JPH0812257A - Measuring device for discrepancy in position of running body - Google Patents

Measuring device for discrepancy in position of running body

Info

Publication number
JPH0812257A
JPH0812257A JP6152148A JP15214894A JPH0812257A JP H0812257 A JPH0812257 A JP H0812257A JP 6152148 A JP6152148 A JP 6152148A JP 15214894 A JP15214894 A JP 15214894A JP H0812257 A JPH0812257 A JP H0812257A
Authority
JP
Japan
Prior art keywords
image
shaped marker
traveling body
camera
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6152148A
Other languages
Japanese (ja)
Other versions
JP3229126B2 (en
Inventor
Hiromitsu Hoshina
博光 星名
Itsuo Murata
五雄 村田
Masaki Nishioka
正樹 西岡
Kuniaki Tauchi
邦明 田内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15214894A priority Critical patent/JP3229126B2/en
Publication of JPH0812257A publication Critical patent/JPH0812257A/en
Application granted granted Critical
Publication of JP3229126B2 publication Critical patent/JP3229126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

PURPOSE:To improve measuring accuracy by photographing markers on a running road surface through a camera on a running body, and using the output signal of each image to obtain mutual correlation function, and computing the quantity of positional discrepancy to the maker of the running body from the variation quantity of the able function. CONSTITUTION:A belt-shaped marker arranged along a running road surface is photographed by a camera 2 installed on the running body, and after a photographed image is image-processed through an image processing device 8, a processing signal is inputted into a computing device 6. In the computing device 6, output signals at three points on each image are summed to obtain the output signals of each image, and the mutual correlation function f(delta) is obtained using a reference signal and the output signal obtained every fixed time intervals of each image. The above value (delta) at the time when the mutual correlation function t(delta) becomes maximum is obtained, and the quantity of positional discrepancy to the belt-haped marker of the running body is computed from the variation quantity of (delta). Thus the reduction of facility cost, the improvement of measuring accuracy and the prevention of the accident of disconnection can be accomplished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無限軌道式クレーン等
の走行体の位置ずれ測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring a positional deviation of a traveling body such as a crawler crane.

【0002】[0002]

【従来の技術】従来の無限軌道式クレーン等の走行体の
位置ずれ測定装置は、クレーンの走行路面に沿って誘導
電線を敷設し、クレーンに3個の検出コイルを設置し、
誘導電線に通電したときに、各検出コイルにより検出さ
れる誘起電圧の大きさを基にクレーンの走行路面からの
ずれを測定するようにしている。
2. Description of the Related Art A conventional apparatus for measuring the displacement of a traveling body such as a tracked crane has an induction wire laid along the traveling road surface of the crane and three detection coils installed on the crane.
When the induction wire is energized, the deviation from the traveling road surface of the crane is measured based on the magnitude of the induced voltage detected by each detection coil.

【0003】[0003]

【発明が解決しようとする課題】前記従来の無限軌道式
クレーン等の走行体の位置ずれ測定装置では、(1)ク
レーンの走行路面に沿って誘導電線を敷設するための大
掛かりな土木工事等を必要として、設備費を嵩ませる。
(2)誘導電線の近くに散在する鉄片等の磁性体の影響
を受け易くて、測定精度が低い。(3)誘導電線に断線
が起こり易い。という問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the conventional apparatus for measuring the displacement of a traveling body such as an endless track type crane, (1) a large-scale civil engineering work for laying an induction wire along a traveling road surface of the crane, If necessary, increase equipment costs.
(2) The measurement accuracy is low because it is easily affected by magnetic materials such as iron pieces scattered near the induction wire. (3) Breakage is likely to occur in the induction wire. There was a problem.

【0004】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、設備費を低減でき、
測定精度を向上でき、断線等の事故を防止できる走行
体の位置ずれ測定装置を提供しようとする点にある。
The present invention is proposed in view of the above problems, and the object of the present invention is to reduce the equipment cost.
It is an object of the present invention to provide a position deviation measuring device for a traveling body that can improve measurement accuracy and prevent accidents such as disconnection.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の走行体の位置ずれ測定装置は、走行体の
走行路面に沿って設けられた帯状マーカと、上記走行体
上に設置された帯状マーカ撮影用カメラと、同カメラに
より刻々撮影された映像を画像処理する画像処理装置
と、同画像処理装置により画像処理された各画像上の3
点の出力信号φ1、φ2 、φ3 を合計して同画像の出力
信号φB =φ1 +φ2 +φ3 を求めるとともに基準信号
φA と所定時間間隔毎に得られた各画像の出力信号φB
とにより相互相関関数f(δ)を求めこのf(δ)が最
大になるときのδを求めてこのδの変化量から走行体の
帯状マーカに対する位置ずれ量を算出する演算装置とを
具えている。
In order to achieve the above object, the apparatus for measuring the positional deviation of a traveling body according to the present invention has a belt-shaped marker provided along the traveling road surface of the traveling body and the traveling body on the traveling body. A band-shaped marker photographing camera that is installed, an image processing device that performs image processing on images captured by the camera every moment, and 3 on each image processed by the image processing device.
The output signals φ 1 , φ 2 , and φ 3 of the point are summed to obtain the output signal φ B = φ 1 + φ 2 + φ 3 of the same image, and the reference signal φ A and the output of each image obtained at predetermined time intervals Signal φ B
And a calculation device for calculating the cross-correlation function f (δ) by calculating δ when this f (δ) becomes maximum and calculating the amount of displacement of the traveling body with respect to the band-shaped marker from the amount of change of δ. There is.

【0006】[0006]

【作用】本発明の走行体の位置ずれ測定装置は前記のよ
うに構成されており、帯状マーカ撮影用カメラにより、
走行体の走行路面に沿って設けられた帯状マーカを刻々
撮影し、この撮影した映像を画像処理装置へ送り、画像
処理して、演算装置へ送り、ここで、画像処理装置によ
り画像処理された各画像上の3点の出力信号φ1
φ2 、φ3 を合計して同画像の出力信号φB =φ1 +φ
2 +φ3 を求めるとともにこうして得られた各画像の出
力信号の1つを基準信号φA とし、この基準信号φA
所定時間間隔毎に得られた各画像の出力信号φBとによ
り相互相関関数f(δ)を求め、このf(δ)が最大に
なるときのδを求めて、このδの変化量から走行体の帯
状マーカに対する位置ずれ量を算出する。
The apparatus for measuring the positional deviation of the traveling body of the present invention is configured as described above, and includes a camera for photographing a band-shaped marker.
A band-shaped marker provided along the traveling road surface of the traveling body is photographed moment by moment, and the photographed images are sent to an image processing device, image-processed, and sent to a calculation device, where the image processing device performs image processing. Output signal φ 1 at 3 points on each image,
The sum of φ 2 and φ 3 output signal of the same image φ B = φ 1 + φ
2 + φ 3 is obtained, and one of the output signals of each image thus obtained is used as a reference signal φ A , and the reference signal φ A and the output signal φ B of each image obtained at predetermined time intervals are cross-correlated. The function f (δ) is calculated, and δ when this f (δ) is maximized is calculated, and the amount of displacement of the traveling body with respect to the band-shaped marker is calculated from the amount of change in δ.

【0007】[0007]

【実施例】次に本発明の走行体の位置ずれ測定装置を図
1〜図7に示す一実施例により説明する。図1は、クレ
ーン(走行体)に適用した位置ずれ測定装置を示す斜視
図、図2〜図5は同位置ずれ測定装置の測定原理を説明
する説明図、図6は、同位置ずれ測定装置のブロック
図、図7は同位置ずれ測定装置のフロー図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a running body position deviation measuring device of the present invention will be described with reference to an embodiment shown in FIGS. FIG. 1 is a perspective view showing a positional deviation measuring device applied to a crane (traveling body), FIGS. 2 to 5 are explanatory views for explaining the measurement principle of the positional deviation measuring device, and FIG. 6 is the same positional deviation measuring device. FIG. 7 is a flow chart of the positional deviation measuring device.

【0008】図1の3がクレーン(走行体)、Gがクレ
ーン3の走行路面、1がクレーン3の走行路面Gに沿っ
て設けられた帯状マーカ、2がクレーン3上に設置され
た帯状マーカ撮影用カメラで、クレーン3が走行路面G
上を走行するときに、カメラ2により帯状マーカ1を刻
々撮影する。またカメラ2により撮影した映像を順次画
像処理し、その出力信号を用いて相関処理し、クレーン
3の帯状マーカ1からの位置ずれを演算し、この演算結
果に基づいてクレーン3の走行方向を修正するようにな
っている。
In FIG. 1, 3 is a crane (traveling body), G is a traveling road surface of the crane 3, 1 is a belt-shaped marker provided along the traveling road surface G of the crane 3, and 2 is a belt-shaped marker installed on the crane 3. With the camera for shooting, the crane 3 runs on the road surface G
When the vehicle travels above, the camera 2 captures the band-shaped marker 1 every second. Further, the images taken by the camera 2 are sequentially image-processed, the output signal thereof is subjected to correlation processing, the positional deviation of the crane 3 from the band-shaped marker 1 is calculated, and the traveling direction of the crane 3 is corrected based on the calculation result. It is supposed to do.

【0009】図6の8が画像処理装置で、同画像処理装
置8は、帯状マーカ撮影用カメラ1に接続した入力部4
と同入力部4に接続した演算部5と同演算部5に接続し
た記憶装置7とにより構成されている。6が演算装置
で、同演算装置6が上記画像処理装置8の演算部5に接
続されている。次に前記走行体の位置ずれ測定装置の作
用を図1〜図7により具体的に説明する。
Reference numeral 8 in FIG. 6 is an image processing apparatus. The image processing apparatus 8 is an input section 4 connected to a camera 1 for photographing a band-shaped marker.
And an arithmetic unit 5 connected to the input unit 4 and a storage device 7 connected to the arithmetic unit 5. Reference numeral 6 denotes an arithmetic device, which is connected to the arithmetic unit 5 of the image processing device 8. Next, the operation of the displacement measuring device for the traveling body will be specifically described with reference to FIGS.

【0010】図1に示すようにクレーン3が走行路面G
上を帯状マーカ1に沿って走行すると、クレーン3上の
カメラ2により帯状マーカ1が微小時間間隔δt 毎に刻
々撮影される。図2は、クレーン3が帯状マーカ1に対
して位置ずれを起こした場合に、撮影された帯状マーカ
1の画像例を示している。c1 、c2 が時間間隔をずら
して撮影された映像Ai 、例えば映像A1 、A2 のマー
カ像である。このように画像A 1 のマーカ像c1 と画像
2 のマーカ像c2 とには、基準画に対してΔX1 、Δ
2 のずれが生じている。
As shown in FIG. 1, the crane 3 has a traveling road surface G
When traveling along the strip-shaped marker 1 above, the crane 3
The band-shaped marker 1 is moved by the camera 2 at a minute time interval δ.tEvery time
Will be photographed. FIG. 2 shows that the crane 3 faces the belt-shaped marker 1.
If a misalignment occurs and the band-shaped marker is photographed
The example of 1 image is shown. c1, C2Staggered time intervals
Video A taken byi, For example, video A1, A2The Mar
It is a mosquito statue. Image A like this 1Marker image c1And images
A2Marker image c2And is ΔX with respect to the reference image1, Δ
X2There is a gap between.

【0011】図3(a)〜(d)は、このように撮影さ
れた映像を画像処理装置8により画像処理して得られた
出力信号を示している。即ち、図3(a)〜(c)は、
図2の映像上の点a1 、a2 、a3 を通るラインL1
2 、L3 上の出力信号φ1、φ2 、φ3 を示してい
る。この出力信号は、 φ1 =f(x、y1 )、φ2 =(x、y2 )、φ
3 (x、y3 ) と表すことができる。
FIGS. 3A to 3D show output signals obtained by image-processing the video image thus captured by the image processing device 8. That is, FIGS.
A line L 1 passing through points a 1 , a 2 and a 3 on the image of FIG.
L 2, the output signal phi 1 on L 3, φ 2, shows phi 3. The output signals are φ 1 = f (x, y 1 ), φ 2 = (x, y 2 ), φ
It can be represented as 3 (x, y 3 ).

【0012】なお図3(a)〜(c)の出力信号φ1
φ2 、φ3 には、同一画像上で場所が異なる図形の乱れ
がみられるが、これは、帯状マーカ1の周辺にある水滴
が乱反射して、撮影されたマーカ像が不鮮明になるため
で、出力信号φ1 、φ2 、φ 3 を合算する処理、即ち、 φ1 +φ2 +φ3 の処理により、図3(d)のように出力図形を顕著化す
ることかでき、このφBをその画像の出力信号とする。
The output signal φ shown in FIGS. 3 (a) to 3 (c)1,
φ2, Φ3Is a disturbance of figures in different locations on the same image.
There are water drops around the band-shaped marker 1.
Irregularly reflected and the captured marker image becomes unclear.
And output signal φ1, Φ2, Φ 3The process of adding up, that is, φ1+ Φ2+ Φ3 Process makes the output figure noticeable as shown in FIG.
Can φBIs the output signal of the image.

【0013】また基準信号をφA とし、δ=ΔXとおく
と、その相互相関関数f(δ)は、
When the reference signal is φ A and δ = ΔX, the cross-correlation function f (δ) is

【0014】[0014]

【数1】 と定義される。この相互相関関数f(δ)は、図3から
明らかなようにxの有限の区間において、ΔXがある値
のとき以外は、零になるので、微小時間間隔δt 毎に撮
影された各画像の出力信号のそれぞれについて相互相関
関数f(δ)を計算し、max|f(δ)|になるδの
値を求めると、図5に示すようにδi のように変化す
る。即ち、クレーン3の帯状マーカ1に対するずれ量を
δi の変化量として刻々求めることができる。
[Equation 1] Is defined as As is clear from FIG. 3, this cross-correlation function f (δ) becomes zero in the finite section of x except for a certain value of ΔX, so that each image captured at every minute time interval δ t. When the cross-correlation function f (δ) is calculated for each of the output signals and the value of δ that becomes max | f (δ) | is obtained, it changes as δ i as shown in FIG. That is, the amount of displacement of the crane 3 with respect to the belt-shaped marker 1 can be obtained momentarily as the amount of change in δ i .

【0015】[0015]

【発明の効果】本発明の走行体の位置ずれ測定装置は前
記のように帯状マーカ撮影用カメラにより、走行体の走
行路面に沿って設けられた帯状マーカを刻々撮影し、こ
の撮影した映像を画像処理装置へ送り、画像処理して、
演算装置へ送り、ここで、画像処理装置により画像処理
された各画像上の3点の出力信号φ1 、φ2 、φ3 を合
計して同画像の出力信号φB =φ1 +φ2 +φ3 を求め
るとともにこうして得られた各画像の出力信号の1つを
基準信号φA とし、この基準信号φA と所定時間間隔毎
に得られた各画像の出力信号φBとにより相互相関関数
f(δ)を求め、このf(δ)が最大になるときのδを
求めて、このδの変化量から走行体の帯状マーカに対す
る位置ずれ量を算出するので、前記従来のようにクレー
ンの走行路面に沿って誘導電線を敷設するための大掛か
りな土木工事等を必要となくて、設備費を低減できる。
As described above, the apparatus for measuring the positional deviation of the running body of the present invention uses the band-shaped marker shooting camera to shoot the band-shaped markers provided along the running road surface of the running body every second, and to display the taken images. Send to the image processing device, process the image,
The output signals φ 1 , φ 2 , and φ 3 at the three points on each image processed by the image processing device are summed, and the output signal φ B = φ 1 + φ 2 + φ of the same image is sent. one of the output signals of the respective images obtained Koshite with obtaining the 3 as a reference signal phi a, the cross-correlation function f by the output signal phi B of the reference signal phi a and the image obtained at every predetermined time interval (Δ) is calculated, and δ when this f (δ) is maximized is calculated, and the positional deviation amount of the traveling body with respect to the band-shaped marker is calculated from the variation amount of δ. Equipment cost can be reduced without requiring large-scale civil engineering work for laying induction wires along the road surface.

【0016】また走行体の走行路面に敷設するのが誘導
電線でなく、帯状マーカであり、近くに散在する鉄片等
の磁性体の影響を受けなくて、測定精度を向上できる。
また上記のように走行体の走行路面に敷設するのが誘導
電線でなく、帯状マーカであり、断線等の事故を防止で
きる。
Further, it is a strip-shaped marker that is laid on the traveling road surface of the traveling body instead of the induction wire, and the measurement accuracy can be improved without being affected by magnetic materials such as iron pieces scattered nearby.
Further, as described above, it is not the induction wire that is laid on the traveling road surface of the traveling body but the band-shaped marker, which can prevent accidents such as disconnection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の走行体の位置ずれ測定装置をクレーン
に適用した一実施例を示す斜視図である。
FIG. 1 is a perspective view showing an embodiment in which a traveling body position deviation measuring device of the present invention is applied to a crane.

【図2】同位置ずれ測定装置の測定原理を説明する説明
図である。
FIG. 2 is an explanatory diagram illustrating a measurement principle of the positional deviation measuring device.

【図3】同位置ずれ測定装置の測定原理を説明する説明
図である。
FIG. 3 is an explanatory diagram illustrating a measurement principle of the positional deviation measuring device.

【図4】同位置ずれ測定装置の測定原理を説明する説明
図である。
FIG. 4 is an explanatory diagram illustrating a measurement principle of the positional deviation measuring device.

【図5】同位置ずれ測定装置の測定原理を説明する説明
図である。
FIG. 5 is an explanatory diagram illustrating a measurement principle of the positional deviation measuring device.

【図6】同位置ずれ測定装置のブロック図である。FIG. 6 is a block diagram of the positional deviation measuring device.

【図7】同位置ずれ測定装置のフロー図である。FIG. 7 is a flowchart of the same positional deviation measuring device.

【符号の説明】[Explanation of symbols]

1 帯状マーカ 2 帯状マーカ撮影用カメラ 3 クレーン 4 画像処理装置8の入力部 5 〃 の演算部 7 〃 の記憶装置 6 演算装置 1 band-shaped marker 2 camera for photographing band-shaped marker 3 crane 4 input unit of image processing device 5 calculation unit of 5 〃 storage device of 6 〃 calculation device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田内 邦明 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuniaki Tauchi 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 走行体の走行路面に沿って設けられた帯
状マーカと、上記走行体上に設置された帯状マーカ撮影
用カメラと、同カメラにより刻々撮影された映像を画像
処理する画像処理装置と、同画像処理装置により画像処
理された各画像上の3点の出力信号φ1 、φ2 、φ3
合計して同画像の出力信号φB =φ1+φ2 +φ3 を求
めるとともに基準信号φA と所定時間間隔毎に得られた
各画像の出力信号φBを用いて相互相関関数f(δ)を
求めこのf(δ)が最大になるときのδを求めてこのδ
の変化量から走行体の帯状マーカに対する位置ずれ量を
算出する演算装置とを具えていることを特徴とした走行
体の位置ずれ測定装置。
1. A belt-shaped marker provided along a traveling road surface of a traveling body, a camera for photographing the belt-shaped marker provided on the traveling body, and an image processing apparatus for image-processing an image captured by the camera every moment. And the output signals φ 1 , φ 2 , and φ 3 at three points on each image processed by the image processing apparatus are summed to obtain the output signal φ B = φ 1 + φ 2 + φ 3 of the image and the reference The cross-correlation function f (δ) is obtained using the signal φ A and the output signal φ B of each image obtained at predetermined time intervals, and δ when this f (δ) becomes maximum is obtained.
And a calculation device that calculates the amount of positional deviation of the traveling body with respect to the band-shaped marker from the amount of change in the displacement of the traveling body.
JP15214894A 1994-07-04 1994-07-04 Traveling body displacement measurement device Expired - Fee Related JP3229126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15214894A JP3229126B2 (en) 1994-07-04 1994-07-04 Traveling body displacement measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15214894A JP3229126B2 (en) 1994-07-04 1994-07-04 Traveling body displacement measurement device

Publications (2)

Publication Number Publication Date
JPH0812257A true JPH0812257A (en) 1996-01-16
JP3229126B2 JP3229126B2 (en) 2001-11-12

Family

ID=15534089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15214894A Expired - Fee Related JP3229126B2 (en) 1994-07-04 1994-07-04 Traveling body displacement measurement device

Country Status (1)

Country Link
JP (1) JP3229126B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783877A (en) * 2016-05-11 2016-07-20 上海振华重工电气有限公司 Hoisting equipment walking pose detection device and method
CN105823419A (en) * 2016-05-11 2016-08-03 上海振华重工电气有限公司 Reference band for detecting machine visual pose

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607929B (en) * 2012-03-05 2013-11-06 中国科学院地质与地球物理研究所 Pneumatic type sample loader

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783877A (en) * 2016-05-11 2016-07-20 上海振华重工电气有限公司 Hoisting equipment walking pose detection device and method
CN105823419A (en) * 2016-05-11 2016-08-03 上海振华重工电气有限公司 Reference band for detecting machine visual pose
CN105783877B (en) * 2016-05-11 2018-04-27 上海振华重工电气有限公司 The apparatus for detecting position and posture and method of lifting equipment walking

Also Published As

Publication number Publication date
JP3229126B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
US6336064B1 (en) Magnetic apparatus for detecting position of vehicle
JP5656547B2 (en) Intersection traffic flow measuring device
TWI579523B (en) Line measuring device and method thereof
JPH01481A (en) Paint film damage detection method
JPH0812257A (en) Measuring device for discrepancy in position of running body
JP3099691B2 (en) Object position measurement method on traveling road
JP3486239B2 (en) Orbital deviation measuring device and method, and curvature measuring method
JP3486067B2 (en) Vehicle position recognition device
JPH0820489A (en) Position deflection detection device for traveling body
JP2006214854A (en) Apparatus and method for creating road surface image
JP2006017676A (en) Measuring system and method
JP2019066368A (en) System and method for detecting displacement of structure
JP3238285B2 (en) Trajectory control method for trackless traveling vehicle
JP3099692B2 (en) Method of measuring the position of an object on a traveling path
JPS6193973A (en) Position detecting method of buried pipe underground
JP3345287B2 (en) Travel zone detection device for vehicles
JP3073364B2 (en) Structure swing sensor
SU526838A1 (en) The method of determining the location of the cable
JP3032090B2 (en) Water leak detection device
JP3441650B2 (en) Underground thruster position continuous detection device
JP4029118B2 (en) Method for detecting metal touch part of buried metal pipe
JP3073428B2 (en) Method and apparatus for measuring tail clearance of shield machine
JP3009555B2 (en) Runout sensor
JP3068866B2 (en) Buried cable position measurement method
JP2948475B2 (en) Runout sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010807

LAPS Cancellation because of no payment of annual fees