JPH08122247A - Analyzer - Google Patents

Analyzer

Info

Publication number
JPH08122247A
JPH08122247A JP25785794A JP25785794A JPH08122247A JP H08122247 A JPH08122247 A JP H08122247A JP 25785794 A JP25785794 A JP 25785794A JP 25785794 A JP25785794 A JP 25785794A JP H08122247 A JPH08122247 A JP H08122247A
Authority
JP
Japan
Prior art keywords
light emitting
light
wave length
absorbance
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25785794A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
佐藤  一雄
Takashi Osanawa
尚 長縄
Akira Miyake
亮 三宅
Toshihiro Yamada
俊宏 山田
Takehide Sato
猛英 左藤
Isao Yamazaki
功夫 山崎
Hiroyasu Uchida
裕康 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25785794A priority Critical patent/JPH08122247A/en
Publication of JPH08122247A publication Critical patent/JPH08122247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To dispense with a spectral device and high voltage electric power supply of a tungsten halogen lamp, and downsize an analyzer by providing the laser element or an LED element as a light source, and measuring absorbance in plural wave length areas. CONSTITUTION: A fixed quantity of sample and reagent is injected into a cell 1 being a transparent vessel set on a rotary table, and absorbance of a mixed liquid in the cell 1 after predetermined time passes is measured. Light emitted from light emitting elements 16, 17 and 18 having plural different wave length areas is detected by a single light receiving element 19. The light emitting element having a different wave length can be realized by using a laser element or an LED element. The light emitting element having a desired wave length area is obtained by selecting an element material. For example, a GaAlAs type semiconductor laser and an LED of GaAsP or GaN are cited. The difference in absorbance by a wave length can be separated and detected by separating the quantity of light received by the light emitting element according to time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体試料の化学分析装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical analysis device for liquid samples.

【0002】本発明は、試料と試薬とを混合したものに
光を透過させ、その吸光度を測定することによって、試
料の分析を行う化学分析装置にかかり、特に、血液,尿
などの成分を分析する医用分析装置に関する。
The present invention relates to a chemical analyzer for analyzing a sample by allowing light to pass through a mixture of a sample and a reagent and measuring the absorbance thereof, and particularly to analyze components such as blood and urine. Medical analyzer.

【0003】[0003]

【従来の技術】従来、試料と試薬とを混合したものに光
を透過して、その吸光度から試料の成分分析を行う化学
分析装置では、ハロゲンランプなどを光源とする白色光
を試料と試薬の混合物に照射し、その透過光の波長成分
を分光して分析していた。
2. Description of the Related Art Conventionally, in a chemical analyzer that transmits light to a mixture of a sample and a reagent and analyzes the components of the sample from its absorbance, white light such as a halogen lamp is used as the light source for the sample and the reagent. The mixture was irradiated and the wavelength component of the transmitted light was spectrally analyzed.

【0004】[0004]

【発明が解決しようとする課題】上記の従来技術では透
過光を分光する光学系が大きく、装置の小型化が図れな
かった。本発明はこの問題を解決して、化学分析装置の
小型化を実現するものである。
In the above-mentioned prior art, the optical system for splitting the transmitted light is large and the device cannot be downsized. The present invention solves this problem and realizes downsizing of a chemical analyzer.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明では単色性の高いレーザ素子、あるいはL
ED素子を光源とし、その波長に対して感度を持つ受光
素子を備えること、また、複数の波長域に対して上記光
学系を形成すること、さらに、単一の受光素子で複数の
波長域の信号を時間的に分解して検出することにより、
上記の分光光学系を無くした。
To achieve the above object, the present invention provides a laser device having high monochromaticity, or L
An ED element is used as a light source, and a light receiving element having sensitivity to the wavelength is provided, and the above optical system is formed for a plurality of wavelength ranges. Furthermore, a single light receiving element is used for a plurality of wavelength ranges. By temporally resolving and detecting the signal,
The above spectroscopic optical system was eliminated.

【0006】[0006]

【作用】特定の波長の光に対して試料と試薬の混合物の
吸光度は、その波長に対応したレーザ素子、あるいはL
ED素子の光源とその波長に対して感度を持つ受光素子
の組合せによって直接得られる。この系を異なる波長に
対してそれぞれ配置することによって、従来の分光光学
系を排除することができる。さらに、多波長に対して感
度を持つ単一の受光素子はすべての波長に対する検出素
子として共用出来るので、光学系は一層簡素化する。
The absorbance of the mixture of the sample and the reagent with respect to the light of a specific wavelength is determined by the laser element or L
It is directly obtained by the combination of the light source of the ED element and the light receiving element sensitive to the wavelength. By disposing this system for different wavelengths, the conventional spectroscopic optical system can be eliminated. Furthermore, since a single light receiving element having sensitivity to multiple wavelengths can be shared as a detecting element for all wavelengths, the optical system is further simplified.

【0007】[0007]

【実施例】以下、本発明を実施例をもって、具体的に説
明する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0008】吸光度を測定する系として、本発明の分析
装置の光学系の第1の実施例を図1に示す。また、本発
明の分析装置の全体構成を図2に示す。これに対して従
来の分析装置の光学系を図3に示す。
FIG. 1 shows a first embodiment of the optical system of the analyzer of the present invention as a system for measuring absorbance. Further, FIG. 2 shows the overall configuration of the analyzer of the present invention. On the other hand, the optical system of the conventional analyzer is shown in FIG.

【0009】まず、図2の全体構成図によって分析装置
の機能を概説する。この装置は、回転テーブル2上にセ
ットされた、セルと呼ばれる透明容器1に一定量の試料
と試薬を注入し、あらかじめ決められた時間を経過した
セル中の混合液の吸光度を測定する。回転テーブルの軌
道3の上には、セルへ試料と試薬を注入するための試料
注入ステーション4および試薬注入ステーション5が、
また、吸光度測定のためのステーション6、さらに測定
の終了したセルの内容物を吸引廃棄し、セルの内部を洗
浄するための洗浄ステーション7が配置されている。回
転テーブル上の多数のセルには異なる検体が次々に注入
され、連続的に検査が行われる。
First, the function of the analyzer will be outlined with reference to the overall configuration diagram of FIG. This apparatus injects a fixed amount of a sample and a reagent into a transparent container 1 called a cell, which is set on a rotary table 2, and measures the absorbance of the mixed solution in the cell after a predetermined time has elapsed. On the orbit 3 of the rotary table, a sample injection station 4 and a reagent injection station 5 for injecting a sample and a reagent into the cell,
Further, a station 6 for measuring the absorbance and a cleaning station 7 for cleaning the inside of the cell by sucking and discarding the contents of the cell after the measurement are arranged. Different specimens are successively injected into a large number of cells on the rotary table, and the tests are continuously performed.

【0010】従来の分析装置における吸光度測定ステー
ションの光学系は、図3に示すように、ハロゲンランプ
8から出た白色光をレンズ9で絞り、試料と試薬の混合
物10を入れたセル1を透過させた後、分光器によって
波長成分を空間的に分解する。分光器の代表的なものは
回折格子11を使うものである。図3に示すように異な
る波長についてそれぞれ検出器12,13,14を設置
することによって、各波長ごとに吸光度の値を得て、試
料に含まれる化学成分を定量化する。以上に述べた従来
の光学系では、分光器および複数の検出器の間隔を一定
距離よりも離す必要が有るので体積が大きくなり、分析
装置の小型化が困難であった。また、ハロゲンランプを
駆動するための高圧電源15も分析装置を大きくする一
因であった。
As shown in FIG. 3, the optical system of the absorbance measuring station in the conventional analyzer uses the lens 9 to squeeze the white light emitted from the halogen lamp 8 and passes through the cell 1 containing the mixture 10 of the sample and the reagent. After that, the wavelength component is spatially decomposed by the spectroscope. A typical spectroscope uses a diffraction grating 11. As shown in FIG. 3, the detectors 12, 13 and 14 are installed for different wavelengths to obtain the absorbance value for each wavelength and quantify the chemical components contained in the sample. In the conventional optical system described above, the spectroscope and the plurality of detectors need to be spaced apart from each other by a distance larger than a certain distance, and thus the volume becomes large and it is difficult to downsize the analyzer. Further, the high-voltage power supply 15 for driving the halogen lamp was also a factor in making the analysis device large.

【0011】これに対し、図1に示す本発明の一実施例
では、複数の異なる波長域を持つ発光素子16,17,
18から発した光を、単一の受光素子19で検出する。
波長の違う発光素子はレーザ素子、あるいはLED素子
の使用によって実現出来る。所望の波長域の発光素子
は、素子の材料の選択によって得られる。例えば、Ga
AlAs系の半導体レーザでは、波長780nm,Ga
AsPのLEDでは650nm,GaNのLEDでは4
90nmの波長がそれぞれ得られる。波長による吸光度
の違いは、発光素子を時間的にずらせて発光させ、受光
素子が受ける光量を時間的に分離すれば、分離検出する
ことができる。図4に第1の実施例を適用したときの、
発光素子および受光素子の出力波形を時間軸を横軸にと
って示す。各発光素子が出す光の波長λ1,λ2,λ3
対する吸光度は、同図における受光素子の出力P1
2,P3 を標準試料(検出対象物質を含まない試料)
に対する出力P10,P20,P30でそれぞれ割った値によ
って定量化される。
On the other hand, in the embodiment of the present invention shown in FIG. 1, the light emitting elements 16, 17 having a plurality of different wavelength bands are provided.
The light emitted from 18 is detected by a single light receiving element 19.
Light emitting elements having different wavelengths can be realized by using a laser element or an LED element. A light emitting device having a desired wavelength range can be obtained by selecting a material for the device. For example, Ga
In the case of AlAs semiconductor laser, the wavelength is 780 nm, Ga
650 nm for AsP LEDs and 4 for GaN LEDs
A wavelength of 90 nm is obtained respectively. The difference in the absorbance depending on the wavelength can be detected separately by shifting the light emitting element with time to emit light and temporally separating the amount of light received by the light receiving element. When the first embodiment is applied to FIG. 4,
The output waveforms of the light emitting element and the light receiving element are shown with the time axis as the horizontal axis. The absorbance of the light emitted by each light emitting element with respect to the wavelengths λ 1 , λ 2 , and λ 3 is the output P 1 of the light receiving element in the figure,
P 2 and P 3 are standard samples (samples that do not contain substances to be detected)
Is quantified by the values divided by the outputs P 10 , P 20 , and P 30 , respectively.

【0012】本発明によれば、空間的に必要とされた多
波長に対する複数の検出系を、単一の測定系で時間的に
分解することが出来る。複数の波長に対する測定を時間
的に逐次行ったとしても、それぞれの測定に要する時間
はms以下であるから、多数の検体を搭載したセルが回
転テーブルによって機械的に移動する装置全体のシーク
エンスを遅滞させることはない。以上の結果、分析装置
を小型化することができる。
According to the present invention, a plurality of detection systems for spatially required multiple wavelengths can be temporally resolved by a single measurement system. Even if measurements are performed sequentially for multiple wavelengths, the time required for each measurement is less than ms, so the sequence of the entire device in which a cell equipped with a large number of specimens is mechanically moved by a rotary table is delayed. There is nothing to do. As a result, the analyzer can be downsized.

【0013】本発明の第2の実施例を図5に示す。ここ
では、複数の発光素子20〜24から出た光を同一の光
軸になるようにハーフミラー24〜27を配置したもの
である。この配置により、第1の実施例よりも多数の発
光素子を配置することが出来るから、例えば4種類以上
の多数の波長に関する測定が可能になる。
A second embodiment of the present invention is shown in FIG. Here, the half mirrors 24 to 27 are arranged so that the lights emitted from the plurality of light emitting elements 20 to 24 have the same optical axis. With this arrangement, it is possible to arrange a larger number of light emitting elements than in the first embodiment, so that it is possible to perform measurement for a large number of wavelengths of, for example, four or more types.

【0014】本発明の第3の実施例を図6に示す。ここ
では、複数の異なる波長を任意のタイミングで独立に発
光する多波長の発光素子30が使われている。この場合
には、発光素子30と受光素子19がそれぞれ1個で構
成される。この発光素子は異なる周波数域を持つ発光素
子を一基板上にマウントしたハイブリッド素子であって
も、また一チップ上に集積化した素子であってもよい。
単一素子でレーザの発振波長を変化できるものは、レー
ザ活性層を挟んで両側に圧電層を形成し、圧電層に歪を
加えることにより所望の波長を得る方式がある。このよ
うな機能を持つ素子を使えば、発光素子と受光素子をそ
れぞれ1個でシステムを構成出来る。
A third embodiment of the present invention is shown in FIG. Here, a multi-wavelength light emitting element 30 that emits a plurality of different wavelengths independently at arbitrary timing is used. In this case, each of the light emitting element 30 and the light receiving element 19 is configured by one. This light emitting element may be a hybrid element in which light emitting elements having different frequency ranges are mounted on one substrate, or may be an element integrated on one chip.
As a device capable of changing the oscillation wavelength of a laser with a single element, there is a system in which piezoelectric layers are formed on both sides of a laser active layer and a desired wavelength is obtained by applying strain to the piezoelectric layers. If an element having such a function is used, a system can be configured with one light emitting element and one light receiving element.

【0015】さらに、図6における発光素子前面のレン
ズ29もまた、発光素子のチップに集積化すれば、光学
系の一層の小型化が可能になる。レンズをチップに集積
化するには、チップの平面から法線方向に光を出射する
グレーティングレンズや、微小な球面レンズをチップ面
にマウントするハイブリッド方式が利用出来る。
Further, if the lens 29 on the front surface of the light emitting element in FIG. 6 is also integrated on the chip of the light emitting element, the optical system can be further downsized. To integrate the lens into the chip, a grating lens that emits light in the normal direction from the plane of the chip or a hybrid method in which a minute spherical lens is mounted on the chip surface can be used.

【0016】以上に本発明の実施例を述べたが、その本
質は白色光を試料に透過させてから分光する従来の方式
に代わって、あらかじめ異なる波長を持つ光源とその受
光素子からなる光学系を、それらの光軸が単一のセルを
透過するように配置すること、また、異なる波長の光を
時間軸上でシフトして発光することによって、分光器を
用いること無く分析装置を構成したことにある。
The embodiments of the present invention have been described above. The essence of the present invention is to replace the conventional method in which white light is transmitted through a sample and then spectrally separated, with an optical system comprising a light source having different wavelengths in advance and its light receiving element. By arranging them so that their optical axes pass through a single cell, and by shifting the light of different wavelengths on the time axis to emit light, an analyzer was constructed without using a spectroscope. Especially.

【0017】[0017]

【発明の効果】本発明によれば、以下の効果が得られ
る。
According to the present invention, the following effects can be obtained.

【0018】(1)分光装置が不用になる。(1) The spectroscopic device becomes unnecessary.

【0019】(2)ハロゲンランプの高圧電源が不用に
なる。
(2) The high-voltage power supply for the halogen lamp becomes unnecessary.

【0020】(3)(1)(2)の結果、分析装置の小
型化が可能になる。
(3) As a result of (1) and (2), the analyzer can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す光学系の断面図。FIG. 1 is a sectional view of an optical system showing a first embodiment of the present invention.

【図2】一般的な化学分析装置の構成を示す上面図。FIG. 2 is a top view showing the configuration of a general chemical analyzer.

【図3】従来技術の光学系の構成を示す説明図。FIG. 3 is an explanatory diagram showing a configuration of a conventional optical system.

【図4】本発明の第1の実施例における発光素子および
受光素子の出力波形の時間変化を示すグラフ。
FIG. 4 is a graph showing changes over time in output waveforms of the light emitting element and the light receiving element according to the first embodiment of the present invention.

【図5】本発明の第2の実施例を示す光学系の断面図。FIG. 5 is a sectional view of an optical system showing a second embodiment of the present invention.

【図6】本発明の第3の実施例を示す光学系の断面図。FIG. 6 is a sectional view of an optical system showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…セル、2…回転テーブル、3…回転軌道、4…試料
注入ステーション、5…試薬注入ステーション、6…吸
光度測定ステーション、9…レンズ、10…試料と試薬
の混合物、16,17,18…発光素子、19…受光素
子。
1 ... Cell, 2 ... Rotation table, 3 ... Rotation orbit, 4 ... Sample injection station, 5 ... Reagent injection station, 6 ... Absorbance measurement station, 9 ... Lens, 10 ... Mixture of sample and reagent, 16, 17, 18 ... Light emitting element, 19 ... Light receiving element.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 俊宏 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 左藤 猛英 茨城県勝田市大字市毛882番地 株式会社 日立製作所計測器事業部内 (72)発明者 山崎 功夫 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 内田 裕康 茨城県勝田市大字市毛882番地 株式会社 日立製作所計測器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiro Yamada 502 Jinritsucho, Tsuchiura-shi, Ibaraki Machinery Research Institute, Hiritsu Manufacturing Co., Ltd. Hitachi, Ltd., Measuring Instruments Division (72) Inventor, Isao Yamazaki, 502, Jinritsucho, Tsuchiura-shi, Ibaraki, Institute of Mechanical Engineering, Hitachi, Ltd. (72) Inventor, Hiroyasu Uchida, 882, Ichige, Katsuta, Ibaraki Inside the equipment division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料と試薬とを混合したものに光を透過さ
せ、その吸光度を測定することによって試料の分析を行
う分析装置において、光源としてレーザ素子あるいはL
ED素子を備えて、複数の波長域において吸光度を計測
することを特徴とする分析装置。
1. An analyzer for analyzing a sample by allowing light to pass through a mixture of a sample and a reagent and measuring the absorbance thereof, and a laser element or L as a light source.
An analyzer comprising an ED element and measuring absorbance in a plurality of wavelength ranges.
JP25785794A 1994-10-24 1994-10-24 Analyzer Pending JPH08122247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25785794A JPH08122247A (en) 1994-10-24 1994-10-24 Analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25785794A JPH08122247A (en) 1994-10-24 1994-10-24 Analyzer

Publications (1)

Publication Number Publication Date
JPH08122247A true JPH08122247A (en) 1996-05-17

Family

ID=17312139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25785794A Pending JPH08122247A (en) 1994-10-24 1994-10-24 Analyzer

Country Status (1)

Country Link
JP (1) JPH08122247A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000822A1 (en) * 1998-06-29 2000-01-06 The Procter & Gamble Company Device having fecal component sensor
US6342037B1 (en) 1998-06-29 2002-01-29 The Procter & Gamble Company Device having fecal component sensor
JP2005331422A (en) * 2004-05-21 2005-12-02 Hitachi High-Technologies Corp Sample analyzer
JP2006215013A (en) * 2005-01-07 2006-08-17 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative absorbance and its measurement method
JP2007271437A (en) * 2006-03-31 2007-10-18 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative light absorbance and their measurement methods
EP1882928A1 (en) * 2006-07-26 2008-01-30 FOSS Analytical AB Device, system and method for photometric measurements
WO2008139954A1 (en) * 2007-05-09 2008-11-20 Olympus Corporation Photometric device and automatic analyzer
JP2009014602A (en) * 2007-07-06 2009-01-22 Toshiba Corp Automatic analysis apparatus
JP2010048834A (en) * 2009-12-04 2010-03-04 Hitachi High-Technologies Corp Sample analyzing apparatus
JP2011174921A (en) * 2005-01-07 2011-09-08 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative absorbance, and measuring methods thereof
WO2011156835A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Test module incorporating spectrometer
CN103063588A (en) * 2011-10-20 2013-04-24 建兴电子科技股份有限公司 Optical detection device and optical measurement system
JP2017020903A (en) * 2015-07-10 2017-01-26 協和メデックス株式会社 Detection device and analysis device
JP2019078600A (en) * 2017-10-23 2019-05-23 アークレイ株式会社 Measurement system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000822A1 (en) * 1998-06-29 2000-01-06 The Procter & Gamble Company Device having fecal component sensor
US6342037B1 (en) 1998-06-29 2002-01-29 The Procter & Gamble Company Device having fecal component sensor
JP2005331422A (en) * 2004-05-21 2005-12-02 Hitachi High-Technologies Corp Sample analyzer
US7342662B2 (en) 2004-05-21 2008-03-11 Hitachi High-Technologies Corporation Sample analyzer
JP4491277B2 (en) * 2004-05-21 2010-06-30 株式会社日立ハイテクノロジーズ Sample analyzer
JP2006215013A (en) * 2005-01-07 2006-08-17 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative absorbance and its measurement method
JP2011174921A (en) * 2005-01-07 2011-09-08 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative absorbance, and measuring methods thereof
JP2007271437A (en) * 2006-03-31 2007-10-18 Shibata Kagaku Kk Device for measuring transmitted light amount and device for measuring relative light absorbance and their measurement methods
EP1882928A1 (en) * 2006-07-26 2008-01-30 FOSS Analytical AB Device, system and method for photometric measurements
WO2008012145A1 (en) * 2006-07-26 2008-01-31 Foss Analytical Ab System and method for colorimetric titration measurements
EP2154513A1 (en) * 2007-05-09 2010-02-17 Beckman Coulter, Inc. Photometric device and automatic analyzer
WO2008139954A1 (en) * 2007-05-09 2008-11-20 Olympus Corporation Photometric device and automatic analyzer
US8064062B2 (en) 2007-05-09 2011-11-22 Beckman Coulter, Inc. Photometric apparatus and automatic analyzer
EP2154513A4 (en) * 2007-05-09 2011-11-23 Beckman Coulter Inc Photometric device and automatic analyzer
JP2009014602A (en) * 2007-07-06 2009-01-22 Toshiba Corp Automatic analysis apparatus
JP2010048834A (en) * 2009-12-04 2010-03-04 Hitachi High-Technologies Corp Sample analyzing apparatus
JP4742166B2 (en) * 2009-12-04 2011-08-10 株式会社日立ハイテクノロジーズ Sample analyzer
WO2011156835A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Test module incorporating spectrometer
CN103063588A (en) * 2011-10-20 2013-04-24 建兴电子科技股份有限公司 Optical detection device and optical measurement system
JP2017020903A (en) * 2015-07-10 2017-01-26 協和メデックス株式会社 Detection device and analysis device
JP2019078600A (en) * 2017-10-23 2019-05-23 アークレイ株式会社 Measurement system

Similar Documents

Publication Publication Date Title
US11320361B2 (en) Scanning infrared measurement system
JPH08122247A (en) Analyzer
EP2831565B1 (en) Optical analyzer for identification of materials using reflectance spectroscopy
US4427889A (en) Method and apparatus for molecular spectroscopy, particularly for the determination of products of metabolism
JP3343156B2 (en) Optical component concentration measuring apparatus and method
US7713751B2 (en) Method of optical detection of binding of a material component to a sensor substance due to a biological, chemical or physical interaction and apparatus for its embodiment (variants)
EP3527969A2 (en) Optical analyzer for identification of materials using transmission spectroscopy
EP0255302B1 (en) Improvements relating to spectrometers
EP0764844A2 (en) Method and apparatus for analysis by light scattering
US5422719A (en) Multi-wave-length spectrofluorometer
RU2223479C2 (en) Method and device for analysis of isotope-carrying molecules by absorption spectrum
JPH04504904A (en) Analysis equipment
JP2005331422A (en) Sample analyzer
CN115201108A (en) Optical detection system and optical detection method
EP2825858A1 (en) Rapid spectroscopic measure of polarimetric parameters
US4971447A (en) Method for measuring concentration of chemical substances
CN218298021U (en) F-P cavity infrared gas detector
Baunsgaard et al. Evaluation of the quality of solid sugar samples by fluorescence spectroscopy and chemometrics
JPH0337552A (en) Method and apparatus for multiple-inner-reflection type component analysis
US20230296438A1 (en) Absorbance spectroscopy analyzer and method of use
US11085865B2 (en) On-chip absorption sensor for determining a concentration of a specimen in a sample
JPS63313036A (en) Transitional absorption spectral method
RO136000A2 (en) Hptlc densitometry system for analysis of non-irradiated and irradiated thioridazine solutions, based on laser-induced fluorescence characterization on fluorescence lifetime
JPS62273435A (en) Spectroscopic absorption analyzer
CN112004604A (en) Optical measuring unit and optical measuring method for obtaining a measuring signal of a fluid medium