JPH08122340A - Method and apparatus for surface shape measurement - Google Patents

Method and apparatus for surface shape measurement

Info

Publication number
JPH08122340A
JPH08122340A JP6255909A JP25590994A JPH08122340A JP H08122340 A JPH08122340 A JP H08122340A JP 6255909 A JP6255909 A JP 6255909A JP 25590994 A JP25590994 A JP 25590994A JP H08122340 A JPH08122340 A JP H08122340A
Authority
JP
Japan
Prior art keywords
sample
scanning
sample surface
lattice image
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6255909A
Other languages
Japanese (ja)
Inventor
Toru Fujii
藤井  透
Hideki Kawakatsu
英樹 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6255909A priority Critical patent/JPH08122340A/en
Publication of JPH08122340A publication Critical patent/JPH08122340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE: To enable the measuring of the shape of the surface of a sample containing a vertical way at a high accuracy with a high resolving power by obtaining a band- shaped lattice image following a step of the surface of the sample using a scan control signal in the direction vertical to the surface of the sample and a two-dimensional lattice image to calculate coordinates with the results as reference coordinates. CONSTITUTION: A scanning mechanism 14 for ZX axis is sent in the X axis direction scanning with a probe 17 for crystal observation in the Z axis direction to obtain a lattice image of a reference crystal 16 for a scale. Here, the probe 19 for observing a sample follows the surface of a sample 12 and when a step exists, the probe 19 is controlled to keep the distance from the sample surface constant. Hence, the reference crystal 16 is also moved equally in the Z axis direction to obtain a lattice image distorted in the Z axis direction. So, when a control signal in the Z axis direction applied to the mechanism 14 is added to a scan signal in the Z axis direction of the scanning mechanism 18, a corrected lattice image closely resembling the shape of an actual scanning area is obtained. Thus, coordinates at respective lattice points indicating the upper and lower ends of the lattice image are collated with the coordinates of the reference crystal 16 thereby enabling detecting of the shape of the step of the sample 12 as coordinates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型プローブ顕微鏡
等の表面形状を測定する装置およびその測定方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a surface shape of a scanning probe microscope or the like and a measuring method therefor.

【0002】[0002]

【従来の技術】近年、物質の表面の情報を得るために様
々な表面形状測定装置が研究・開発されている。従来の
試料の表面の段差、形状、粗さの測定装置としては、段
差測定器、走査電子顕微鏡、電子線三次元粗さ解析装置
等が用いられる。電子線を利用した装置の場合は、直
接、段差方向(試料の表面に垂直な方向)の情報を得る
ことはできず、複雑なシミュレーションが必要である。
触針式の装置の場合には、これら表面の情報は直接プロ
ーブの変位として得られ、読み取りにプローブを加圧
し、走査する作動トランス方式を用いていた。これに対
し、走査型プローブ顕微鏡(Scanninng Probe Microsco
pe 以下SPM)はプローブと試料の表面との相互作用を
制御信号として用い、3次元走査機構でプローブを試料
の表面上の段差方向で位置決めをし、試料の表面に平行
な方向で1次元あるいは2次元走査し、そのプローブの
変位から表面形状を得ている。例えば走査型トンネル顕
微鏡(Scanninng Tunneling Microscope 以下STM)は
金属のプローブを導電性の試料に1nm程度まで近づけ、
両者の間に微少電圧を印加するとトンネル効果により電
流が流れ、このトンネル電流が一定になるようにプロー
ブを上下させながら試料の表面を走査することにより表
面の凹凸を正確に測定することができる。走査型原子間
力顕微鏡(Atomic Force Microscope 以下AFM)は試料
の表面とプローブとの間に働く原子間力を検出し、これ
が一定になるように表面を走査する。原子間力の検出に
はカンチレバーと呼ばれる微少なバネを用い、バネの変
位の検出にはSTM、光てこ、干渉計等が用いられる。
そのほかに、摩擦力の変化をカンチレバーの横方向のた
わみ量として検出する摩擦力顕微鏡、磁化されたプロー
ブと、カンチレバーを共振させ、磁気力を検出する磁気
力顕微鏡等がある。
2. Description of the Related Art In recent years, various surface shape measuring devices have been researched and developed in order to obtain information on the surface of a substance. As a conventional device for measuring the level difference, shape, and roughness of the surface of the sample, a level difference measuring device, a scanning electron microscope, an electron beam three-dimensional roughness analyzer, or the like is used. In the case of an apparatus using an electron beam, it is not possible to directly obtain information on the step direction (direction perpendicular to the surface of the sample), and complicated simulation is required.
In the case of the stylus type device, the information on these surfaces is directly obtained as the displacement of the probe, and the operating transformer system in which the probe is pressed and scanned for reading is used. On the other hand, Scanning Probe Microscope
pe (SPM) uses the interaction between the probe and the surface of the sample as a control signal and positions the probe in the step direction on the surface of the sample with a three-dimensional scanning mechanism and Two-dimensional scanning is performed, and the surface shape is obtained from the displacement of the probe. For example, in a scanning tunneling microscope (STM), a metal probe is brought close to a conductive sample to about 1 nm.
When a minute voltage is applied between the two, a current flows due to the tunnel effect, and the surface of the sample can be accurately measured by scanning the surface of the sample while moving the probe up and down so that the tunnel current becomes constant. A scanning atomic force microscope (AFM) detects an atomic force acting between the surface of a sample and a probe, and scans the surface so that it becomes constant. A minute spring called a cantilever is used to detect the atomic force, and an STM, an optical lever, an interferometer, etc. are used to detect the displacement of the spring.
In addition, there are a friction force microscope that detects a change in frictional force as a lateral deflection amount of a cantilever, a magnetized probe, and a magnetic force microscope that resonates the cantilever to detect a magnetic force.

【0003】これらSPMは触針式に比べ接触圧が低く無
視できるため、試料の表面に傷を付けない。また、検出
の横分解能は触針式で高々数100nmだが、SPMでは最も高
いもので原子レベルまで達する。しかし、SPMの制御信
号は、プローブまたは試料の変位に対して最大では10
パーセント以上の誤差がある。そのためキャパシタンス
ゲージや干渉計による校正が行われていた。試料の表面
に平行な面(XY平面)にのみならば基準結晶格子を用
いた校正法もあった。
Since these SPMs have a lower contact pressure than the stylus type and can be ignored, they do not scratch the surface of the sample. In addition, the lateral resolution of detection is a few 100 nm at most with the stylus method, but it is the highest in SPM and reaches the atomic level. However, the control signal of SPM is 10 at maximum for the displacement of the probe or sample.
There is an error of more than a percentage. Therefore, calibration with a capacitance gauge or an interferometer was performed. There was also a calibration method using a reference crystal lattice only in the plane parallel to the surface of the sample (XY plane).

【0004】光ディスク表面のピットの深さと間隔を測
定する場合、ピットはコンパクトディスクを例に取ると
深さ100nmで、間隔が1.6μmである。また、光学薄膜や
X線反射鏡の多層膜等は厚さは数十nm以下と薄く、かつ
その厚さを正確に測定することが重要である。このよう
に試料の段差方向の測定には測定範囲が小さく、高精
度、高分解能が要求されている。
When measuring the depth and spacing of pits on the surface of an optical disc, the depth of the pits is 100 nm and the spacing is 1.6 μm in the case of a compact disc. Further, it is important that the thickness of the optical thin film, the multilayer film of the X-ray reflecting mirror, etc. is as thin as several tens of nm or less, and that the thickness is accurately measured. As described above, the measurement range is small and high accuracy and high resolution are required for the measurement of the sample in the step direction.

【0005】[0005]

【発明が解決しようとする課題】しかし、校正法におい
てキャパシタンスゲージは検出速度が遅く測定時間がか
かるため、横分解能が高くレスポンスの早いSPMの中で
も段差方向の測定には特に不向きである。また、校正法
に干渉計を用いた場合は、精度の点では唯一絶対値を知
り得るため、基準となり得るが、市販装置にみられるよ
うに大型で高価となる。
However, in the calibration method, the capacitance gauge has a slow detection speed and a long measurement time, so that it is particularly unsuitable for measuring in the step direction among SPMs having a high lateral resolution and a fast response. Further, when an interferometer is used for the calibration method, the absolute value can be known only in terms of accuracy, so it can be used as a reference, but it is large and expensive as seen in commercially available devices.

【0006】それに対して基準結晶格子を用いた校正法
は小型で安価であり、検出の分解能は基準結晶格子の間
隔で決まるため極めて高く、格子像の質が良い場合には
内挿によりサブオングストロームにも達する。基準結晶
格子を用いた校正法は、走査プローブが既知の原子間隔
を形成している原子あるいは分子を乗り越え、その凹凸
個数を数えて、測長のスケールとしている。
On the other hand, the calibration method using the reference crystal lattice is small and inexpensive, and the detection resolution is extremely high because it is determined by the distance between the reference crystal lattices. If the quality of the lattice image is good, the sub-angstrom is obtained by interpolation. Also reaches. In the calibration method using the reference crystal lattice, the scanning probe overcomes atoms or molecules forming a known atomic interval, counts the number of irregularities, and uses it as a scale for length measurement.

【0007】しかし、結晶格子には方位がある。また、
結晶格子の方位方向にたとえ走査しても、走査位置によ
って原子を乗り越える位置が異なり、凹凸の大きさが小
さくなり、原子の個数を正確に数えることができない場
合が生じる。このように、走査プローブで基準結晶格子
の表面を1次元走査するだけでは正確な変位を測定でき
ない。そこで、基準結晶格子を測長のスケールとするに
は、原子の凹凸と方位を知るために2次元を走査し格子
像とする必要がある。しかし、表面形状のうち段差方向
(Z軸方向)を含む測定は1次元走査と帰還制御方向の
運動からなり、不規則な1次元の線画となるため、各格
子点同士の相対位置を知ることはできない。そのため従
来の基準結晶格子を用いた校正法ではXY平面以外の
面、すなわちZX平面およびYZ平面は測定できなかっ
た。
However, the crystal lattice has an orientation. Also,
Even if scanning is performed in the azimuth direction of the crystal lattice, the position where the atoms are crossed over differs depending on the scanning position, the size of the unevenness becomes small, and the number of atoms may not be accurately counted. As described above, it is not possible to accurately measure the displacement by only one-dimensionally scanning the surface of the reference crystal lattice with the scanning probe. Therefore, in order to use the reference crystal lattice as a scale for length measurement, it is necessary to scan two-dimensionally and form a lattice image in order to know the unevenness and orientation of atoms. However, since the measurement including the step direction (Z-axis direction) in the surface shape consists of one-dimensional scanning and movement in the feedback control direction and becomes an irregular one-dimensional line drawing, it is necessary to know the relative position of each grid point. I can't. Therefore, the conventional calibration method using the reference crystal lattice cannot measure the planes other than the XY plane, that is, the ZX plane and the YZ plane.

【0008】本発明の目的は、上記問題を解決すること
にある。
An object of the present invention is to solve the above problems.

【0009】[0009]

【課題を解決するための手段】本発明者らはSPMおよびS
PMにXY平面のみ測定可能な基準結晶格子を用いた校正
法について鋭意研究を行った。その結果、以下の装置お
よび測定方法で段差方向を含む、ZX平面およびYZ平
面の測定が可能となることを見い出した。そこで、本発
明は、試料測定用プローブと試料表面とのいずれか一方
を、試料表面の少なくとも一方向及び試料表面と垂直な
方向に走査機構により走査して試料の表面形状を測定す
る方法において、前記試料表面が段差を有するとき、走
査機構の走査に応じて変位する基準結晶格子及び試料表
面と垂直な方向に走査することが可能な結晶格子像観察
用プローブを用いて2次元格子像を得、試料表面と垂直
な方向の走査機構の制御信号と前記2次元格子像とを用
いて試料表面の段差にならった帯状の格子像を得、該帯
状の格子像を基準座標として計算し座標を求めることに
より試料表面の段差を測定することを特徴とする表面形
状測定方法を提供する。
The present inventors have found that SPM and S
We have earnestly conducted research on a calibration method using a reference crystal lattice that can measure only the XY plane in PM. As a result, they have found that it is possible to measure the ZX plane and the YZ plane including the step direction with the following device and measuring method. Therefore, the present invention, in any one of the sample measurement probe and the sample surface, in at least one direction of the sample surface and a method of scanning the surface shape of the sample by a scanning mechanism in a direction perpendicular to the sample surface, When the sample surface has a step, a two-dimensional lattice image is obtained using a reference crystal lattice that is displaced according to the scanning of the scanning mechanism and a crystal lattice image observing probe that can scan in a direction perpendicular to the sample surface. , A two-dimensional lattice image and a control signal of a scanning mechanism in a direction perpendicular to the sample surface are used to obtain a belt-shaped lattice image that follows the steps of the sample surface, and the belt-shaped lattice image is used as reference coordinates to calculate coordinates. Provided is a surface shape measuring method characterized by measuring a step on the surface of a sample by obtaining it.

【0010】また、本発明は、試料測定用プローブと、
試料表面の少なくとも一方向及び試料表面と垂直な方向
に走査可能であって試料または試料測定用プローブが固
定された走査機構と、前記試料表面の走査方向と垂直か
つ試料表面に平行な方向の走査機構の側面に設けられた
基準結晶格子と、該基準結晶格子上を試料表面と垂直な
方向に走査可能な結晶格子像観察用プローブとからなる
表面形状測定装置を提供する。
The present invention also provides a sample measuring probe,
A scanning mechanism capable of scanning in at least one direction of the sample surface and in a direction perpendicular to the sample surface, and a sample or sample measurement probe fixed, and scanning in a direction perpendicular to the scanning direction of the sample surface and parallel to the sample surface. Provided is a surface shape measuring device including a reference crystal lattice provided on a side surface of a mechanism and a crystal lattice image observation probe capable of scanning the reference crystal lattice in a direction perpendicular to a sample surface.

【0011】なお、本発明の段差とはZ軸方向、つまり
試料表面と垂直な方向に起伏を持つ試料表面の高低のこ
とである。図4に基準結晶格子を用いたXY平面の校正
法の一例を示す。X軸は通常のように走査線の方向(2
次元走査の早い走査方向)である。本発明は従来の2次
元走査を行う方向をXY軸用走査機構に変えて走査方向
を90°回転させたZXあるいはZY軸用走査機構を用
いることを特徴とするが、これだけでは試料の表面に垂
直な方向(Z軸方向)を測定することはできない。ZX
軸用走査機構に加え、結晶格子観察用プローブも同時に
走査し、変調させる必要がある。
The level difference in the present invention means the height of the sample surface having undulations in the Z-axis direction, that is, in the direction perpendicular to the sample surface. FIG. 4 shows an example of an XY plane calibration method using a reference crystal lattice. The X-axis is the direction of the scan line (2
It is the scanning direction of the dimensional scanning). The present invention is characterized in that the conventional two-dimensional scanning direction is changed to the XY axis scanning mechanism and the ZX or ZY axis scanning mechanism in which the scanning direction is rotated by 90 ° is used. It is not possible to measure in the vertical direction (Z-axis direction). ZX
In addition to the axis scanning mechanism, it is necessary to simultaneously scan and modulate the crystal lattice observation probe.

【0012】従来の結晶格子をスケールとして用いた校
正法では、試料の表面に垂直な方向のプローブの変位は
結晶格子をスケールとして用いることができず、精度が
悪い、実際のプローブの変位に対して最大10パーセン
トの誤差を含む制御信号を用いなければならなかった。
これに対し、本発明はZ軸方向を含む平面を原子レベル
の高精度、高分解能で測定することができる。
In the conventional calibration method using the crystal lattice as the scale, the displacement of the probe in the direction perpendicular to the surface of the sample cannot use the crystal lattice as the scale, which is inaccurate and the displacement of the actual probe Had to use a control signal with a maximum error of 10 percent.
On the other hand, the present invention can measure a plane including the Z-axis direction with high accuracy and high resolution at the atomic level.

【0013】[0013]

【作用】本発明の表面形状を測定する結晶格子基準形状
測定装置は、プローブまたは試料の少なくとも一方を少
なくとも1次元走査し、形状トレース運動を測定するた
めの測定の基準となる固定部位と形状トレース運動する
部位からなり、その一方に測定のスケールとなる基準結
晶格子、他方に結晶格子観察用プローブを持つ装置であ
る。
The crystal lattice reference shape measuring apparatus for measuring the surface shape according to the present invention comprises a fixed portion and a shape trace serving as a measurement reference for measuring the shape trace movement by scanning at least one dimension of at least one of a probe and a sample. This device consists of a moving part, one of which has a reference crystal lattice that serves as a measurement scale, and the other has a crystal lattice observation probe.

【0014】ここで言う形状トレース運動とは、プロー
ブと試料表面との相互作用を制御信号として用い、試料
の表面を走査することである。この装置を用い、試料の
表面を測定する。測定中にスケールとなる基準結晶か、
結晶格子観察用プローブのどちらか少なくとも一方を基
準結晶格子の2次元像が得られる程度の遅い周期、かつ
小さな振幅で試料の表面に垂直な方向に走査させること
により、試料の表面の段差により歪まされた基準結晶格
子の2次元格子像が得られる。
The shape tracing motion mentioned here is to scan the surface of the sample by using the interaction between the probe and the sample surface as a control signal. Using this device, the surface of the sample is measured. A reference crystal that becomes a scale during measurement,
By scanning at least one of the crystal lattice observation probes in a direction perpendicular to the surface of the sample at a slow period and a small amplitude so that a two-dimensional image of the reference crystal lattice can be obtained, distortion due to a step on the surface of the sample occurs. A two-dimensional lattice image of the obtained reference crystal lattice is obtained.

【0015】ここで得られた基準結晶格子の2次元格子
像は、通常のSPMの処理と同様に基準結晶格子または
結晶格子観察プローブのZ軸方向の走査と走査機構X軸
方向の走査信号を画面平面上の座標として表示するた
め、図3(a)のように、そのままでは原子位置が歪ん
だ格子像として得られる。そのため、このままでは原子
位置をスケールとして用いることができない。
The two-dimensional lattice image of the reference crystal lattice obtained here is obtained by scanning the reference crystal lattice or the crystal lattice observation probe in the Z-axis direction and the scanning signal in the X-axis direction of the scanning mechanism as in the case of the usual SPM processing. Since the coordinates are displayed on the screen plane, a lattice image with distorted atomic positions can be obtained as it is, as shown in FIG. Therefore, the atomic position cannot be used as a scale as it is.

【0016】そこで、試料の表面に垂直な方向の制御信
号を用いて、原子位置のゆがみを回復させることで、図
3(c)のように表面形状にならった帯状の格子像を得
ることができる。この像は制御信号による像なので誤差
を含むが、基準結晶の方位を得るためには充分な正確さ
を持っている。結晶格子の原子の並びは劈開面が既知な
らば充分な正確さで測定されているため、原子が正しい
並びになるよう再生すれば帯状の格子像の上下境界は正
確に測定された試料の表面形状を表すことになり、その
値も格子像の座標から容易に求めることができる。
Therefore, by using the control signal in the direction perpendicular to the surface of the sample to recover the distortion of the atomic position, a band-shaped lattice image having a surface shape as shown in FIG. 3C can be obtained. it can. This image contains an error because it is an image of a control signal, but has sufficient accuracy to obtain the orientation of the reference crystal. Since the arrangement of atoms in the crystal lattice is measured with sufficient accuracy if the cleavage plane is known, the upper and lower boundaries of the band-shaped lattice image are accurately measured if the atoms are reproduced so that they are aligned correctly. Is expressed, and its value can be easily obtained from the coordinates of the lattice image.

【0017】プローブには有限の長さがあるため走査機
構に回転運動があるとアッベオフセットによりアッベ誤
差が生じるが、平行バネを使うことでアッベ誤差を最小
にできる。基準結晶格子は実用上充分な精度を持つが、
絶対値として使う場合や装置の精度検証のためには光波
干渉計を組み込み校正することが有効である。
Since the probe has a finite length, an Abbe error occurs due to the Abbe offset when the scanning mechanism has a rotational movement, but the Abbe error can be minimized by using a parallel spring. Although the reference crystal lattice has sufficient accuracy for practical use,
When used as an absolute value or for verifying the accuracy of the device, it is effective to incorporate an optical wave interferometer for calibration.

【0018】また、基準結晶格子としては結晶格子像を
容易に得られ、きれいな劈開面が得られるものが望まし
く、STMにおいては、導電性も要求されるため、特にグ
ラファイトが望ましい。以下に、本発明の一例を示す
が、本発明はこれに限定されない。
Further, it is desirable that the reference crystal lattice can easily obtain a crystal lattice image and a clean cleavage plane. In STM, since conductivity is required, graphite is particularly desirable. Examples of the present invention will be shown below, but the present invention is not limited thereto.

【0019】[0019]

【実施例】図1に装置の主要構成図を示す。試料(1
2)の観察と基準結晶格子観察にSTMを用い、試料側の
ZX軸用走査機構(14)にスケール用基準結晶(1
6)を固定した。 試料12としてはMgOの劈開面に
Ptを蒸着したものを用い、スケール用基準結晶として
はグラファイト結晶を用いた。14には平行バネを用
い、干渉計による校正機能(13、15、21、22、
23、24、25、26)も備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the main configuration of the apparatus. Sample (1
STM was used for the observation of 2) and the reference crystal lattice observation, and the scale reference crystal (1) was used for the ZX axis scanning mechanism (14) on the sample side.
6) was fixed. As the sample 12, the one in which Pt was vapor-deposited on the cleavage plane of MgO was used, and the graphite crystal was used as the scale reference crystal. A parallel spring is used for 14, and a calibration function (13, 15, 21, 22,
23, 24, 25, 26).

【0020】試料用走査機構としては3次元方向に運動
可能な円筒型圧電素子(11)を用い、試料観察用プロ
ーブ、すなわちSTMプローブ(19)を形状トレース運
動させる。11は直流ギアモータとネジによるY方向の
接近粗動機構に搭載される。試料12は11に搭載され
る。
As the sample scanning mechanism, a cylindrical piezoelectric element (11) movable in a three-dimensional direction is used, and a sample observing probe, that is, an STM probe (19) is moved in a shape trace. Reference numeral 11 is mounted on a Y-direction approach coarse movement mechanism using a DC gear motor and screws. The sample 12 is mounted on 11.

【0021】14には12を観察する19が固定され
る。12は試料側で独立に3次元観察が可能なように1
1に固定される。11は試料上の特定点の位置出しが容
易なように、Z軸接近方向に加えX軸方向にも運動可能
な粗動機構上に搭載される。14には光を用いた干渉計
による校正機能を付加し、格子の校正を行うため干渉計
用測定鏡(13、15)が2面に取り付けられている。
A reference numeral 19 for observing 12 is fixed to the reference numeral 14. 12 is 1 so that three-dimensional observation can be performed independently on the sample side.
Fixed to 1. 11 is mounted on a coarse movement mechanism that can move not only in the Z-axis approaching direction but also in the X-axis direction so that a specific point on the sample can be easily located. A calibration function by an interferometer using light is added to 14, and interferometer measuring mirrors (13, 15) are attached to two surfaces for calibrating the grating.

【0022】本装置では格子像の質が重要であり、14
の可動部が重くなることは、形状トレース運動性能を低
下させるため、極力避ける必要がある。そこで、通常の
測定鏡として用いるコーナーキューブや、平面鏡を用い
た場合に必要なあおり機構の使用は避ける必要がある。
そのため、Z軸およびX軸干渉計用偏光ビームスプリッ
タ(Polarizing Beam Splitter、21、22)とレーザ
光導入部にステアリングアライメント機構を用いた。
これにより、干渉計の測定鏡として14の可動部に厚さ
300ミクロンのあおり機構を持たない平面鏡13、15
のみ搭載することができ、14の可動部への質量負荷を
100mg程度にとどめることができた。
In this device, the quality of the lattice image is important.
It is necessary to avoid making the movable part of the robot heavy because it deteriorates the shape tracing motion performance. Therefore, it is necessary to avoid the use of a corner cube used as a normal measuring mirror and a tilt mechanism that is necessary when a plane mirror is used.
Therefore, a steering alignment mechanism is used for the Z-axis and X-axis interferometer polarization beam splitters (Polarizing Beam Splitters, 21, 22) and the laser beam introduction section.
As a result, the thickness of 14 movable parts is increased as a measuring mirror of the interferometer.
Plane mirrors 13 and 15 without a 300-micron tilt mechanism
It can be mounted only, and the mass load on 14 moving parts
I was able to keep it around 100 mg.

【0023】干渉計はマイケルソン型直交偏光2周波ヘ
テロダイン干渉計を用いた。サブナノメータの分解能が
要求されるため、ヘテロダイン周波数は100kHzを用い光
源には安定化HeNeレーザを用いる。Z軸およびX軸干渉
計用偏光ビームスプリッタ21、22には装置小型化の
ために、偏光干渉に必要な波長板と参照鏡が一体化され
ている。図1では、偏光ビームスプリッタの2つの面に
付いている板が波長板で、重ねて付いている板が参照鏡
である。21は試料の表面に垂直な方向、すなわちZ軸
方向の測定のためのビームスプリッタ、22は線幅であ
るX軸方向のビームスプリッタである。
As the interferometer, a Michelson type orthogonal polarization dual frequency heterodyne interferometer was used. Since sub-nanometer resolution is required, the heterodyne frequency is 100 kHz and the stabilized HeNe laser is used as the light source. The Z-axis and X-axis interferometer polarization beam splitters 21 and 22 are integrated with a wavelength plate and a reference mirror necessary for polarization interference in order to downsize the device. In FIG. 1, the plates attached to the two surfaces of the polarization beam splitter are wavelength plates, and the plates that are stacked are reference mirrors. Reference numeral 21 is a beam splitter for measurement in the direction perpendicular to the surface of the sample, that is, the Z-axis direction, and 22 is a beam splitter in the X-axis direction which is the line width.

【0024】無偏光ビームスプリッタ(Non-Polarized
Beam Splitter、25)は干渉計レーザビームを2軸に
分配する。ナノメートルの精度が要求されると偏光ヘテ
ロダイン干渉測定では偏光混合による波長周期の非線形
誤差が問題になる。それに加え、ビームスプリッタによ
るアライメントを行うと、光学系設置誤差が大きくなる
ため、非線形誤差を大幅に低減できる差動検出装置(Ba
lanced Detector Unit、23、24)を検出系に用い
る。
Non-Polarized Beam Splitter
The Beam Splitter, 25) splits the interferometer laser beam into two axes. When nanometer precision is required, polarization heterodyne interferometry poses a problem of nonlinear error of wavelength period due to polarization mixing. In addition, alignment with a beam splitter increases the error in the optical system installation, so the nonlinear detection device (Ba
lanced Detector Unit, 23, 24) is used for the detection system.

【0025】図2はZX軸用走査機構14に積層型圧電
素子で駆動される一体型二次元平行バネを用い、かつ干
渉計用測定鏡を備えた図である。平行バネはアルミ製
で、ワイヤ放電加工により製作されている。円弧上の切
り欠き部が弾性ヒンジとなり1軸に関して4ヶ所がヒン
ジとして働き、それによって囲まれた長方形が剪断し平
行四辺形になる。動きが小さいときは沈み込みによるコ
サインエラーは小さいためほぼ直線運動とみなせる。1
軸分の内部にもう1軸分を一体に製作する。
FIG. 2 is a diagram in which an integral type two-dimensional parallel spring driven by a laminated piezoelectric element is used for the ZX axis scanning mechanism 14 and an interferometer measuring mirror is provided. The parallel spring is made of aluminum and is manufactured by wire electric discharge machining. The cutouts on the arc serve as elastic hinges, and the four locations on one axis act as hinges, and the rectangle enclosed thereby is sheared to form a parallelogram. When the movement is small, the cosine error due to the subduction is small, so it can be regarded as almost linear movement. 1
Another shaft is manufactured inside the shaft.

【0026】図3に基準結晶格子をスケールに用いた試
料の表面に垂直な方向(段差方向)を含む測定の原理を
示す。17をZ軸方向に走査しながら、平行バネZX軸
用走査機構14をX軸方向に送ることによって17はグ
ラファイト16上をラスタースキャンすることになり、
16の格子像が得られる。同時に、ZX軸用走査機構1
4のX軸方向への送り動作によって19は12の表面を
なぞっていく。ここで、図3(b)のように12に段差C
が存在する場合、19はプローブ−試料間を一定に保つ
ようZ軸方向に制御され、19と一体の16もZ軸方向
に等しく動く。16がZ軸方向へ動いていくことよっ
て、17の走査領域は強制的にZ軸方向に歪められる。
この結果、図3(a)の格子像が得られる。
FIG. 3 shows the principle of measurement including a direction (step direction) perpendicular to the surface of a sample using a reference crystal lattice as a scale. By sending the parallel spring ZX-axis scanning mechanism 14 in the X-axis direction while scanning 17 in the Z-axis direction, the 17 scans the graphite 16 in a raster scan.
16 grid images are obtained. At the same time, the scanning mechanism for ZX axis 1
19 is traced on the surface of 12 by the feeding operation of 4 in the X-axis direction. Here, as shown in FIG.
Is present, 19 is controlled in the Z-axis direction to keep the probe-sample constant, and 16 integral with 19 also moves equally in the Z-axis direction. The scanning area of 17 is forcibly distorted in the Z-axis direction by the movement of 16 in the Z-axis direction.
As a result, the lattice image of FIG. 3 (a) is obtained.

【0027】図3(a)は、12の段差Cによる走査領域
の歪みを無視して、14に与えられたX軸方向の走査信
号を横幅に、18に加えられたZ軸方向の走査信号のみ
を縦幅に用い描画しているため、段差の影響が見かけ上
格子像の歪みとして現れる。14に加えられたZ軸方向
への形状トレース運動の制御信号を18に加えられたZ
軸方向の走査信号に加え、描画することで、図3(a)の
格子像を実際の走査領域の形状に近くなるように補正す
ることができる。その結果、図3(c)が得られる。
In FIG. 3 (a), the distortion of the scanning region due to the step C of 12 is ignored, and the scanning signal in the X-axis direction given to 14 is the width and the scanning signal in the Z-axis direction added to 18. Since only the vertical width is used for drawing, the effect of the step appears as distortion of the lattice image. The control signal of the shape trace motion in the Z-axis direction applied to 14 is applied to Z
By drawing in addition to the scanning signal in the axial direction, it is possible to correct the lattice image of FIG. 3A so as to be close to the shape of the actual scanning region. As a result, FIG. 3 (c) is obtained.

【0028】グラファイトの格子像が実際の基準結晶格
子の並びとほぼ等しくなり、試料12の段差による走査
領域の歪みが格子像の輪郭に現れる。すなわち、図3
(c)の格子像の下端および上端を表している各格子点の
座標をスケールに用いた基準結晶格子の座標と照合する
ことで、12の段差Cの形状を座標として知ることがで
きた。また、図3(c)の各格子点の位置関係をスケール
に用いた基準結晶格子の座標に変換して復元することで
試料の表面の形状を高精度、高分解能で再現することが
できた。
The lattice image of graphite becomes almost the same as the actual arrangement of the reference crystal lattices, and the distortion of the scanning region due to the step of the sample 12 appears on the contour of the lattice image. That is, FIG.
By comparing the coordinates of the respective lattice points representing the lower end and the upper end of the lattice image of (c) with the coordinates of the reference crystal lattice used as the scale, the shape of 12 steps C can be known as the coordinates. In addition, the surface shape of the sample could be reproduced with high accuracy and high resolution by converting the positional relationship of each lattice point in FIG. 3 (c) to the coordinates of the reference crystal lattice used for the scale and restoring. .

【0029】[0029]

【発明の効果】このように本発明により基準結晶格子を
スケールとして用い、試料の表面に垂直な方向を含む形
状の高精度で高分解能な測定が可能になった。
As described above, according to the present invention, by using the reference crystal lattice as a scale, it becomes possible to measure the shape including the direction perpendicular to the surface of the sample with high accuracy and high resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の概念図であり、校正用干渉計を組み込
んだ例である。
FIG. 1 is a conceptual diagram of the present invention, which is an example in which a calibration interferometer is incorporated.

【図2】本発明においてZX軸用走査機構に平行バネを
用い、かつ干渉計用測定鏡を備えた例である。
FIG. 2 is an example in which a parallel spring is used for a ZX axis scanning mechanism and an interferometer measuring mirror is provided in the present invention.

【図3】基準結晶格子をスケールに用いた試料の表面に
垂直な方向を含む測定の原理図。 (a)Z軸方向へ格子点の相対位置が歪んだ格子像。 (b)試料観察用プローブの動きの模式図。 (c)ZX軸用走査機構のZ軸方向への制御信号を用い
格子の歪みを補正した格子像。
FIG. 3 is a principle diagram of measurement including a direction perpendicular to the surface of a sample using a reference crystal lattice as a scale. (A) A lattice image in which the relative positions of lattice points are distorted in the Z-axis direction. (B) A schematic view of the movement of the sample observation probe. (C) A lattice image in which distortion of the lattice is corrected by using a control signal in the Z-axis direction of the ZX-axis scanning mechanism.

【図4】基準結晶格子を用いたXY平面の校正法の一例
を示す斜視図である。 (a)基準結晶格子を固定した面からの斜視図である。 (b)試料を固定した面からの斜視図である。
FIG. 4 is a perspective view showing an example of an XY plane calibration method using a reference crystal lattice. (A) It is a perspective view from the surface which fixed the reference crystal lattice. (B) It is a perspective view from the surface which fixed the sample.

【符号の説明】[Explanation of symbols]

11 試料用走査機構 12 試料 13 X軸干渉計測定鏡 14 ZX軸用走査機構 15 Z軸干渉計測定鏡 16 スケール用結晶 17 結晶観察用プローブ 18 走査機構 19 試料観察用プローブ 21 Z軸干渉計用偏光ビームスプリッタ 22 X軸干渉計用偏光ビームスプリッタ 23 Z軸光検出系 24 X軸光検出系 25 無偏光ビームスプリッタ 26 ビームベンダー 27 XY軸用走査機構 28 Z軸位置決め機構 11 Sample Scanning Mechanism 12 Sample 13 X-Axis Interferometer Measuring Mirror 14 Z X-Axis Scanning Mechanism 15 Z-Axis Interferometer Measuring Mirror 16 Scale Crystal 17 Crystal Observation Probe 18 Scanning Mechanism 19 Sample Observation Probe 21 Z-Axis Interferometer Polarization beam splitter 22 Polarization beam splitter for X-axis interferometer 23 Z-axis photodetection system 24 X-axis photodetection system 25 Non-polarization beam splitter 26 Beam bender 27 XY-axis scanning mechanism 28 Z-axis positioning mechanism

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】試料測定用プローブと試料表面とのいずれ
か一方を、試料表面の少なくとも一方向及び試料表面と
垂直な方向に走査機構により走査して試料の表面形状を
測定する方法において、前記試料表面が段差を有すると
き、走査機構の走査に応じて変位する基準結晶格子及び
試料表面と垂直な方向に走査することが可能な結晶格子
像観察用プローブを用いて2次元格子像を得、試料表面
と垂直な方向の走査機構の制御信号と前記2次元格子像
とを用いて試料表面の段差にならった帯状の格子像を
得、該帯状の格子像を基準座標として計算し座標を求め
ることにより試料表面の段差を測定することを特徴とす
る表面形状測定方法。
1. A method for measuring a surface shape of a sample by scanning one of a sample measuring probe and a sample surface in at least one direction of the sample surface and a direction perpendicular to the sample surface by a scanning mechanism. When the sample surface has a step, a two-dimensional lattice image is obtained using a reference crystal lattice that is displaced according to the scanning of the scanning mechanism and a crystal lattice image observation probe that can scan in a direction perpendicular to the sample surface, Using the control signal of the scanning mechanism in the direction perpendicular to the sample surface and the two-dimensional lattice image, a band-shaped lattice image that follows the steps on the sample surface is obtained, and the band-shaped lattice image is calculated as reference coordinates to obtain the coordinates. The surface shape measuring method is characterized by measuring the level difference on the sample surface.
【請求項2】試料測定用プローブと試料表面とのいずれ
か一方を、試料表面の少なくとも一方向及び試料表面と
垂直な方向に走査機構により走査して試料の表面形状を
測定する方法において、前記試料表面が段差を有すると
き、走査機構の走査に応じて変位し且つこれとは独立に
試料表面と垂直な方向に走査可能な結晶格子像観察用プ
ローブ及び基準結晶格子を用いて2次元格子像を得、試
料表面と垂直な方向の走査機構の制御信号と前記2次元
格子像とを用いて試料表面の段差にならった帯状の格子
像を得、該帯状の格子像を基準座標として計算し座標を
求めることにより試料表面の段差を測定することを特徴
とする表面形状測定方法。
2. A method for measuring a surface shape of a sample by scanning one of a sample measuring probe and a sample surface in at least one direction of the sample surface and a direction perpendicular to the sample surface by a scanning mechanism. When the sample surface has a step, a two-dimensional lattice image is obtained by using a crystal lattice image observing probe and a reference crystal lattice that can be displaced in response to scanning by the scanning mechanism and can be independently scanned in a direction perpendicular to the sample surface. Using the control signal of the scanning mechanism in the direction perpendicular to the sample surface and the two-dimensional lattice image to obtain a band-shaped lattice image that conforms to the steps on the sample surface, and the band-shaped lattice image is used as a reference coordinate for calculation. A surface shape measuring method characterized by measuring a step on the surface of a sample by obtaining coordinates.
【請求項3】試料測定用プローブと試料表面とのいずれ
か一方を、試料表面の少なくとも一方向及び試料表面と
垂直な方向に走査機構により走査して試料の表面形状を
測定する方法において、前記試料表面が段差を有すると
き、走査機構の走査に応じて変位し且つこれとは独立に
試料表面と垂直な方向に走査可能な基準結晶格子及び結
晶格子像観察用プローブを用いて2次元格子像を得、試
料表面と垂直な方向の走査機構の制御信号と前記2次元
格子像とを用いて試料表面の段差にならった帯状の格子
像を得、該帯状の格子像を基準座標として計算し座標を
求めることにより試料表面の段差を測定することを特徴
とする表面形状測定方法。
3. A method for measuring a surface shape of a sample by scanning one of a sample measuring probe and a sample surface in at least one direction of the sample surface and a direction perpendicular to the sample surface by a scanning mechanism. When the sample surface has a step, a two-dimensional lattice image is displaced using a reference crystal lattice and a crystal lattice image observing probe that can be displaced in response to scanning by the scanning mechanism and can be independently scanned in a direction perpendicular to the sample surface. Using the control signal of the scanning mechanism in the direction perpendicular to the sample surface and the two-dimensional lattice image to obtain a band-shaped lattice image that conforms to the steps on the sample surface, and the band-shaped lattice image is used as a reference coordinate for calculation. A surface shape measuring method characterized by measuring a step on the surface of a sample by obtaining coordinates.
【請求項4】試料測定用プローブと試料表面とのいずれ
か一方を、試料表面の少なくとも一方向及び試料表面と
垂直な方向に走査機構により走査して試料の表面形状を
測定する方法において、前記試料表面が段差を有すると
き、走査機構の走査に応じて変位する結晶格子像観察用
プローブ及び試料表面と垂直な方向に走査することが可
能な基準結晶格子を用いて2次元格子像を得、試料表面
と垂直な方向の走査機構の制御信号と前記2次元格子像
とを用いて試料表面の段差にならった帯状の格子像を
得、該帯状の格子像を基準座標として計算し座標を求め
ることにより試料表面の段差を測定することを特徴とす
る表面形状測定方法。
4. A method for measuring a surface shape of a sample by scanning one of a sample measuring probe and a sample surface in at least one direction of the sample surface and a direction perpendicular to the sample surface by a scanning mechanism. When the sample surface has a step, a two-dimensional lattice image is obtained using a crystal lattice image observing probe that is displaced according to the scanning of the scanning mechanism and a reference crystal lattice that can be scanned in a direction perpendicular to the sample surface, Using the control signal of the scanning mechanism in the direction perpendicular to the sample surface and the two-dimensional lattice image, a band-shaped lattice image that follows the steps on the sample surface is obtained, and the band-shaped lattice image is calculated as reference coordinates to obtain the coordinates. The surface shape measuring method is characterized by measuring the level difference on the sample surface.
【請求項5】試料測定用プローブと、試料表面の少なく
とも一方向及び試料表面と垂直な方向に走査可能であっ
て試料または試料測定用プローブが固定された走査機構
と、前記試料表面の走査方向と垂直かつ試料表面に平行
な方向の走査機構の側面に設けられた基準結晶格子と、
該基準結晶格子上を試料表面と垂直な方向に走査可能な
結晶格子像観察用プローブとからなる表面形状測定装
置。
5. A sample measuring probe, a scanning mechanism capable of scanning in at least one direction of the sample surface and a direction perpendicular to the sample surface, and a sample or sample measuring probe fixed thereto, and a scanning direction of the sample surface. A reference crystal lattice provided on the side surface of the scanning mechanism in a direction perpendicular to and parallel to the sample surface,
A surface shape measuring device comprising a crystal lattice image observing probe capable of scanning the reference crystal lattice in a direction perpendicular to the sample surface.
【請求項6】試料測定用プローブと、試料表面の少なく
とも一方向及び試料表面と垂直な方向に走査可能であっ
て試料または試料測定用プローブが固定された走査機構
と、前記試料表面の走査方向と垂直かつ試料表面に平行
な方向の走査機構の側面に設けられ試料表面と垂直な方
向に走査機構とは独立に走査可能な結晶格子像観察用プ
ローブと、該結晶格子像観察用プローブにより走査され
る基準結晶格子とからなる表面形状測定装置。
6. A sample measuring probe, a scanning mechanism capable of scanning in at least one direction of the sample surface and a direction perpendicular to the sample surface, and a sample or a sample measuring probe fixed thereto, and a scanning direction of the sample surface. And a crystal lattice image observation probe that is provided on the side surface of the scanning mechanism in a direction perpendicular to and parallel to the sample surface and that can scan in a direction perpendicular to the sample surface independently of the scanning mechanism, and that is scanned by the crystal lattice image observation probe. Topography measuring device comprising a reference crystal lattice as described above.
【請求項7】試料測定用プローブと、試料表面の少なく
とも一方向及び試料表面と垂直な方向に走査可能であっ
て試料または試料測定用プローブが固定された走査機構
と、前記試料表面の走査方向と垂直かつ試料表面に平行
な方向の走査機構の側面に設けられ試料表面と垂直な方
向に走査機構とは独立に走査可能な基準結晶格子と、該
基準結晶格子像を観察するための結晶格子像観察用プロ
ーブとからなる表面形状測定装置。
7. A sample measuring probe, a scanning mechanism capable of scanning in at least one direction of the sample surface and a direction perpendicular to the sample surface, and a sample or a sample measuring probe fixed thereto, and a scanning direction of the sample surface. A reference crystal lattice which is provided on the side surface of the scanning mechanism in a direction perpendicular to and parallel to the sample surface and which can be scanned independently of the scanning mechanism in a direction perpendicular to the sample surface, and a crystal lattice for observing the reference crystal lattice image A surface shape measuring device including an image observation probe.
【請求項8】試料測定用プローブと、試料表面の少なく
とも一方向及び試料表面と垂直な方向に走査可能であっ
て試料または試料測定用プローブが固定された走査機構
と、前記試料表面の走査方向と垂直かつ試料表面に平行
な方向の走査機構の側面に設けられた結晶格子像観察用
プローブと、該結晶格子像観察用プローブにより試料表
面と垂直な方向に走査可能な基準結晶格子とからなる表
面形状測定装置。
8. A sample measurement probe, a scanning mechanism capable of scanning in at least one direction of the sample surface and a direction perpendicular to the sample surface, and a sample or sample measurement probe fixed thereto, and a scanning direction of the sample surface. And a crystal lattice image observing probe provided on a side surface of the scanning mechanism in a direction perpendicular to and parallel to the sample surface, and a reference crystal lattice capable of scanning in a direction perpendicular to the sample surface by the crystal lattice image observing probe. Surface shape measuring device.
【請求項9】請求項5乃至8のいずれかに記載の表面形
状測定装置において、前記走査機構として平行バネを用
いることを特徴とする表面形状測定装置。
9. The surface profile measuring apparatus according to claim 5, wherein a parallel spring is used as the scanning mechanism.
【請求項10】請求項5乃至8のいずれかに記載の表面
形状測定装置において、光波干渉計による校正機能を有
することを特徴とする表面形状測定装置。
10. The surface profile measuring apparatus according to claim 5, which has a calibration function by an optical wave interferometer.
JP6255909A 1994-10-21 1994-10-21 Method and apparatus for surface shape measurement Pending JPH08122340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6255909A JPH08122340A (en) 1994-10-21 1994-10-21 Method and apparatus for surface shape measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6255909A JPH08122340A (en) 1994-10-21 1994-10-21 Method and apparatus for surface shape measurement

Publications (1)

Publication Number Publication Date
JPH08122340A true JPH08122340A (en) 1996-05-17

Family

ID=17285262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6255909A Pending JPH08122340A (en) 1994-10-21 1994-10-21 Method and apparatus for surface shape measurement

Country Status (1)

Country Link
JP (1) JPH08122340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029912A1 (en) * 2007-08-30 2009-03-05 Microstrain, Inc. Optical linear and rotation displacement sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029912A1 (en) * 2007-08-30 2009-03-05 Microstrain, Inc. Optical linear and rotation displacement sensor
US7952721B2 (en) 2007-08-30 2011-05-31 Microstrain, Inc. Optical linear and rotation displacement sensor

Similar Documents

Publication Publication Date Title
Gonda et al. Real-time, interferometrically measuring atomic force microscope for direct calibration of standards
US5298975A (en) Combined scanning force microscope and optical metrology tool
US7478552B2 (en) Optical detection alignment/tracking method and apparatus
Dai et al. Metrological large range scanning probe microscope
US7941286B2 (en) Variable density scanning
US8220066B2 (en) Vibration compensation in probe microscopy
US6000281A (en) Method and apparatus for measuring critical dimensions on a semiconductor surface
EP0674170B1 (en) Inter-atomic measurement techniques
Dai et al. A metrological large range atomic force microscope with improved performance
Fujii et al. Micropattern measurement with an atomic force microscope
US9366693B2 (en) Variable density scanning
Fu et al. Long‐range scanning for scanning tunneling microscopy
Gonda et al. Accurate topographic images using a measuring atomic force microscope
JPH08233836A (en) Scanning probe microscope, standard device for calibrating height direction thereof and calibration method
Franks Nanometric surface metrology at the National Physical Laboratory
JPH08122340A (en) Method and apparatus for surface shape measurement
Stemmer et al. Miniature-size scanning tunneling microscope with integrated 2-axes heterodyne interferometer and light microscope
WO2005098869A1 (en) Scanning probe microscope with integrated calibration
Fujii et al. Scanning tunneling microscope with three‐dimensional interferometer for surface roughness measurement
Fujii et al. Three-dimensional displacement measurement of a tube scanner for a scanning tunneling microscope by optical interferometer
JP2004191277A (en) Scanning probe microscope and its measurement method
JP3892184B2 (en) Scanning probe microscope
JPH08136552A (en) Interatomic force microscope and similar scanning probe microscope
Dai et al. Metrological AFMs and its application for versatile nano-dimensional metrology tasks
Fujii et al. Atomic force microscope for direct comparison measurement of step height and crystalline lattice spacing