 and the p layer 117 may be omitted. At that time, the connection wiring 114 is electrically connected to the i layer 116. The alignment film 108 may not be necessary depending on the material of the liquid crystal layer 109. Further, a protective layer, a protective substrate, or the like may be provided on the side of the transparent electrode 119 on which the writing light 124 is incident.

【0021】以下に本発明の第2の実施例の空間光変調
素子について、図面を参照しながら説明する。図2は本
発明の第2の実施例における空間光変調素子の断面構造
図である。
A spatial light modulator according to a second embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a sectional structural view of the spatial light modulator in the second embodiment of the present invention.

【0022】図2において、201は第1の絶縁基板、202
は第1の絶縁基板の第1主平面、203は第1の絶縁基板
の第2主平面、204は第2の絶縁基板、205は第2の絶縁
基板の第1主平面、206は第2の絶縁基板の第2主平
面、207は透明電極、208は配向膜、209は液晶層、210は
配向膜、211はスペーサ、212は金属反射膜、213はスル
ーホール、214は接続配線、215はn層、216はi層、217
はp層、218はアモルファスシリコン光導電層、219は絶
縁層、220は透明電極、221は偏光子、222は検光子、223
は読みだし光、224は出力光、225は書き込み光である。
基本的な構造は第1の実施例と同様であるので、同一部
分については詳細な説明は省略する。
In FIG. 2, 201 is a first insulating substrate, 202
Is a first main surface of the first insulating substrate, 203 is a second main surface of the first insulating substrate, 204 is a second insulating substrate, 205 is a first main surface of the second insulating substrate, and 206 is a second main surface. Second plane of the insulating substrate, 207 is a transparent electrode, 208 is an alignment film, 209 is a liquid crystal layer, 210 is an alignment film, 211 is a spacer, 212 is a metal reflection film, 213 is a through hole, 214 is a connection wiring, and 215. Is n layer, 216 is i layer, 217
Is a p-layer, 218 is an amorphous silicon photoconductive layer, 219 is an insulating layer, 220 is a transparent electrode, 221 is a polarizer, 222 is an analyzer, 223
Is the reading light, 224 is the output light, and 225 is the writing light.
Since the basic structure is similar to that of the first embodiment, detailed description of the same parts will be omitted.

【0023】この実施例の特徴は、光導電層218が微小
領域に分離していることである。また隣合う光導電層21
8の間隙には絶縁層219を配している。
The feature of this embodiment is that the photoconductive layer 218 is divided into minute regions. Adjacent photoconductive layer 21
An insulating layer 219 is arranged in the gap of 8.

【0024】これにより光導電層218は微小領域ごとに
独立しており、この領域内で生じる電荷およびその流れ
が隣の領域に影響を与えないため空間光変調素子として
解像度の向上に寄与する。また絶縁層219には書き込み
光225を遮光するための顔料や色素や染料を含有してい
てもよい。
As a result, the photoconductive layer 218 is independent for each minute region, and the charges generated in this region and the flow thereof do not affect the adjacent region, which contributes to the improvement of resolution as a spatial light modulator. Further, the insulating layer 219 may contain a pigment, a dye or a dye for blocking the writing light 225.

【0025】以下に本発明の第3の実施例の空間光変調
素子について、図面を参照しながら説明する。図3は本
発明の第3の実施例における空間光変調素子の断面構造
図である。
A spatial light modulator according to the third embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a sectional structural view of a spatial light modulator according to the third embodiment of the present invention.

【0026】図3において、301は第1の絶縁基板、302
は第1の絶縁基板の第1主平面、303は第1の絶縁基板
の第2主平面、304は第2の絶縁基板、305は第2の絶縁
基板の第1主平面、306は第2の絶縁基板の第2主平
面、307は透明電極、308は配向膜、309は液晶層、310は
配向膜、311はスペーサ、312は金属反射膜、313はスル
ーホール、314は接続配線、315はn層、316はi層、317
はp層、318はアモルファスシリコン光導電層、319は透
明電極、320は第3の絶縁基板、321は第3の絶縁基板の
第1主平面、322は第3の絶縁基板の第2主平面、323は
偏光子、324は検光子、325は読みだし光、326は出力
光、327は書き込み光であり、基本的な構造は第1の実
施例と同様であるので、同一部分については詳細な説明
は省略する。
In FIG. 3, 301 is a first insulating substrate, 302
Is a first main surface of the first insulating substrate, 303 is a second main surface of the first insulating substrate, 304 is a second insulating substrate, 305 is a first main surface of the second insulating substrate, and 306 is a second main surface. Second main plane of the insulating substrate, 307 is a transparent electrode, 308 is an alignment film, 309 is a liquid crystal layer, 310 is an alignment film, 311 is a spacer, 312 is a metal reflection film, 313 is a through hole, 314 is a connection wiring, and 315 Is n layer, 316 is i layer, 317
Is a p-layer, 318 is an amorphous silicon photoconductive layer, 319 is a transparent electrode, 320 is a third insulating substrate, 321 is a first main surface of the third insulating substrate, and 322 is a second main surface of the third insulating substrate. , 323 is a polarizer, 324 is an analyzer, 325 is a reading light, 326 is an output light, and 327 is a writing light. Since the basic structure is the same as that of the first embodiment, the details of the same parts will be described. Detailed description is omitted.

【0027】この実施例の特徴は、3つの基板からなり
第1の絶縁基板301と第2の絶縁基板304とで液晶層を形
成し、光導電層318は第3の絶縁基板320上に形成しこれ
を第2の絶縁基板304の第2主平面と対向させ接続配線3
14と光導電層318(もしくはn層315)と電気的に接続し
たものである。これにより液晶層309の形成と光導電層3
18の形成が独立して行え作成方法の自由度が増大する。
The feature of this embodiment is that the first insulating substrate 301 and the second insulating substrate 304 are composed of three substrates to form a liquid crystal layer, and the photoconductive layer 318 is formed on the third insulating substrate 320. This is connected to the second main surface of the second insulating substrate 304 and the connection wiring 3
14 and the photoconductive layer 318 (or the n layer 315) are electrically connected. This forms the liquid crystal layer 309 and the photoconductive layer 3
18 can be formed independently, and the degree of freedom in the creation method increases.

【0028】図では接続配線314とn層315は直接接して
いるが導電性樹脂や金属のバンプなどが間に介在しても
良い。また、第3の絶縁基板320は書き込み光327に対し
て透明でなければならない。
Although the connection wiring 314 and the n layer 315 are in direct contact with each other in the figure, conductive resin or metal bumps may be interposed therebetween. Also, the third insulating substrate 320 must be transparent to the writing light 327.

【0029】以下に本発明の第4の実施例の空間光変調
素子について、図面を参照しながら説明する。図4は本
発明の第4の実施例における空間光変調素子の断面構造
図である。
A spatial light modulator according to the fourth embodiment of the present invention will be described below with reference to the drawings. FIG. 4 is a sectional structural view of a spatial light modulator according to the fourth embodiment of the present invention.

【0030】図4において、401は第1の絶縁基板、402
は第1の絶縁基板の第1主平面、403は第1の絶縁基板
の第2主平面、404は第2の絶縁基板、405は第2の絶縁
基板の第1主平面、406は第2の絶縁基板の第2主平
面、407は透明電極、408は配向膜、409は液晶層、410は
配向膜、411はスペーサ、412は金属反射膜、413はスル
ーホール、414は接続配線、415はn層、416はi層、417
はp層、418はアモルファスシリコン光導電層、419は絶
縁層、420は透明電極、421は第3の絶縁基板、422は第
3の絶縁基板の第1主平面、423は第3の絶縁基板の第
2主平面、424は偏光子、425は検光子、426は読みだし
光、427は出力光、428は書き込み光であり、基本的な構
造は第1の実施例と同様であるので、同一部分について
は詳細な説明は省略する。
In FIG. 4, 401 is a first insulating substrate and 402
Is a first main surface of the first insulating substrate, 403 is a second main surface of the first insulating substrate, 404 is a second insulating substrate, 405 is a first main surface of the second insulating substrate, and 406 is a second main surface. Of the insulating substrate, 407 is a transparent electrode, 408 is an alignment film, 409 is a liquid crystal layer, 410 is an alignment film, 411 is a spacer, 412 is a metal reflection film, 413 is a through hole, 414 is a connection wiring, and 415. Is n layer, 416 is i layer, 417
Is a p-layer, 418 is an amorphous silicon photoconductive layer, 419 is an insulating layer, 420 is a transparent electrode, 421 is a third insulating substrate, 422 is a first main plane of the third insulating substrate, and 423 is a third insulating substrate. Of the second main plane, 424 is a polarizer, 425 is an analyzer, 426 is reading light, 427 is output light, and 428 is writing light. Since the basic structure is the same as that of the first embodiment, Detailed description of the same parts will be omitted.

【0031】この実施例の特徴は、3つの基板からなり
第1の絶縁基板401と第2の絶縁基板404とで液晶層を形
成し、光導電層418は微小領域に分割して第3の絶縁基
板421上に形成しこれを第2の絶縁基板404の第2主平面
と対向させ接続配線414と光導電層418(もしくはn層41
5)と電気的に接続したものである。これにより光導電
層418は微小領域ごとに独立しており、この領域内で生
じる電荷およびその流れが隣の領域に影響を与えないた
め空間光変調素子として解像度の向上に寄与する。
The feature of this embodiment is that the first insulating substrate 401 and the second insulating substrate 404 are composed of three substrates to form a liquid crystal layer, and the photoconductive layer 418 is divided into minute regions to form a third region. It is formed on the insulating substrate 421, and is opposed to the second main plane of the second insulating substrate 404, and the connection wiring 414 and the photoconductive layer 418 (or the n layer 41).
5) is electrically connected to. As a result, the photoconductive layer 418 is independent for each minute region, and the charges generated in this region and the flow thereof do not affect the adjacent region, which contributes to improvement in resolution as a spatial light modulator.

【0032】また絶縁層419には書き込み光428を遮光す
るための顔料や色素や染料を含有していてもよい。さら
に隣接する光導電層418の間隙を遮光するための遮光層
を第3の絶縁基板の第1主平面422上もしくは透明電極4
20とp層417との間もしくは透明電極420と絶縁層419の
間に設けても良い。
The insulating layer 419 may contain a pigment, a dye or a dye for blocking the writing light 428. Further, a light shielding layer for shielding the gap between the adjacent photoconductive layers 418 is provided on the first main plane 422 of the third insulating substrate or the transparent electrode 4.
It may be provided between 20 and the p layer 417 or between the transparent electrode 420 and the insulating layer 419.

【0033】なお、第1〜4の実施例において、光導電
層をアモルファスシリコンのp層、i層、n層の構造を
もつダイオードとしたがこれに限定するものではなく、
材料もシリコンカーバイト系やカドミウム系、セレン
系、ゲルマニウム系などでもよく結晶形態もアモルファ
スだけでなく微結晶や多結晶、結晶でもよい。また有機
半導体材料も使用できる。また整流作用をもつことが望
ましいが、p,i,n構造に限定するものではない。
In the first to fourth embodiments, the photoconductive layer is a diode having a structure of p-layer, i-layer, and n-layer of amorphous silicon, but it is not limited to this.
The material may be a silicon carbide type, a cadmium type, a selenium type, a germanium type, or the like, and the crystal form may be not only amorphous but also microcrystal, polycrystal, or crystal. Organic semiconductor materials can also be used. Further, it is desirable to have a rectifying function, but the structure is not limited to the p, i, n structure.

【0034】また、第1〜4の実施例において、液晶層
は強誘電性液晶が望ましく、動作モード液晶層の厚みを
らせんピッチ以下にした表面安定化強誘電性液晶モード
が望ましい。強誘電性液晶は、高速応答が可能であり視
野角も広い。他にもネマティック液晶を用いたツイスト
ネマティックモードや電界制御複屈折モード等でも良
い。
In the first to fourth embodiments, the liquid crystal layer is preferably a ferroelectric liquid crystal, and the surface-stabilized ferroelectric liquid crystal mode in which the thickness of the operation mode liquid crystal layer is set to a spiral pitch or less is desirable. Ferroelectric liquid crystal is capable of high-speed response and has a wide viewing angle. Alternatively, a twisted nematic mode using a nematic liquid crystal, an electric field control birefringence mode, or the like may be used.

【0035】[0035]

【発明の効果】以上のように本発明の空間光変調素子
は、液晶層と光導電層とが絶縁基板の第1主平面と第2
主平面とに分けて作り込むために、従来の薄膜による遮
光構造では使用できなかったより強い光強度を有する読
みだし光を高いコントラスト比を持って変調でき、表示
欠陥の少ない空間光変調素子を提供できる。
As described above, in the spatial light modulator of the present invention, the liquid crystal layer and the photoconductive layer are the first main plane and the second plane of the insulating substrate.
Provided with a spatial light modulator that can modulate read-out light with a higher contrast ratio and a higher contrast ratio, which could not be used in the conventional light-shielding structure with a thin film, because it is created separately from the main plane, and has few display defects. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の空間光変調素子の断面
構造図
FIG. 1 is a sectional structural view of a spatial light modulator according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の空間光変調素子の断面
構造図
FIG. 2 is a sectional structural view of a spatial light modulator according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の空間光変調素子の断面
構造図
FIG. 3 is a sectional structural view of a spatial light modulator according to a third embodiment of the present invention.

【図4】本発明の第4の実施例の空間光変調素子の断面
構造図
FIG. 4 is a sectional structural view of a spatial light modulator according to a fourth embodiment of the present invention.

【図5】従来の空間光変調素子の断面構造図FIG. 5 is a sectional structure diagram of a conventional spatial light modulator.

【符号の説明】[Explanation of symbols]

101 第1の絶縁基板 102 第1の絶縁基板の第1主平面 103 第1の絶縁基板の第2主平面 104 第2の絶縁基板 105 第2の絶縁基板の第1主平面 106 第2の絶縁基板の第2主平面 107 透明電極 108 配向膜 109 液晶層 110 配向膜 111 スペーサ 112 金属反射膜 113 スルーホール 114 接続配線 115 n層 116 i層 117 p層 118 アモルファスシリコン光導電層 119 透明電極 201 第1の絶縁基板 202 第1の絶縁基板の第1主平面 203 第1の絶縁基板の第2主平面 204 第2の絶縁基板 205 第2の絶縁基板の第1主平面 206 第2の絶縁基板の第2主平面 207 透明電極 208 配向膜 209 液晶層 210 配向膜 211 スペーサ 212 金属反射膜 213 スルーホール 214 接続配線 218 アモルファスシリコン光導電層 219 絶縁層 220 透明電極 301 第1の絶縁基板 302 第1の絶縁基板の第1主平面 303 第1の絶縁基板の第2主平面 304 第2の絶縁基板 305 第2の絶縁基板の第1主平面 306 第2の絶縁基板の第2主平面 307 透明電極 308 配向膜 309 液晶層 310 配向膜 311 スペーサ 312 金属反射膜 313 スルーホール 314 接続配線 318 アモルファスシリコン光導電層 319 透明電極 320 第3の絶縁基板 321 第3の絶縁基板の第1主平面 322 第3の絶縁基板の第2主平面 401 第1の絶縁基板 402 第1の絶縁基板の第1主平面 403 第1の絶縁基板の第2主平面 404 第2の絶縁基板 405 第2の絶縁基板の第1主平面 406 第2の絶縁基板の第2主平面 407 透明電極 408 配向膜 409 液晶層 410 配向膜 411 スペーサ 412 金属反射膜 413 スルーホール 414 接続配線 418 アモルファスシリコン光導電層 419 絶縁層 420 透明電極 421 第3の絶縁基板 422 第3の絶縁基板の第1主平面 423 第3の絶縁基板の第2主平面 101 first insulating substrate 102 first major surface of first insulating substrate 103 second major surface of first insulating substrate 104 second insulating substrate 105 first major surface of second insulating substrate 106 second insulating substrate Second main plane of substrate 107 Transparent electrode 108 Alignment film 109 Liquid crystal layer 110 Alignment film 111 Spacer 112 Metal reflective film 113 Through hole 114 Connection wiring 115 n layer 116 i layer 117 p layer 118 Amorphous silicon photoconductive layer 119 Transparent electrode 201 First insulating substrate 202 first insulating substrate first major surface 203 first insulating substrate second major surface 204 second insulating substrate 205 second insulating substrate first major surface 206 second insulating substrate Second main plane 207 Transparent electrode 208 Alignment film 209 Liquid crystal layer 210 Alignment film 211 Spacer 212 Metal reflection film 213 Through hole 214 Connection wiring 218 Amorphous silicon photoconductive layer 219 Insulation layer 220 Transparent electrode 301 First insulation substrate 302 First First main plane of insulating substrate 303 First insulating substrate Second main plane 304 Second insulating substrate 305 First main plane of second insulating substrate 306 Second main plane of second insulating substrate 307 Transparent electrode 308 Alignment film 309 Liquid crystal layer 310 Alignment film 311 Spacer 312 Metal reflection film 313 Through Hole 314 Connection Wiring 318 Amorphous Silicon Photoconductive Layer 319 Transparent Electrode 320 Third Insulating Substrate 321 First Main Plane of Third Insulating Substrate 322 Second Main Plane of Third Insulating Substrate 401 First Insulating Substrate 402 First main plane of first insulating substrate 403 Second main plane of first insulating substrate 404 Second insulating substrate 405 First main plane of second insulating substrate 406 Second main plane of second insulating substrate 407 Transparent electrode 408 Alignment film 409 Liquid crystal layer 410 Alignment film 411 Spacer 412 Metal reflection film 413 Through hole 414 Connection wiring 418 Amorphous silicon photoconductive layer 419 Insulating layer 420 Transparent electrode 421 Third insulating substrate 422 First of third insulating substrate Main plane 423 Second main plane of third insulating substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】第1の絶縁基板の第1主平面と第2の絶縁
基板の第1主平面とが対向し、前記第1と第2の絶縁基
板間に液晶層を挟持し、前記第1の絶縁基板の第1主平
面上には透明電極が設けられ、前記第2の絶縁基板の第
1主平面上には微小形状に分割された複数の金属反射膜
が設けられ、前記第2の絶縁基板の第2主平面上には光
導電層と透明電極とが設けられており、前記金属反射膜
は、前記第2の絶縁基板内に設けられたスルーホールを
介して前記光導電層と電気的に接続されていることを特
徴とする空間光変調素子。
1. A first main surface of a first insulating substrate and a first main surface of a second insulating substrate are opposed to each other, and a liquid crystal layer is sandwiched between the first and second insulating substrates. A transparent electrode is provided on the first main plane of the first insulating substrate, and a plurality of metal reflection films divided into minute shapes are provided on the first main plane of the second insulating substrate. A photoconductive layer and a transparent electrode are provided on the second main surface of the insulating substrate, and the metal reflection film is formed on the photoconductive layer through a through hole provided in the second insulating substrate. A spatial light modulator, which is electrically connected to.
【請求項2】第1の絶縁基板の第1主平面と第2の絶縁
基板の第1主平面とが対向し、前記第1と第2の絶縁基
板間に液晶層を挟持し、前記第1の絶縁基板の第1主平
面上には透明電極が設けられ、前記第2の絶縁基板の第
1主平面上には微小形状に分割された複数の金属反射膜
が設けられ、前記第2の絶縁基板の第2主平面上には微
小領域に分割された複数の光導電層と絶縁層と透明電極
とが設けられており、前記絶縁層は隣合う前記光導電層
の間隙を充填しており、前記金属反射膜は、前記第2の
絶縁基板内に設けられたスルーホールを介して前記光導
電層と電気的に接続されていることを特徴とする空間光
変調素子。
2. A first main surface of a first insulating substrate and a first main surface of a second insulating substrate are opposed to each other, and a liquid crystal layer is sandwiched between the first and second insulating substrates. A transparent electrode is provided on the first main plane of the first insulating substrate, and a plurality of metal reflection films divided into minute shapes are provided on the first main plane of the second insulating substrate. A plurality of photoconductive layers divided into minute regions, an insulating layer, and a transparent electrode are provided on the second main surface of the insulating substrate of, and the insulating layer fills a gap between the adjacent photoconductive layers. The spatial light modulation element is characterized in that the metal reflection film is electrically connected to the photoconductive layer through a through hole provided in the second insulating substrate.
【請求項3】第1の絶縁基板の第1主平面と第2の絶縁
基板の第1主平面とが対向し、前記第2の絶縁基板の第
2主平面と第3の絶縁基板の第1主平面とが対向し、前
記第1と第2の絶縁基板間に液晶層を挟持し、前記第2
と第3の絶縁基板間に光導電層を挟持し、前記第1の絶
縁基板の第1主平面上には透明電極が設けられ、前記第
2の絶縁基板の第1主平面上には微小形状に分割された
複数の金属反射膜が設けられ、前記第2の絶縁基板の第
2主平面上には微小形状に分割された複数の金属電極が
設けられかつ前記金属電極は前記金属反射膜と前記第2
の絶縁基板内に設けられたスルーホールを介して電気的
に接続されており、前記第3の絶縁基板の第1主平面上
には光導電層と透明電極とが設けられ、前記光導電層
は、前記金属電極と電気的に接続されていることを特徴
とする空間光変調素子。
3. A first main surface of the first insulating substrate and a first main surface of the second insulating substrate face each other, and a second main surface of the second insulating substrate and a first main surface of the third insulating substrate. The first main surface is opposed to the first main surface, and the liquid crystal layer is sandwiched between the first and second insulating substrates.
A photoconductive layer is sandwiched between a second insulating substrate and a third insulating substrate, a transparent electrode is provided on the first main plane of the first insulating substrate, and a minute electrode is provided on the first main plane of the second insulating substrate. A plurality of metal reflection films divided into shapes are provided, a plurality of metal electrodes divided into minute shapes are provided on the second main plane of the second insulating substrate, and the metal electrodes are the metal reflection films. And the second
Is electrically connected through a through hole provided in the insulating substrate, and a photoconductive layer and a transparent electrode are provided on the first main plane of the third insulating substrate. Is a spatial light modulator which is electrically connected to the metal electrode.
【請求項4】第1の絶縁基板の第1主平面と第2の絶縁
基板の第1主平面とが対向し、前記第2の絶縁基板の第
2主平面と第3の絶縁基板の第1主平面とが対向し、前
記第1と第2の絶縁基板間に液晶層を挟持し、前記第2
と第3の絶縁基板間に光導電層を挟持し、前記第1の絶
縁基板の第1主平面上には透明電極が設けられ、前記第
2の絶縁基板の第1主平面上には微小形状に分割された
複数の金属反射膜が設けられ、前記第2の絶縁基板の第
2主平面上には微小形状に分割された複数の金属電極が
設けられかつ前記金属電極は前記金属反射膜と前記第2
の絶縁基板内に設けられたスルーホールを介して電気的
に接続されており、前記第3の絶縁基板の第1主平面上
には微小領域に分割された複数の光導電層と絶縁層と透
明電極とが設けられ、前記絶縁層は隣合う前記光導電層
の間隙を充填しており、前記光導電層は、前記金属電極
と電気的に接続されていることを特徴とする空間光変調
素子。
4. A first main surface of the first insulating substrate and a first main surface of the second insulating substrate face each other, and a second main surface of the second insulating substrate and a third main surface of the third insulating substrate. The first main surface is opposed to the first main surface, and the liquid crystal layer is sandwiched between the first and second insulating substrates.
A photoconductive layer is sandwiched between a second insulating substrate and a third insulating substrate, a transparent electrode is provided on the first main plane of the first insulating substrate, and a minute electrode is provided on the first main plane of the second insulating substrate. A plurality of metal reflection films divided into shapes are provided, a plurality of metal electrodes divided into minute shapes are provided on the second main plane of the second insulating substrate, and the metal electrodes are the metal reflection films. And the second
A plurality of photoconductive layers and insulating layers which are electrically connected to each other through through holes provided in the insulating substrate, and which are divided into minute regions on the first main plane of the third insulating substrate. And a transparent electrode, the insulating layer fills a gap between the photoconductive layers adjacent to each other, and the photoconductive layer is electrically connected to the metal electrode. element.
【請求項5】第2の絶縁基板が可視光に対して不透明で
あることを特徴とする請求項1〜4のいずれかに記載の
空間光変調素子。
5. The spatial light modulator according to claim 1, wherein the second insulating substrate is opaque to visible light.
【請求項6】第2の絶縁基板が可視光に対して不透明で
ある層を含む複数の層からなることを特徴とする請求項
1〜4のいずれかに記載の空間光変調素子。
6. The spatial light modulator according to claim 1, wherein the second insulating substrate comprises a plurality of layers including a layer opaque to visible light.
JP25663894A 1994-10-21 1994-10-21 Space light modulating element Pending JPH08122810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25663894A JPH08122810A (en) 1994-10-21 1994-10-21 Space light modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25663894A JPH08122810A (en) 1994-10-21 1994-10-21 Space light modulating element

Publications (1)

Publication Number Publication Date
JPH08122810A true JPH08122810A (en) 1996-05-17

Family

ID=17295391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25663894A Pending JPH08122810A (en) 1994-10-21 1994-10-21 Space light modulating element

Country Status (1)

Country Link
JP (1) JPH08122810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211404A (en) * 1994-11-02 1996-08-20 Hughes Aircraft Co Amorphous silicon pedestal liquid-crystal optical valve
NL1006302C2 (en) * 1997-06-12 1998-12-15 Seed Capital Investments Device for displaying information.
US6365949B1 (en) 1997-06-12 2002-04-02 Zetfolie B.V. Substrate having a unidirectional conductivity perpendicular to its surface, devices comprising such a substrate and methods for manufacturing such a substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211404A (en) * 1994-11-02 1996-08-20 Hughes Aircraft Co Amorphous silicon pedestal liquid-crystal optical valve
NL1006302C2 (en) * 1997-06-12 1998-12-15 Seed Capital Investments Device for displaying information.
US6365949B1 (en) 1997-06-12 2002-04-02 Zetfolie B.V. Substrate having a unidirectional conductivity perpendicular to its surface, devices comprising such a substrate and methods for manufacturing such a substrate

Similar Documents

Publication Publication Date Title
US6317187B1 (en) Liquid crystal light valve apparatus in which the spacers having protrusion and recess
JP3085115B2 (en) Liquid crystal display
US8068189B2 (en) Liquid crystal display and liquid crystal projector
KR100228886B1 (en) Space optical transformation device and projection apparatus
JP2002023170A (en) Liquid crystal display device
JPH08122810A (en) Space light modulating element
JPS61183688A (en) Projection type liquid crystal display unit
KR940004237B1 (en) Method of making liquid crystal display devices
JPH04147215A (en) Reflection type liquid crystal display element and projection type display device using the same
JPH05276313A (en) Picture read and display device and its drive method
JP4501898B2 (en) Reflective liquid crystal device and electronic apparatus
JPH07120744A (en) Reflection type liquid crystal display element and projection type liquid crystal display device
JPH11326929A (en) Liquid crystal display element
JP3074367B2 (en) Substrate of reflective liquid crystal display
JPH07306418A (en) Spatial optical modulation element and its production
JP3352204B2 (en) Liquid crystal display
JPH0589230A (en) Image read/display device
JP3070252B2 (en) Spatial light modulation element and display device
JP3070248B2 (en) Spatial light modulator and method of manufacturing the same
JP5374875B2 (en) Electro-optic substrate, electro-optic device, electro-optic substrate design method, and electronic apparatus
JP2004206108A (en) Reflective liquid cystal display and method for manufacturing reflective liquid cystal display
JPH05196959A (en) Liquid crystal display device
JPH0634998A (en) Liquid crystal display device
JPH08122811A (en) Space light modulating element and its manufacture
JP2857274B2 (en) Spatial light modulator and method of manufacturing the same