JPH08122476A - Sliding member for control rod drive - Google Patents

Sliding member for control rod drive

Info

Publication number
JPH08122476A
JPH08122476A JP6257840A JP25784094A JPH08122476A JP H08122476 A JPH08122476 A JP H08122476A JP 6257840 A JP6257840 A JP 6257840A JP 25784094 A JP25784094 A JP 25784094A JP H08122476 A JPH08122476 A JP H08122476A
Authority
JP
Japan
Prior art keywords
silicon carbide
fibers
roller
control rod
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6257840A
Other languages
Japanese (ja)
Inventor
Tsuneyuki Kanai
恒行 金井
Yoshiyuki Yasutomi
義幸 安富
Motoyuki Miyata
素之 宮田
Yuichi Sawai
裕一 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6257840A priority Critical patent/JPH08122476A/en
Publication of JPH08122476A publication Critical patent/JPH08122476A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE: To reduce the exposure of plant workers to radiation by lessening the friction between a pin and a roller and the abrasion of them involved in the shutdown of nuclear power actuation and the rise and fall of output. CONSTITUTION: In a combination of a pin and a roller installed in a control rod drive mechanism, the roller which touches the pin and abrades by sliding is made of a composite material, which contains carbonized silicon as a matrix and is characteristically reinforced with carbonized silicon fibers or carbon fibers. In this case, it is desirable that the carbonized fibers or the carbon fibers be arranged the circumferential direction of the roller.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、制御棒の挿入,引き抜
きが容易で、かつ長期間の使用が可能な原子力プラント
制御棒駆動用摺動部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member for driving a control rod of a nuclear power plant, in which the control rod can be inserted and pulled out easily and which can be used for a long period of time.

【0002】[0002]

【従来の技術】原子力発電プラントに使用されている制
御棒駆動機構は、原子炉の出力調製,出力分布調整のた
めに制御棒を上下動させる安全上重要な機器である。こ
の制御棒の挿入或いは引き抜きを確実かつ円滑に行うた
め、多数のガイドローラおよびピンが使用されている。
2. Description of the Related Art A control rod drive mechanism used in a nuclear power plant is an important safety device for moving a control rod up and down in order to adjust the power output of a nuclear reactor and adjust the power distribution. In order to surely and smoothly insert or pull out the control rod, a large number of guide rollers and pins are used.

【0003】このガイドローラおよびピンには耐摩耗
性,耐食性,耐衝撃性さらには耐熱衝撃性が要求され、
現在のところガイドローラ材として、ステライト#3,
ピン材としてヘインズアロイ#25の組み合わせが使用
されている。これら材料はいずれもコバルトを50%以
上含有したコバルト基鋳造合金である。
These guide rollers and pins are required to have wear resistance, corrosion resistance, impact resistance, and thermal shock resistance.
At present, as guide roller material, Stellite # 3
A combination of Haines Alloy # 25 is used as the pin material. All of these materials are cobalt-based casting alloys containing 50% or more of cobalt.

【0004】コバルト基合金で構成されたピンとローラ
を原子力発電プラント用制御棒駆動機構に使用すると、
摩耗によって生じた生成物、または腐食生成物等がコバ
ルトを含む。このため、コバルトが制御棒駆動機構等の
冷却水によって原子炉中にもたらされ、中性子の照射に
よってコバルト60となり、原子力発電プラントの放射
線線量率を上昇させることになる。コバルト60の蓄積
により、原子力発電プラントの定期検査時における作業
従事者の放射線被曝量を増加させる恐れがあり、ひいて
はプラントの稼働率を低下させることにもなる。一方、
これを防止するため、コバルトを含まない一般の金属材
料をピンとローラに適用した場合には、ローラの穴の内
径が摩擦によって広がりピンとローラの間にがたを生じ
てしまう。
When pins and rollers made of a cobalt-based alloy are used in a control rod drive mechanism for a nuclear power plant,
Products produced by abrasion, corrosion products, etc. contain cobalt. For this reason, cobalt is brought into the reactor by the cooling water of the control rod drive mechanism and the like, and becomes cobalt 60 by the irradiation of neutrons, thereby increasing the radiation dose rate of the nuclear power plant. Accumulation of cobalt 60 may increase the radiation exposure dose of workers at the time of periodic inspection of a nuclear power plant, and eventually reduce the operating rate of the plant. on the other hand,
In order to prevent this, when a general metal material containing no cobalt is applied to the pin and the roller, the inner diameter of the hole of the roller expands due to friction, and rattling occurs between the pin and the roller.

【0005】この問題点を解決するため、硬さ,耐熱
性,耐摩耗性が金属材料よりも優れているセラミックス
を原子力プラントの摺動部品等へ適用することが考えら
れ、SiC,Si34,Al23,ZrO2 ,AlNな
どの焼結体が検討されている。このようなコバルトを全
く含まないセラミックスの使用は、前述のコバルトフリ
ー化の観点からも望ましい。しかし、従来のピン或いは
ローラに用いられている金属材料に比較すると、これら
セラミックスは脆く、脆性的な破壊を引き起こすことか
ら、信頼性が重要な原子力プラントでは採用しにくい材
料であった。
In order to solve this problem, it is considered to apply ceramics, which are superior in hardness, heat resistance, and wear resistance as compared with metal materials, to sliding parts of a nuclear power plant, and SiC, Si 3 N Sintered bodies such as 4 , Al 2 O 3 , ZrO 2 , and AlN are being studied. The use of such a ceramic containing no cobalt is desirable also from the viewpoint of making the above cobalt-free. However, these ceramics are brittle and cause brittle fracture as compared with the metal materials used for the conventional pins or rollers, and thus are difficult to use in a nuclear power plant where reliability is important.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、コバ
ルト60による作業従事者の放射線被爆線量が低減で
き、しかも制御棒の挿入,引き抜きが円滑で、かつ長期
間の使用が可能な信頼性の高い原子力発電プラント制御
棒駆動用摺動部材を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the radiation exposure dose of workers due to cobalt 60, to insert and withdraw the control rod smoothly, and to use it for a long period of time. In order to provide a sliding member for driving a control rod of a nuclear power plant having a high price.

【0007】[0007]

【課題を解決するための手段】本発明は、制御棒駆動機
構に装着されるピンとローラとの組み合わせにおいて、
前記ピンと接して摺動摩耗する前記ローラが複合材料で
あり、複合材料はマトリックスを炭化けい素とし、炭化
けい素繊維或いは炭素繊維によって強化されたことを特
徴とする。このとき、炭化けい素繊維或いは炭素繊維が
10vol% 〜70vol% の体積率で含まれ、ローラの円
周方向に沿って配置されていることが望ましい。
The present invention provides a combination of a pin and a roller mounted on a control rod drive mechanism,
The roller, which is brought into sliding contact with the pin, is a composite material, and the composite material has a matrix made of silicon carbide and is reinforced by silicon carbide fibers or carbon fibers. At this time, it is desirable that the silicon carbide fibers or the carbon fibers are contained in a volume ratio of 10 vol% to 70 vol% and are arranged along the circumferential direction of the roller.

【0008】[0008]

【作用】ローラのマトリックスを炭化けい素とし、炭化
けい素繊維或いは炭素繊維によって強化した複合材料と
した理由は、従来のコバルト基合金と同等以上の耐食
性を有すること、マトリックスである炭化けい素を、
炭化けい素繊維或いは炭素繊維によって複合強化するこ
とによって、炭化けい素単体では達し得ない強度,靭
性,耐衝撃性等の信頼性が確保できること、炭化けい
素の摩擦係数が小さく、高温水中でコバルト基合金より
も摩耗減量が少なくなることによる。繊維量がマトリッ
クスに対して10vol%〜70vol%であるのは、10vo
l% より少ないと高強度化,強靭化,耐衝撃性に対する
効果が少なく、また、70vol% 以上であると繊維量が
多すぎ健全な繊維強化複合材料を製造できないためであ
る。また、強化用の繊維をローラの円周方向に沿って配
置させるのは、ローラに作用する外力に対して繊維の複
合強化を有効に利用するためである。
[Function] The reason why the roller matrix is silicon carbide and the composite material is reinforced by silicon carbide fibers or carbon fibers is that it has corrosion resistance equal to or higher than that of the conventional cobalt-based alloy and that the silicon carbide matrix is ,
By strengthening the composite with silicon carbide fibers or carbon fibers, it is possible to secure reliability such as strength, toughness, impact resistance, etc. that cannot be achieved by silicon carbide alone, the friction coefficient of silicon carbide is small, and cobalt in high temperature water is used. This is because the wear loss is smaller than that of the base alloy. The amount of fibers is 10 vol% to 70 vol% with respect to the matrix, 10 vo
This is because if it is less than 1%, the effect on high strength, toughness, and impact resistance is small, and if it is 70 vol% or more, the amount of fibers is too large to produce a sound fiber-reinforced composite material. Further, the reason why the reinforcing fibers are arranged along the circumferential direction of the roller is to effectively use the composite reinforcement of the fibers against the external force acting on the roller.

【0009】[0009]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0010】(実施例1)現用のステライト#3、及び
各種セラミックスの290℃の純水中における腐食減量
を調べた結果を表1に示す。
(Example 1) Table 1 shows the results of examining the corrosion weight loss of currently used stellite # 3 and various ceramics in pure water at 290 ° C.

【0011】[0011]

【表1】 [Table 1]

【0012】表1から明らかなように、炭化けい素,炭
素繊維強化炭化けい素,炭化けい素繊維強化炭化けい素
では、耐食性は現用ステライト#3と同等で、腐食減量
は認められず極めて良好であることがわかった。一方、
窒化けい素,酸化アルミニウム,酸化ジルコニウム,窒
化アルミニウムでは、腐食量が大きく現用材に比べ耐食
性が著しく劣っていることがわかる。
As is clear from Table 1, in silicon carbide, carbon fiber reinforced silicon carbide, and silicon carbide fiber reinforced silicon carbide, the corrosion resistance is equivalent to that of the existing Stellite # 3, and the corrosion weight loss is not recognized, which is extremely good. I found out. on the other hand,
It can be seen that silicon nitride, aluminum oxide, zirconium oxide, and aluminum nitride have a large amount of corrosion and are significantly inferior in corrosion resistance to the current material.

【0013】(実施例2)実施例1において、耐食性が
現用ステライト#3と同等で耐食性の優れている炭化け
い素,炭素繊維強化炭化けい素(炭素短繊維量:50
%),炭化けい素繊維強化炭化けい素(炭化けい素短繊
維量:50%)、ならびに耐食性が他のセラミックスと
比べて比較的良好であった酸化ジルコニウムについて耐
熱衝撃性,耐衝撃性を検討した結果を表2に示す。
(Example 2) In Example 1, silicon carbide and carbon fiber reinforced silicon carbide (corresponding to a short carbon fiber content: 50) having the same corrosion resistance as the current Stellite # 3 and excellent corrosion resistance.
%), Silicon carbide fiber reinforced silicon carbide (silicon carbide short fiber content: 50%), and zirconium oxide, which had relatively good corrosion resistance compared to other ceramics, was examined for thermal shock resistance and shock resistance. The results obtained are shown in Table 2.

【0014】[0014]

【表2】 [Table 2]

【0015】耐熱衝撃性の評価は、ΔT=250℃,1
000回の評価に耐えた場合には○、それ以外には×、
耐衝撃性については40kgf、1000回の衝撃に耐え
た場合を○、それ以外を×として、定性的に示した。
The thermal shock resistance was evaluated by ΔT = 250 ° C., 1
○, if the sample has withstood 000 times, otherwise ×,
The impact resistance is qualitatively shown as 40 kgf and ◯ when it withstood 1000 impacts, and x when not.

【0016】表2から明らかなように、本発明品である
長繊維10vol%〜70vol%,ウイスカ,短繊維で強化
した炭素繊維強化炭化けい素、並びに炭化けい素繊維強
化炭化けい素材料は、現用のステライトと同様の耐熱衝
撃性,耐衝撃性を有することがわかる。これは、これら
繊維の複合化によって強度・靭性が飛躍的に向上したた
めに、単一の炭化けい素材料では得られなかった耐熱衝
撃性,耐衝撃性が達成されたためと考えられる。
As is clear from Table 2, the carbon fiber reinforced silicon carbide reinforced with long fibers 10 vol% to 70 vol%, whiskers and short fibers, which are the products of the present invention, and the silicon carbide fiber reinforced silicon carbide materials, It can be seen that it has the same thermal shock resistance and shock resistance as the current Stellite. It is considered that this is because the combination of these fibers dramatically improved the strength and toughness, and thus achieved thermal shock resistance and impact resistance that could not be obtained with a single silicon carbide material.

【0017】(実施例3)実施例1,実施例2におい
て、耐食性が現用ステライト#3と同等で耐食性の優れ
ている炭化けい素,炭素繊維強化炭化けい素,炭化けい
素繊維強化炭化けい素ならびに酸化ジルコニウムについ
て摩耗減量試験を検討した結果を表3に示す。
(Example 3) In Example 1 and Example 2, silicon carbide, carbon fiber reinforced silicon carbide, silicon carbide fiber reinforced silicon carbide, which has corrosion resistance equivalent to that of the current Stellite # 3 and excellent in corrosion resistance. Table 3 shows the results of examining the wear reduction test for zirconium oxide.

【0018】[0018]

【表3】 [Table 3]

【0019】摩耗減量試験は、ローラを模擬する圧子
と、ピンを模擬する摩擦板とを接触させた状態で摩擦板
を往復運動させ、所定の摺動距離を摺動させた後、試験
前後の圧子の重量変化を測定した。ピンは、球状のバナ
ジウムカーバイドを初晶として析出させたナイトロニッ
ク#60改良材を用いた。なお、摺動距離は200m,
圧子にかかる荷重は50kg/cm2 、環境雰囲気は300
℃の高温水中とした。表3において、○は摩耗量が0.
2mg/cm2以下、△は0.2mg/cm2〜20mg/cm2、×は
20mg/cm2 以上の摩耗量である。本発明の炭素繊維強
化炭化けい素、ならびに炭化けい素繊維強化炭化けい素
複合材料は耐摩耗性の点で、現用ステライト#3に比べ
て優れていることがわかる。
In the wear reduction test, the friction plate is reciprocated while the indenter simulating the roller and the friction plate simulating the pin are in contact with each other and slid for a predetermined sliding distance, and before and after the test. The weight change of the indenter was measured. As the pin, a nitrogenic # 60 improving material in which spherical vanadium carbide was precipitated as a primary crystal was used. The sliding distance is 200m,
The load applied to the indenter is 50 kg / cm 2 , and the environmental atmosphere is 300.
High temperature water at ℃ was used. In Table 3, ○ indicates that the wear amount is 0.
2 mg / cm 2 or less, △ is 0.2mg / cm 2 ~20mg / cm 2 , × is 20 mg / cm 2 or more amount of wear. It can be seen that the carbon fiber reinforced silicon carbide and the silicon carbide fiber reinforced silicon carbide composite material of the present invention are superior in wear resistance to the current Stellite # 3.

【0020】[0020]

【発明の効果】本発明によれば原子力の起動停止,出力
の上昇下降に伴うピンとローラの摩擦摩耗量を小さくで
き、プラント作業従事者の放射被爆低減にもつながる。
According to the present invention, the amount of frictional wear between the pin and the roller due to the start and stop of nuclear power and the rise and fall of the output can be reduced, which leads to reduction of radiation exposure of plant workers.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/80 C (72)発明者 沢井 裕一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location C04B 35/80 C (72) Inventor Yuichi Sawai 7-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi, Ltd. Inside Hitachi Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原子力プラントの制御棒駆動機構に装着さ
れるピンとローラとの組み合わせにおいて、前記ピンと
接して摺動摩耗する前記ローラが複合材料であることを
特徴とする原子力発電プラント制御棒駆動用摺動部材。
1. A combination of a pin and a roller mounted on a control rod drive mechanism of a nuclear power plant, wherein the roller that slides and wears in contact with the pin is a composite material. Sliding member.
【請求項2】請求項1における前記複合材料は、マトリ
ックスを炭化けい素とし、炭化けい素繊維或いは炭素繊
維によって強化したものである原子力発電プラント制御
棒駆動用摺動部材。
2. A sliding member for driving a control rod of a nuclear power plant, wherein the composite material according to claim 1 has a matrix made of silicon carbide and reinforced by silicon carbide fibers or carbon fibers.
【請求項3】請求項2における前記炭化けい素繊維或い
は炭素繊維が、ウイスカ,短繊維、或いは長繊維から構
成され、マトリックスに対して10vol%〜70vol%を
含む原子力発電プラント制御棒駆動用摺動部材。
3. A slide rod for driving a control rod of a nuclear power plant, wherein the silicon carbide fiber or carbon fiber in claim 2 is composed of whiskers, short fibers or long fibers, and contains 10 vol% to 70 vol% with respect to the matrix. Moving member.
【請求項4】請求項3における前記炭化けい素繊維或い
は炭素繊維が、少なくともローラの円周方向に沿って配
置されている原子力発電プラント制御棒駆動用摺動部
材。
4. A sliding member for driving a nuclear power plant control rod, wherein the silicon carbide fibers or carbon fibers according to claim 3 are arranged at least along a circumferential direction of a roller.
JP6257840A 1994-10-24 1994-10-24 Sliding member for control rod drive Pending JPH08122476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6257840A JPH08122476A (en) 1994-10-24 1994-10-24 Sliding member for control rod drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6257840A JPH08122476A (en) 1994-10-24 1994-10-24 Sliding member for control rod drive

Publications (1)

Publication Number Publication Date
JPH08122476A true JPH08122476A (en) 1996-05-17

Family

ID=17311878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6257840A Pending JPH08122476A (en) 1994-10-24 1994-10-24 Sliding member for control rod drive

Country Status (1)

Country Link
JP (1) JPH08122476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130208848A1 (en) * 2010-06-16 2013-08-15 Commissariat A L'Energie Atomique Et Aux Engeries Alternatives Solid interface joint with open pores for nuclear control rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130208848A1 (en) * 2010-06-16 2013-08-15 Commissariat A L'Energie Atomique Et Aux Engeries Alternatives Solid interface joint with open pores for nuclear control rod
US9620251B2 (en) * 2010-06-16 2017-04-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Solid interface joint with open pores for nuclear control rod

Similar Documents

Publication Publication Date Title
Aghajanian et al. The fabrication of metal matrix composites by a pressureless infiltration technique
Rendtel et al. Silicon nitride/silicon carbide nanocomposite materials: II, hot strength, creep, and oxidation resistance
Lee et al. Wear behaviour of aluminium matrix composite materials
Marshall et al. A J-integral method for calculating steady-state matrix cracking stresses in composites
Li et al. Equal-channel angular pressing of an Al-6061 metal matrix composite
Nieh et al. Superplasticity in fine-grained 20% Al2O3/YTZ composite
Sharma et al. Effect of short glass fibers on the mechanical properties of cast ZA-27 alloy composites
Sklenička et al. Microstructural processes in creep of an AZ 91 magnesium-based composite and its matrix alloy
McCullough et al. Mechanical response of continuous fiber-reinforced Al2O3 Al composites produced by pressure infiltration casting
Srivatsan et al. Micromechanisms governing fatigue behaviour of lithium containing aluminium alloys
JPH08122476A (en) Sliding member for control rod drive
Rhodes et al. Fiber-matrix reaction zone growth kinetics in SiC-reinforced Ti-6Al-4V as studied by transmission electron microscopy
Choo et al. Mechanical properties of NiAl–AlN–Al2O3 composites
Anand et al. Local impact damage and erosion mechanisms in WC-6wt.% Co alloys
Solomah et al. Mechanical properties, thermal shock resistance, and thermal stability of zirconia‐toughened alumina‐10 vol% silicon carbide whisker ceramic matrix composite
Yang et al. Deformation and fracture of Ti-and Ti 3 Al-matrix composites
Björk et al. Hot Isostatically Pressed Alumina‐Silicon Carbide‐Whisker Composites
Ohji et al. Threshold stress in creep of alumina‐silicon carbide nanocomposites
Lamon Interfaces and interphases
Seah et al. Mechanical properties of cast aluminium alloy 6061-albite particulate composites
Deng et al. Microstructure and flexure creep behaviour of SiC-particle reinforced Al2O3 matrix composites
Weber et al. The creep and fracture resistance of γ-TiAl reinforced with Al2O3 fibers
Low Observations on the Brittle Fracture of Cemented Titanium Carbide
Sample et al. High pressure squeeze casting of unidirectional graphite fiber reinforced aluminum matrix composites
Jones et al. Elevated-temperature effects of oxygen on SiC/SiC composites