JPH08121887A - Refrigerating machine using non-azeotrope refrigerant - Google Patents

Refrigerating machine using non-azeotrope refrigerant

Info

Publication number
JPH08121887A
JPH08121887A JP25712294A JP25712294A JPH08121887A JP H08121887 A JPH08121887 A JP H08121887A JP 25712294 A JP25712294 A JP 25712294A JP 25712294 A JP25712294 A JP 25712294A JP H08121887 A JPH08121887 A JP H08121887A
Authority
JP
Japan
Prior art keywords
refrigerant
low
large amount
boiling point
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25712294A
Other languages
Japanese (ja)
Other versions
JP3368692B2 (en
Inventor
Kiyoshi Masuda
潔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP25712294A priority Critical patent/JP3368692B2/en
Publication of JPH08121887A publication Critical patent/JPH08121887A/en
Application granted granted Critical
Publication of JP3368692B2 publication Critical patent/JP3368692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To increase the controlling width of capacity control by expediting the storages of a low boiling point refrigerant and a high boiling point refrigerant in a tank even if the capacity of the tank and the refrigerant charge amount in a system are not increased more than required, improving the followability of the capacity control, and increasing the refrigerant quantity capable of holding in the tank in the case of capacity control by altering the circulation composition of the high and low boiling point refrigerants. CONSTITUTION: A tank 6 is cooked by a refrigerant of the lowest temperature before passing an evaporator of the output side refrigerant of a pressure reducing mechanism 3, liquefication of a low boiling point component is expedited, the tank 6 is cooled by the refrigerant of the lowest temperature to reduce the internal pressure, and the more low boiling point component is held in the tank 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高沸点冷媒にR22
を、低沸点冷媒にR13B1を用いた混合冷媒や、高沸
点冷媒にHFC134aを、低沸点冷媒にHFC32を
用いた混合冷媒、あるいは、高沸点冷媒にHFC134
aを、低沸点冷媒にHFC32/125を用いた混合冷
媒等の互いに非共沸な混合冷媒を用いた冷凍装置に関す
る。
This invention relates to a high boiling point refrigerant R22.
, A mixed refrigerant using R13B1 as a low boiling point refrigerant, HFC134a as a high boiling point refrigerant, a mixed refrigerant using HFC32 as a low boiling point refrigerant, or HFC134 as a high boiling point refrigerant.
a relates to a refrigerating apparatus that uses non-azeotropic mixed refrigerants such as a mixed refrigerant that uses HFC32 / 125 as a low boiling point refrigerant.

【0002】[0002]

【従来の技術】従来、この種の非共沸混合冷媒を用いた
冷凍装置は、冷凍サイクルの系内に循環させる高沸点冷
媒と低沸点冷媒との組成比を変えることにより、能力制
御が可能であり、圧縮機アンローダ機構等による能力制
御に比べて、負荷率の減少による成績効率(COP)の
低下が少ない等の利点を有する。
2. Description of the Related Art Conventionally, a refrigerating apparatus using this kind of non-azeotropic mixed refrigerant can control its capacity by changing the composition ratio of a high boiling point refrigerant and a low boiling point refrigerant which are circulated in the refrigeration cycle system. Therefore, compared to the capacity control by the compressor unloader mechanism or the like, there is an advantage that the performance efficiency (COP) is less likely to decrease due to the decrease in load factor.

【0003】このような冷凍装置として、特開昭60−
142162号公報に開示されたものがある。このもの
は、図10に示すように、圧縮機P、凝縮器C、第1,
第2減圧機構V1,V2、及び蒸発器Eを順次接続して
成る冷凍サイクルの系内に、高沸点冷媒と低沸点冷媒と
の混合冷媒を封入し、第1,第2減圧機構V1,V2の
間の中間圧力域に、高沸点冷媒を多く含む凝縮液と低沸
点冷媒を多く含む不凝縮ガスとを分離させる気液分離器
Aを介装すると共に、蒸発器Eの出口部に、該蒸発器E
の出口側冷媒と熱交換させるタンク部Bを設け、気液分
離器Aの上部ガス域とタンク部Bとを、第1開閉機構G
1をもつ第1連通路J1を介して接続し、且つ、タンク
部Bと吸入管Lとを、第2開閉機構G2をもつ第2連通
路J2を介して接続している。
An example of such a refrigerating device is Japanese Patent Laid-Open No. 60-
There is one disclosed in Japanese Patent No. 142162. This is, as shown in FIG. 10, a compressor P, a condenser C, a first
A mixed refrigerant of a high-boiling-point refrigerant and a low-boiling-point refrigerant is enclosed in a refrigeration cycle system in which the second depressurizing mechanisms V1 and V2 and the evaporator E are sequentially connected, and the first and second depressurizing mechanisms V1 and V2 are included. A gas-liquid separator A for separating a condensate containing a large amount of high-boiling-point refrigerant and a non-condensable gas containing a large amount of low-boiling-point refrigerant is interposed in the intermediate pressure region between the two, and at the outlet of the evaporator E, Evaporator E
The tank part B for exchanging heat with the refrigerant on the outlet side is provided, and the upper gas region of the gas-liquid separator A and the tank part B are connected to the first opening / closing mechanism G.
1, and the tank B and the suction pipe L are connected via a second communication passage J2 having a second opening / closing mechanism G2.

【0004】こうして、第1開閉機構G1を開けると共
に第2開閉機構G2を閉じることにより、低沸点冷媒を
多く含む冷媒をタンクB内で液化して貯蔵し、高沸点冷
媒を多く含む冷媒を循環させて、低能力運転を行うよう
にしている。又、第1開閉機構G1を閉じると共に第2
開閉機構G2を開けることにより、タンク部B内の低沸
点冷媒を系内に放出し、低沸点冷媒と高沸点冷媒とが所
定の組成比で混合している状態の冷媒を循環させて、高
能力運転を行うようにしている。
Thus, by opening the first opening / closing mechanism G1 and closing the second opening / closing mechanism G2, the refrigerant containing a large amount of low boiling point refrigerant is liquefied and stored in the tank B, and the refrigerant containing a large amount of high boiling point refrigerant is circulated. I am trying to do low capacity driving. In addition, the first opening / closing mechanism G1 is closed and the second
By opening the opening / closing mechanism G2, the low boiling point refrigerant in the tank portion B is released into the system, and the refrigerant in a state in which the low boiling point refrigerant and the high boiling point refrigerant are mixed at a predetermined composition ratio is circulated to increase the temperature. I am trying to drive.

【0005】[0005]

【発明が解決しようとする課題】しかし、非共沸混合冷
媒は、図11のモリエル線図で示すように、等温線が横
軸に平行でなく、蒸発器Eの入口部bが最も低温で、蒸
発が進み、乾き度が大きくなるにしたがって温度が高く
なるから、蒸発器Eの出口部b’の冷媒は、最低温から
昇温した温度となっており、タンク部B内での低沸点冷
媒の液化が遅く、能力制御に時間遅れが生じると共に、
タンク部Bでの保有圧力が比較的高くなり、気液分離器
Aからタンク部Bに回収し得る冷媒量が少なくなる問題
がある。又、これらを回避するには、タンク部Bの容量
を大きくしたり、冷凍サイクル内の冷媒充填量を多くす
る等の必要が生じる問題がある。
However, in the non-azeotropic mixed refrigerant, the isotherms are not parallel to the horizontal axis as shown in the Mollier diagram of FIG. 11, and the inlet b of the evaporator E has the lowest temperature. The temperature of the refrigerant at the outlet b'of the evaporator E increases from the minimum temperature because the temperature increases as the degree of dryness increases as the evaporation progresses, and the low boiling point in the tank B is reached. Liquefaction of the refrigerant is slow and a time delay occurs in capacity control.
There is a problem that the holding pressure in the tank part B becomes relatively high and the amount of refrigerant that can be recovered from the gas-liquid separator A to the tank part B becomes small. Further, in order to avoid these, there is a problem that it is necessary to increase the capacity of the tank B or increase the amount of refrigerant charged in the refrigeration cycle.

【0006】本発明の主目的は、タンク容量や冷媒充填
量を必要以上に大にしなくとも、タンク内での低沸点冷
媒の液化を促進でき、能力制御の追従性を良くすること
ができると共に、タンクで保有し得る冷媒量を多くで
き、能力制御の制御幅を拡大できる非共沸混合冷媒を用
いた冷凍装置を提供する点にある。
The main object of the present invention is to promote the liquefaction of the low boiling point refrigerant in the tank without increasing the tank capacity and the refrigerant filling amount more than necessary, and to improve the followability of capacity control. The point is to provide a refrigerating apparatus using a non-azeotropic mixed refrigerant that can increase the amount of refrigerant that can be held in a tank and can expand the control range of capacity control.

【0007】[0007]

【課題を解決するための手段】そこで、上記主目的を達
成するために、請求項1記載の発明は、図1に示すよう
に、圧縮、凝縮、減圧及び蒸発を繰り返す冷凍サイクル
の系内に、高沸点冷媒と低沸点冷媒との混合冷媒を封入
した非共沸混合冷媒を用いた冷凍装置において、高沸点
冷媒を多く含む凝縮液と低沸点冷媒を多く含む不凝縮ガ
スとを分離させる分離部5と、高沸点冷媒を多く含む凝
縮液を減圧した後の低温冷媒と熱交換させるタンク部6
とを設け、分離部5の上部ガス域とタンク部6とを、第
1開閉機構71をもつ第1連通路81を介して接続する
と共に、タンク部6と冷凍サイクルにおける低圧部と
を、第2開閉機構72をもつ第2連通路82を介して接
続した。
In order to achieve the above-mentioned main object, the invention according to claim 1 provides a refrigerating cycle system in which compression, condensation, decompression and evaporation are repeated as shown in FIG. In a refrigerating apparatus using a non-azeotropic mixed refrigerant in which a mixed refrigerant of a high-boiling-point refrigerant and a low-boiling-point refrigerant is enclosed, a separation liquid that separates a condensate containing a large amount of a high-boiling-point refrigerant and a non-condensing gas containing a large amount of a low-boiling-point refrigerant Part 5 and tank part 6 for exchanging heat with the low temperature refrigerant after decompressing the condensate containing a large amount of high boiling point refrigerant
And the upper gas region of the separation unit 5 and the tank unit 6 are connected via a first communication passage 81 having a first opening / closing mechanism 71, and the tank unit 6 and the low-pressure unit in the refrigeration cycle are connected to each other. The connection was made via a second communication passage 82 having two opening / closing mechanisms 72.

【0008】請求項2記載の発明は、請求項1記載の発
明において、低沸点冷媒の保有のみならず、高沸点冷媒
の保有をも可能にし、幅広い組成比の変更により能力制
御の制御幅を更に拡大するため、図3に示すように、高
沸点冷媒を多く含む不蒸発液と低沸点冷媒を多く含む蒸
発ガスとを分離して、高沸点冷媒を多く含む不蒸発液を
貯留する所定容量の低圧タンク90を設け、この低圧タ
ンク90の下部と圧縮機の吸入部とを、第3開閉機構7
3をもつ第3連通路83を介して接続した。
According to a second aspect of the present invention, in the first aspect of the invention, not only the low boiling point refrigerant can be held but also the high boiling point refrigerant can be held, and the control range of the capacity control can be increased by changing a wide composition ratio. For further expansion, as shown in FIG. 3, the non-evaporated liquid containing a large amount of the high-boiling-point refrigerant and the evaporative gas containing a large amount of the low-boiling-point refrigerant are separated from each other to have a predetermined capacity for storing the non-evaporated liquid containing a large amount of the high-boiling point refrigerant. The low-pressure tank 90 is provided, and the lower portion of the low-pressure tank 90 and the suction portion of the compressor are connected to the third opening / closing mechanism 7
They are connected via a third communication passage 83 having a number 3.

【0009】請求項3記載の発明は、請求項1記載の発
明において、一つのタンク部6を兼用して、低沸点冷媒
の他に、これに代わって高沸点冷媒をも保有できるよう
にし、幅広い組成比の変更を可能にして能力制御の制御
幅を更に拡大するため、図5又は図6〜図9に示すよう
に、高沸点冷媒を多く含む不蒸発液と低沸点冷媒を多く
含む蒸発ガスとを分離させる低圧分離部9を設け、この
低圧分離部9の下部とタンク部6とを、低圧分離部9か
らタンク部6への流れのみを許容する逆止機構70と第
3開閉機構73とをもつ第3連通路83を介して接続す
ると共に、タンク部6の上部ガス域と冷凍サイクルにお
ける低圧部とを、第4開閉機構74をもつ均圧用の第4
連通路84を介して接続した。
According to a third aspect of the present invention, in the first aspect of the invention, one tank portion 6 is also used so that, in addition to the low boiling point refrigerant, a high boiling point refrigerant can be held in place of the low boiling point refrigerant. In order to make it possible to change a wide range of composition ratios and further expand the control range of capacity control, as shown in FIG. 5 or FIG. 6 to FIG. A low-pressure separator 9 for separating gas from the low-pressure separator 9 is provided, and the lower portion of the low-pressure separator 9 and the tank 6 are allowed to flow only from the low-pressure separator 9 to the tank 6. And a low pressure part in the refrigerating cycle are connected to each other through a third communication passage 83 having a fourth opening / closing mechanism 74.
Connection was made via a communication passage 84.

【0010】請求項4記載の発明は、請求項1又は請求
項2若しくは請求項3記載の発明において、高沸点冷媒
と低沸点冷媒とを良好に分離させるため、図1又は図3
若しくは図5又は図7に示すように、高沸点冷媒を多く
含む凝縮液と低沸点冷媒を多く含む不凝縮ガスとを分離
させる分離部5が、凝縮器となる熱交換器の下流に介装
する気液分離器51である構成とした。
The invention according to claim 4 is the same as the invention according to claim 1 or claim 2 or claim 3, wherein the high boiling point refrigerant and the low boiling point refrigerant are well separated.
Alternatively, as shown in FIG. 5 or FIG. 7, a separation unit 5 for separating a condensate containing a large amount of high-boiling-point refrigerant and a non-condensable gas containing a large amount of low-boiling-point refrigerant is installed downstream of the heat exchanger serving as a condenser. It is a gas-liquid separator 51 that does.

【0011】請求項5記載の発明は、請求項1又は請求
項2若しくは請求項3記載の発明において、凝縮器を利
用して高沸点冷媒と低沸点冷媒とを効率良く分離させる
ため、図6に示すように、凝縮器となる熱交換器が、冷
媒を開放するシェルSaと、これに内装する冷却水配管
Taとをもった管外凝縮式のものであり、高沸点冷媒を
多く含む凝縮液と低沸点冷媒を多く含む不凝縮ガスとを
分離させる分離部5が、管外凝縮器のシェルSaである
構成とした。
According to a fifth aspect of the present invention, in the first, second or third aspect of the present invention, a high boiling point refrigerant and a low boiling point refrigerant are efficiently separated by using a condenser. As shown in FIG. 3, the heat exchanger that is a condenser is an external condensation type having a shell Sa that releases the refrigerant and a cooling water pipe Ta that is installed therein, and is a condenser that contains a large amount of high-boiling-point refrigerant. The separation unit 5 for separating the liquid and the non-condensable gas containing a large amount of the low boiling point refrigerant is the shell Sa of the external condenser.

【0012】請求項6記載の発明は、請求項1又は請求
項2若しくは請求項3記載の発明において、請求項5と
同じく、凝縮器を利用して高沸点冷媒と低沸点冷媒とを
効率良く分離させるため、図8に示すように、凝縮器と
なる熱交換器が、温水を生成するシェルSb、これに内
装する冷媒配管Tb、及び冷媒出入れ用のヘッダーH
1,H2をもった管内凝縮式のものであり、高沸点冷媒
を多く含む凝縮液と低沸点冷媒を多く含む不凝縮ガスと
を分離させる分離部5が、凝縮冷媒の取出側のヘッダー
H2である構成にした。
The invention according to claim 6 is the same as claim 5 in the invention according to claim 1 or claim 2 or claim 3, in which a high boiling point refrigerant and a low boiling point refrigerant are efficiently used by utilizing a condenser. For separation, as shown in FIG. 8, a heat exchanger serving as a condenser includes a shell Sb for generating hot water, a refrigerant pipe Tb provided in the shell Sb, and a refrigerant inlet / outlet header H.
1, H2 is an in-tube condensing type, and a separation unit 5 for separating a condensate containing a large amount of high-boiling-point refrigerant and a non-condensable gas containing a large amount of low-boiling-point refrigerant is a header H2 on the condensing refrigerant outlet side. It has a certain structure.

【0013】請求項7記載の発明は、高沸点冷媒の保有
をも可能にした請求項3記載の発明において、蒸発器を
利用して高沸点冷媒と低沸点冷媒とを効率良く分離させ
るため、同じく図8に示すように、蒸発器となる熱交換
器が、冷水を生成するシェルSb、これに内装する冷媒
配管Tb、及び冷媒出入れ用のヘッダーH1,H2をも
った管内蒸発式のものであり、高沸点冷媒を多く含む不
蒸発液と低沸点冷媒を多く含む蒸発ガスとを分離させる
低圧分離部9が、蒸発冷媒の取出側のヘッダーH1であ
る構成にした。
According to the invention of claim 7, in which the high boiling point refrigerant can be held, in order to efficiently separate the high boiling point refrigerant and the low boiling point refrigerant by using the evaporator, Similarly, as shown in FIG. 8, a heat exchanger serving as an evaporator is of a pipe evaporation type having a shell Sb for generating cold water, a refrigerant pipe Tb installed therein, and headers H1 and H2 for taking in and out the refrigerant. In addition, the low-pressure separation section 9 for separating the non-evaporated liquid containing a large amount of high-boiling-point refrigerant and the evaporative gas containing a large amount of low-boiling-point refrigerant is the header H1 on the evaporative refrigerant extraction side.

【0014】請求項8記載の発明は、請求項1から請求
項7何れか一記載の発明において、ビル空調等の比較的
大規模なセパレート空気熱源ヒートポンプシステムなど
で、主冷媒回路の減圧機構3の出口部に液ヘッドに相当
する圧力増加がある場合にも、タンク部6を十分に冷却
できるようにするため、図9に示すように、タンク部6
は、主冷媒回路の減圧機構3と別に設ける減圧手段30
で減圧させた低温冷媒と熱交換するものである構成にし
た。
The invention according to claim 8 is the invention according to any one of claims 1 to 7, which is a relatively large-scale separate air heat source heat pump system for building air-conditioning, etc. In order to allow the tank portion 6 to be sufficiently cooled even when there is a pressure increase corresponding to the liquid head at the outlet portion of the tank portion 6, as shown in FIG.
Is a pressure reducing means 30 provided separately from the pressure reducing mechanism 3 of the main refrigerant circuit.
The heat exchanger exchanges heat with the low-temperature refrigerant whose pressure is reduced by.

【0015】[0015]

【作用】請求項1記載の発明では、図1に示すように、
低能力運転をする場合、第1開閉機構71を開けると共
に、第2開閉機構72を閉じる。これにより、分離部5
で、高沸点冷媒を多く含む凝縮液a’から分離された低
沸点冷媒を多く含む不凝縮ガスcは、第1連通路81を
経てタンク部6に流入し、該タンク部6で、高沸点冷媒
を多く含む凝縮液を減圧した後の低温冷媒bにより冷さ
れてタンク部6の内部に液化貯蔵される。こうして、高
沸点冷媒を多く含む冷媒が冷凍サイクルに循環し、低能
力運転が行える。
In the invention described in claim 1, as shown in FIG.
When performing low capacity operation, the first opening / closing mechanism 71 is opened and the second opening / closing mechanism 72 is closed. Thereby, the separating unit 5
Then, the non-condensed gas c containing a large amount of the low boiling point refrigerant separated from the condensate a ′ containing a large amount of the high boiling point refrigerant flows into the tank portion 6 through the first communication passage 81, and in the tank portion 6, the high boiling point The condensed liquid containing a large amount of refrigerant is cooled by the low temperature refrigerant b after being decompressed, and is liquefied and stored inside the tank unit 6. In this way, the refrigerant containing a large amount of the high boiling point refrigerant circulates in the refrigeration cycle, and low capacity operation can be performed.

【0016】一方、高能力運転をする場合、第1開閉機
構71を閉じると共に、第2開閉機構72を開けるので
あり、タンク部6に貯留する低沸点成分が第2連通路8
2を経て冷凍サイクルの系内に放出され、低沸点冷媒と
高沸点冷媒とが所定の組成比で混合した状態の冷媒が循
環し、高能力運転が行える。
On the other hand, when performing high-capacity operation, the first opening / closing mechanism 71 is closed and the second opening / closing mechanism 72 is opened, so that the low boiling point component stored in the tank portion 6 is the second communication passage 8
After being discharged into the system of the refrigeration cycle via 2, the refrigerant in a state where the low boiling point refrigerant and the high boiling point refrigerant are mixed at a predetermined composition ratio circulates, and high capacity operation can be performed.

【0017】タンク部6に低沸点成分を保有させる低能
力運転時は、図2に示すように、該タンク部6におい
て、高沸点冷媒を多く含む凝縮液を減圧した後の低温冷
媒b、すなわち蒸発器を通過する前の最低温の冷媒bに
より、低沸点冷媒を多く含む冷媒が冷やされるため、タ
ンク部6での低沸点成分の液化が促進できる。
During low capacity operation in which the tank portion 6 holds a low boiling point component, as shown in FIG. 2, the low temperature refrigerant b after depressurizing the condensate containing a large amount of the high boiling point refrigerant in the tank portion 6, that is, Since the refrigerant b containing the low boiling point refrigerant is cooled by the lowest temperature refrigerant b before passing through the evaporator, the liquefaction of the low boiling point component in the tank portion 6 can be promoted.

【0018】しかも、このように最低温の冷媒により冷
すため、タンク部6における低沸点成分の凝縮液飽和圧
力eを低くでき、タンク部6で保有できる低沸点冷媒を
多くできる。すなわち、分離部5からタンク部6への低
沸点冷媒の回収が進行していくと、冷凍サイクルの循環
冷媒の組成が高沸点成分側にシフトし、凝縮温度が一定
と考えると、分離部5の凝縮圧力が低下していく(図2
において、a’がa''に圧力低下する)。従来の蒸発器
出口冷媒b’で冷す場合には、タンク部での飽和圧力d
が比較的高く、分離部の圧力a''がこの飽和圧力dと同
等になると、分離部からタンク部への流出が止まってし
まうが、この発明では、タンク部6の飽和圧力eが低い
ため、より多くの低沸点成分をタンク部6に流すことが
でき、タンク部6で保有できる低沸点成分をより多くす
ることができるのである。
Moreover, since the refrigerant is cooled with the lowest temperature in this way, the condensate saturation pressure e of the low boiling point component in the tank portion 6 can be lowered, and the low boiling point refrigerant that can be held in the tank portion 6 can be increased. That is, as the recovery of the low-boiling-point refrigerant from the separation section 5 to the tank section 6 progresses, the composition of the circulating refrigerant in the refrigeration cycle shifts to the high-boiling-point component side, and the condensing temperature is considered to be constant. The condensation pressure of is decreasing (Fig. 2
At, a ′ drops in pressure to a ″). When cooling with the conventional evaporator outlet refrigerant b ', the saturation pressure d in the tank part
Is relatively high and the pressure a ″ in the separation section becomes equal to this saturation pressure d, the outflow from the separation section to the tank section stops, but in this invention, the saturation pressure e in the tank section 6 is low. As a result, a larger amount of the low boiling point component can be flown into the tank portion 6, and the amount of the low boiling point component that can be held in the tank portion 6 can be increased.

【0019】こうして、タンク部6の容量や冷凍サイク
ルの系内に封入する冷媒充填量を必要以上に大にしなく
とも、タンク部6での低沸点冷媒の液化を促進でき、能
力制御の追従性を良くすることができると共に、タンク
部6で保有し得る冷媒量を多くでき、能力制御の制御幅
を拡大できるのである。
In this way, the liquefaction of the low boiling point refrigerant in the tank portion 6 can be promoted without increasing the capacity of the tank portion 6 or the amount of refrigerant filled in the refrigeration cycle system more than necessary, and the ability control followability can be improved. It is possible to increase the amount of refrigerant that can be retained in the tank portion 6 and to expand the control range of capacity control.

【0020】請求項2記載の発明では、図3及び図4に
示すように、蒸発器の出口側の冷媒b’を湿り制御する
ことにより、低圧タンク90の内部に、高沸点冷媒を多
く含む不蒸発液fを、低沸点冷媒を多く含む蒸発ガスか
ら分離して貯留させることができる。第3開閉機構73
を閉じておくと、低圧タンク90に高沸点成分を保有さ
せることができ、第3開閉機構73を開くと、低圧タン
ク90の高沸点成分を冷凍サイクルの系内に放出させる
ことができる。こうして、タンク部6での低沸点成分の
保有及び放出に加えて、更に低圧タンク90での高沸点
成分の保有及び放出も行え、幅広い組成比の変更が可能
となり、能力制御の制御幅を更に拡大することができ
る。
According to the second aspect of the invention, as shown in FIGS. 3 and 4, the low pressure tank 90 contains a large amount of high boiling point refrigerant by controlling the humidity of the refrigerant b'on the outlet side of the evaporator. The non-evaporated liquid f can be separated and stored from the evaporated gas containing a large amount of the low boiling point refrigerant. Third opening / closing mechanism 73
The high-boiling point component can be retained in the low-pressure tank 90 when closed, and the high-boiling point component in the low-pressure tank 90 can be released into the system of the refrigeration cycle when the third opening / closing mechanism 73 is opened. Thus, in addition to holding and releasing the low-boiling point component in the tank portion 6, the holding and releasing of the high-boiling point component in the low-pressure tank 90 can also be performed, and a wide range of composition ratios can be changed, further increasing the control range of capacity control. Can be expanded.

【0021】請求項3記載の発明では、図5に示すよう
に、第1開閉機構71を開け、第2〜第4開閉機構7
2,73,74を閉じることにより、タンク部6に低沸
点成分を保有させることができ、第2開閉機構72を開
け、第1、第3、第4開閉機構71,73,74を閉じ
ることにより、タンク部6に保有させた低沸点成分を冷
凍サイクルの系内に放出させることができる。又、蒸発
器の出口側の冷媒を湿り制御することにより、低圧分離
部9で、高沸点冷媒を多く含む不蒸発液と低沸点冷媒を
多く含む蒸発ガスとを分離できるのであり、第4開閉機
構74を開けてタンク部6を低圧に均圧すると共に第3
開閉機構73を開け、更に第1、第2開閉機構71,7
2を閉じることにより、低圧分離部9で分離した高沸点
成分をタンク部6に保有させることができ、又、第2開
閉機構72を開けることにより、タンク部6に保有させ
た高沸点成分を冷凍サイクルの系内に放出させることが
できる。こうして、一つのタンク部6に低沸点冷媒と高
沸点冷媒とを選択的に保有でき、容量の大きな容器の数
を最小限度に止めながら、幅広い組成比の変更が可能と
なり、能力制御の制御幅を更に拡大することができる。
According to the third aspect of the invention, as shown in FIG. 5, the first opening / closing mechanism 71 is opened and the second to fourth opening / closing mechanisms 7 are opened.
By closing 2, 73, 74, the low boiling point component can be retained in the tank portion 6, the second opening / closing mechanism 72 is opened, and the first, third, and fourth opening / closing mechanisms 71, 73, 74 are closed. As a result, the low boiling point component held in the tank portion 6 can be released into the system of the refrigeration cycle. Further, by controlling the humidity of the refrigerant on the outlet side of the evaporator, the low-pressure separation section 9 can separate the non-evaporated liquid containing a large amount of high-boiling-point refrigerant and the evaporated gas containing a large amount of low-boiling-point refrigerant. The mechanism 74 is opened to equalize the tank portion 6 to a low pressure and the third
The opening / closing mechanism 73 is opened, and the first and second opening / closing mechanisms 71, 7 are further opened.
By closing 2, the high boiling point component separated in the low pressure separation section 9 can be retained in the tank section 6, and by opening the second opening / closing mechanism 72, the high boiling point component retained in the tank section 6 can be retained. It can be released into the system of the refrigeration cycle. In this way, the low boiling point refrigerant and the high boiling point refrigerant can be selectively retained in one tank part 6, and a wide composition ratio can be changed while keeping the number of containers having a large capacity to a minimum. Can be further expanded.

【0022】請求項4記載の発明では、図1又は図3若
しくは図5又は図7に示すように、凝縮器となる熱交換
器の下流に介装する気液分離器51により、高沸点冷媒
と低沸点冷媒とを良好に分離することができる。
According to the fourth aspect of the present invention, as shown in FIG. 1 or FIG. 3 or FIG. 5 or FIG. 7, the high boiling point refrigerant is provided by the gas-liquid separator 51 provided downstream of the heat exchanger as the condenser. And the low boiling point refrigerant can be separated well.

【0023】請求項5記載の発明では、図6に示すよう
に、管外凝縮器のシェルSaの内部において、高沸点冷
媒を多く含む凝縮液と低沸点冷媒を多く含む不凝縮ガス
とを分離させることができ、特別に気液分離器を用いな
くとも管外凝縮器を利用して高沸点冷媒と低沸点冷媒と
を効率良く分離させることができ、それだけ構成を簡易
にすることができる。
According to the fifth aspect of the present invention, as shown in FIG. 6, the condensate containing a large amount of the high boiling point refrigerant and the non-condensing gas containing a large amount of the low boiling point refrigerant are separated inside the shell Sa of the external condenser. The high-boiling-point refrigerant and the low-boiling-point refrigerant can be efficiently separated by utilizing the extra-tube condenser without using a gas-liquid separator, and the structure can be simplified accordingly.

【0024】請求項6記載の発明では、図8に示すよう
に、管内凝縮器の凝縮冷媒の取出側のヘッダーH2にお
いて、高沸点冷媒を多く含む凝縮液と低沸点冷媒を多く
含む不凝縮ガスとを分離させることができ、特別に気液
分離器を用いなくとも管内凝縮器を利用して高沸点冷媒
と低沸点冷媒とを効率良く分離させることができ、それ
だけ構成を簡易にすることができる。
According to the sixth aspect of the present invention, as shown in FIG. 8, in the header H2 on the condensed refrigerant take-out side of the in-pipe condenser, a condensate containing a large amount of high-boiling point refrigerant and a non-condensing gas containing a large amount of low-boiling point refrigerant. Can be separated, the high-boiling-point refrigerant and the low-boiling-point refrigerant can be efficiently separated by utilizing the in-pipe condenser without using a gas-liquid separator, and the structure can be simplified accordingly. it can.

【0025】請求項7記載の発明では、同じく図8に示
すように、管内蒸発器の蒸発冷媒の取出側のヘッダーH
1において、高沸点冷媒を多く含む不蒸発液と低沸点冷
媒を多く含む蒸発ガスとを分離させることができ、特別
に低圧タンク等を用いなくとも管内蒸発器を利用して高
沸点冷媒と低沸点冷媒とを効率良く分離させることがで
き、それだけ構成を簡易にすることができる。
According to the seventh aspect of the invention, as shown in FIG. 8 as well, the header H on the take-out side of the evaporated refrigerant of the in-pipe evaporator is shown.
In No. 1, it is possible to separate the non-evaporated liquid containing a large amount of high-boiling-point refrigerant and the evaporative gas containing a large amount of low-boiling-point refrigerant. The boiling point refrigerant can be efficiently separated, and the structure can be simplified accordingly.

【0026】請求項8記載の発明では、図9に示すよう
に、ビル空調等の比較的大規模なセパレート空気熱源ヒ
ートポンプシステムなどで、主冷媒回路の減圧機構3の
出口部に液ヘッドに相当する圧力増加がある場合、その
減圧機構3の出口側冷媒の温度は高いが、このような冷
媒でタンク部6を冷すのではなく、主冷媒回路の減圧機
構3と別に設ける減圧手段30で減圧させた低温冷媒に
より冷すから、タンク部6を十分に冷すことができ、該
タンク部6での低沸点成分の液化を促進できると共にそ
の保有量を多くすることができる。
According to the eighth aspect of the present invention, as shown in FIG. 9, in a relatively large-scale separate air heat source heat pump system for building air conditioning or the like, the outlet portion of the pressure reducing mechanism 3 of the main refrigerant circuit corresponds to a liquid head. If there is an increase in pressure, the temperature of the outlet side refrigerant of the pressure reducing mechanism 3 is high, but the pressure reducing means 30 provided separately from the pressure reducing mechanism 3 of the main refrigerant circuit does not cool the tank portion 6 with such a refrigerant. Since the low temperature refrigerant is cooled to cool the tank portion 6, the tank portion 6 can be sufficiently cooled, the liquefaction of the low boiling point component in the tank portion 6 can be promoted, and the amount thereof can be increased.

【0027】[0027]

【実施例】図1は、第1実施例に係るヒートポンプ式の
冷凍装置を示し、圧縮機1、四路切換弁10、熱源側熱
交換器2、気液分離器51、減圧機構3、利用側熱交換
器4を、順次冷媒配管で接続している。11,12,1
3,14は、冷房及び暖房に応じて冷媒の流れを制御す
る整流用の逆止機構である。冷凍サイクルの系内には、
高沸点冷媒としてR22を低沸点冷媒としてR13B1
をそれぞれ用いた混合冷媒や、高沸点冷媒としてHFC
134aを低沸点冷媒としてHFC32をそれぞれ用い
た混合冷媒、あるいは、高沸点冷媒としてHFC134
aを低沸点冷媒としてHFC32/125をそれぞれ用
いた混合冷媒等を封入している。
FIG. 1 shows a heat pump type refrigerating apparatus according to a first embodiment, which includes a compressor 1, a four-way switching valve 10, a heat source side heat exchanger 2, a gas-liquid separator 51, a pressure reducing mechanism 3, and a use. The side heat exchangers 4 are sequentially connected by a refrigerant pipe. 11, 12, 1
Reference numerals 3 and 14 denote rectification check mechanisms that control the flow of the refrigerant in accordance with cooling and heating. In the refrigeration cycle system,
R22 as a high boiling point refrigerant and R13B1 as a low boiling point refrigerant
HFC as a mixed refrigerant or high boiling point refrigerant
134a is a mixed refrigerant using HFC32 as a low boiling point refrigerant, or HFC134 as a high boiling point refrigerant.
A mixed refrigerant or the like using HFC32 / 125 as a low boiling point refrigerant is enclosed.

【0028】冷房時は、図1中実線矢印で示すように、
符号で追うと、1、10、2、11、51、3、12、
4、10、1の順に冷媒を流し、熱源側熱交換器2を凝
縮器に、利用側熱交換器4を蒸発器にそれぞれ用いてい
る。
During cooling, as indicated by the solid line arrow in FIG.
Chasing by the code, 1, 10, 2, 11, 51, 3, 12,
Refrigerant is caused to flow in the order of 4, 10, 1 and the heat source side heat exchanger 2 is used as a condenser and the use side heat exchanger 4 is used as an evaporator.

【0029】暖房時は、図1中点線矢印で示すように、
符号で追うと、1、10、4、13、51、3、14、
2、10、1の順に冷媒を流し、利用側熱交換器4を凝
縮器に、熱源側熱交換器2を蒸発器にそれぞれ用いてい
る。
During heating, as indicated by the dotted arrow in FIG.
Chasing by code, 1, 10, 4, 13, 51, 3, 14,
Refrigerant is caused to flow in the order of 2, 10, 1 and the use side heat exchanger 4 is used as a condenser and the heat source side heat exchanger 2 is used as an evaporator.

【0030】以上の構成において、気液分離器51によ
り、高沸点冷媒を多く含む凝縮液と低沸点冷媒を多く含
む不凝縮ガスとを分離させる分離部5を構成する。又、
減圧機構3の出口部に、所定容量のタンク部6を設け、
このタンク部6の内部に、減圧機構3で減圧した後の低
温冷媒bを流す熱交換管60を配設する。そして、分離
部5を構成する気液分離器51の上部ガス域とタンク部
6とを、電磁弁等から成る第1開閉機構71をもつ第1
連通路81を介して接続すると共に、タンク部6と熱交
換管60の出口側低圧部とを、同じく電磁弁等から成る
第2開閉機構72をもつ第2連通路82を介して接続す
る。
In the above structure, the gas-liquid separator 51 constitutes the separation section 5 for separating the condensate containing a large amount of the high boiling point refrigerant and the non-condensing gas containing a large amount of the low boiling point refrigerant. or,
A tank portion 6 having a predetermined capacity is provided at the outlet of the decompression mechanism 3,
Inside the tank section 6, a heat exchange tube 60 is provided through which the low-temperature refrigerant b, which has been decompressed by the decompression mechanism 3, flows. And, the upper gas region of the gas-liquid separator 51 and the tank portion 6 which form the separation portion 5 are provided with a first opening / closing mechanism 71 including a solenoid valve or the like.
The tank portion 6 and the outlet-side low-pressure portion of the heat exchange pipe 60 are connected to each other via the communication passage 81 via a second communication passage 82 having a second opening / closing mechanism 72 also including an electromagnetic valve or the like.

【0031】こうして、冷房時及び暖房時双方につき、
第1開閉機構71を開けると共に、第2開閉機構72を
閉じることにより、タンク部6の内部に、低沸点成分を
保有させ、低能力運転が行えるようになっている。一
方、第1開閉機構71を閉じると共に、第2開閉機構7
2を開けることにより、タンク部6に貯留する低沸点成
分を冷凍サイクルの系内に放出させ、高能力運転が行え
るようになっている。低能力運転時、タンク部6は、蒸
発器4又は2を通過する前の最低温冷媒bにより冷され
るため、該タンク部6内での低沸点成分の液化を促進で
きると共に、貯留し得る低沸点成分の量を多くすること
ができる。
Thus, both during cooling and during heating,
By opening the first opening / closing mechanism 71 and closing the second opening / closing mechanism 72, the low boiling point component is held inside the tank portion 6 and low capacity operation can be performed. On the other hand, while closing the first opening / closing mechanism 71, the second opening / closing mechanism 7
By opening 2, the low boiling point component stored in the tank 6 is released into the system of the refrigeration cycle, and high capacity operation can be performed. During low-capacity operation, the tank portion 6 is cooled by the lowest temperature refrigerant b before passing through the evaporator 4 or 2. Therefore, the liquefaction of the low boiling point component in the tank portion 6 can be promoted and stored. The amount of low boiling point components can be increased.

【0032】図3は、第2実施例を示し、図1と異なる
点は、圧縮機1の吸入側に、高沸点冷媒を多く含む不蒸
発液と低沸点冷媒を多く含む蒸発ガスとを分離して、高
沸点冷媒を多く含む不蒸発液を貯留する所定容量の低圧
タンク90を設け、この低圧タンク90の下部と圧縮機
1の吸入部とを、電磁弁等から成る第3開閉機構73を
もつ第3連通路83を介して接続している点である。こ
のものでは、蒸発器4又は2の出口部を湿り制御するこ
とにより、低圧タンク90に高沸点冷媒を保有させるこ
とができ、制御幅を一層拡大することができる。
FIG. 3 shows a second embodiment, which is different from FIG. 1 in that the non-evaporated liquid containing a large amount of high boiling point refrigerant and the evaporative gas containing a large amount of low boiling point refrigerant are separated on the suction side of the compressor 1. Then, a low-pressure tank 90 having a predetermined capacity for storing the non-evaporated liquid containing a large amount of high-boiling-point refrigerant is provided, and the lower portion of the low-pressure tank 90 and the suction portion of the compressor 1 are provided with a third opening / closing mechanism 73 including an electromagnetic valve or the like. The point is that they are connected via a third communication passage 83 having a. In this case, the low boiling point refrigerant can be retained in the low pressure tank 90 by controlling the wetness of the outlet of the evaporator 4 or 2, and the control range can be further expanded.

【0033】図5は、第3実施例を示し、図3と異なる
点は、一つのタンク部6に低沸点成分と高沸点成分とを
選択的に溜めるようにした点である。すなわち、圧縮機
1の吸入側には、高沸点冷媒を多く含む不蒸発液と低沸
点冷媒を多く含む蒸発ガスとを分離させるだけの比較的
小容量な低圧分離部9を設け、この低圧分離部9の下部
とタンク部6とを、低圧分離部9からタンク部6への流
れのみを許容する逆止機構70と電磁弁から成る第3開
閉機構73とをもつ第3連通路83を介して接続すると
共に、タンク部6の上部ガス域と冷凍サイクルにおける
低圧部とを、電磁弁等から成る第4開閉機構74をもつ
均圧用の第4連通路84を介して接続している。
FIG. 5 shows the third embodiment, and is different from FIG. 3 in that the low boiling point component and the high boiling point component are selectively stored in one tank portion 6. That is, the suction side of the compressor 1 is provided with a low-pressure separation section 9 having a relatively small capacity for separating the non-evaporated liquid containing a large amount of high-boiling-point refrigerant and the evaporative gas containing a large amount of low-boiling-point refrigerant. The lower portion of the portion 9 and the tank portion 6 are connected via a third communication passage 83 having a check mechanism 70 for allowing only the flow from the low pressure separation portion 9 to the tank portion 6 and a third opening / closing mechanism 73 composed of a solenoid valve. In addition, the upper gas region of the tank portion 6 and the low pressure portion in the refrigeration cycle are connected via a fourth pressure equalizing fourth communication passage 84 having a fourth opening / closing mechanism 74 including an electromagnetic valve or the like.

【0034】図6は、第4実施例を示し、凝縮器となる
熱交換器2を、冷媒を開放するシェルSaと、これに内
装する冷却水配管Taとをもった管外凝縮式のものとし
ている。この管外凝縮器のシェルSaの内部において、
高沸点冷媒を多く含む凝縮液と低沸点冷媒を多く含む不
凝縮ガスとを分離させることが可能であり、従って、こ
のシェルSaを利用して、高沸点冷媒を多く含む凝縮液
と低沸点冷媒を多く含む不凝縮ガスとを分離させる分離
部5を構成することとしている。又、蒸発器となる熱交
換器4を、冷水を生成するシェルSb、これに内装する
冷媒配管Tb、及び冷媒出入れ用のヘッダーH1,H2
をもった管内蒸発式のものとしている。この管内蒸発器
における蒸発冷媒の取出側のヘッダーH1の内部におい
ては、高沸点冷媒を多く含む不蒸発液と低沸点冷媒を多
く含む蒸発ガスとを分離させることが可能であり、従っ
て、この蒸発冷媒の取出側のヘッダーH1を利用して、
高沸点冷媒を多く含む不蒸発液と低沸点冷媒を多く含む
蒸発ガスとを分離させる低圧分離部9を構成することと
している。
FIG. 6 shows a fourth embodiment, in which the heat exchanger 2 serving as a condenser is an outside condensation type having a shell Sa for releasing the refrigerant and a cooling water pipe Ta installed therein. I am trying. Inside the shell Sa of this extra condenser,
It is possible to separate a condensate containing a large amount of high-boiling-point refrigerant and a non-condensable gas containing a large amount of low-boiling-point refrigerant. Therefore, by utilizing this shell Sa, a condensate containing a large amount of high-boiling-point refrigerant and a low-boiling-point refrigerant. The separation unit 5 is configured to separate the non-condensable gas containing a large amount of. In addition, the heat exchanger 4 serving as an evaporator is provided with a shell Sb for generating cold water, a refrigerant pipe Tb installed therein, and headers H1 and H2 for taking in and out the refrigerant.
In-tube evaporation type is used. In the header H1 on the side of taking out the evaporated refrigerant in the in-pipe evaporator, it is possible to separate the non-evaporated liquid containing a large amount of the high boiling point refrigerant and the evaporated gas containing a large amount of the low boiling point refrigerant. Utilizing the header H1 on the refrigerant discharge side,
The low-pressure separation unit 9 is configured to separate the non-evaporated liquid containing a large amount of the high boiling point refrigerant and the evaporated gas containing a large amount of the low boiling point refrigerant.

【0035】図7は、第5実施例を示し、空気熱源ヒー
トポンプ冷温水機に適用したものである。このもので
は、熱源側熱交換器2に、ファン20を付設する空気熱
交換器を用い、利用側熱交換器4に、冷水又は温水を生
成するシェルSb、これに内装する冷媒配管Tb、及び
冷媒出入れ用のヘッダーH1,H2をもった水熱交換器
を用いている。
FIG. 7 shows a fifth embodiment, which is applied to an air heat source heat pump chiller / heater. In this configuration, an air heat exchanger with a fan 20 is used as the heat source side heat exchanger 2, and a shell Sb for generating cold water or hot water is used for the use side heat exchanger 4, a refrigerant pipe Tb installed therein, and A water heat exchanger having headers H1 and H2 for taking in and out the refrigerant is used.

【0036】図8は、第6実施例を示し、図7と異なる
点は、利用側熱交換器4を利用して、分離部5及び低圧
分離部9を構成した点である。すなわち、利用側熱交換
器4は、冷水又は温水を生成するシェルSb、これに内
装する冷媒配管Tb、及び冷媒出入れ用のヘッダーH
1,H2をもつものであって、該利用側熱交換器4を凝
縮器として用いる場合、凝縮冷媒の取出側のヘッダーH
2の内部において、高沸点冷媒を多く含む凝縮液と低沸
点冷媒を多く含む不凝縮ガスとを分離させることが可能
であり、従って、このヘッダーH2を利用して、高沸点
冷媒を多く含む凝縮液と低沸点冷媒を多く含む不凝縮ガ
スとを分離させる分離部5を構成することとしている。
又、利用側熱交換器4を蒸発器として用いる場合、蒸発
冷媒の取出側のヘッダーH1の内部において、高沸点冷
媒を多く含む不蒸発液と低沸点冷媒を多く含む蒸発ガス
とを分離させることが可能であり、従って、この蒸発冷
媒の取出側のヘッダーH1を利用して、高沸点冷媒を多
く含む不蒸発液と低沸点冷媒を多く含む蒸発ガスとを分
離させる低圧分離部9を構成することとしている。
FIG. 8 shows a sixth embodiment, and is different from FIG. 7 in that the use side heat exchanger 4 is used to form a separation section 5 and a low pressure separation section 9. That is, the usage-side heat exchanger 4 includes a shell Sb that produces cold water or hot water, a refrigerant pipe Tb that is installed inside the shell Sb, and a header H for taking in and out the refrigerant.
1, H2, when the utilization side heat exchanger 4 is used as a condenser, the condensed refrigerant outlet side header H
In the inside of 2, it is possible to separate the condensate containing a large amount of high-boiling-point refrigerant and the non-condensable gas containing a large amount of low-boiling-point refrigerant. The separation unit 5 for separating the liquid and the non-condensable gas containing a large amount of the low boiling point refrigerant is configured.
When the utilization side heat exchanger 4 is used as an evaporator, the non-evaporated liquid containing a large amount of the high boiling point refrigerant and the evaporative gas containing a large amount of the low boiling point refrigerant are separated inside the header H1 on the extraction side of the evaporated refrigerant. Therefore, the low-pressure separation section 9 for separating the non-evaporated liquid containing a large amount of high-boiling point refrigerant and the evaporative gas containing a large amount of low-boiling point refrigerant is formed by utilizing the header H1 on the extraction side of the evaporating refrigerant. I have decided.

【0037】図9は、第7実施例を示し、ファン20を
付設した空気熱交換器で構成する熱源側熱交換器2をビ
ルの屋上等に、その他を地下室等に設置したビル空調等
の比較的大規模なセパレート空気熱源ヒートポンプシス
テムである。このものは、主冷媒回路の減圧機構3の出
口部に液ヘッドに相当する圧力増加があるため、主冷媒
回路の減圧機構3と別に設ける減圧手段30で減圧させ
た低温冷媒によりタンク部6を冷すようにしたものであ
る。
FIG. 9 shows a seventh embodiment, in which a heat source side heat exchanger 2 constituted by an air heat exchanger provided with a fan 20 is installed on the roof of a building, and the others are installed in a basement or the like, such as a building air conditioner. It is a relatively large separate air source heat pump system. Since this structure has a pressure increase corresponding to the liquid head at the outlet of the depressurizing mechanism 3 of the main refrigerant circuit, the tank unit 6 is decompressed by the low temperature refrigerant depressurized by the depressurizing means 30 provided separately from the depressurizing mechanism 3 of the main refrigerant circuit. It was made to cool.

【0038】[0038]

【発明の効果】請求項1記載の発明によれば、タンク部
6の容量や冷凍サイクルの系内に封入する冷媒充填量を
必要以上に大にしなくとも、タンク部6での低沸点冷媒
の液化を促進でき、能力制御の追従性を良くすることが
できると共に、タンク部6で保有し得る冷媒量を多くで
き、能力制御の制御幅を拡大することができる。
According to the invention described in claim 1, even if the capacity of the tank portion 6 or the amount of refrigerant filled in the refrigeration cycle system is not increased more than necessary, the low boiling point refrigerant in the tank portion 6 Liquefaction can be promoted, followability of capacity control can be improved, and the amount of refrigerant that can be retained in the tank portion 6 can be increased, so that the control range of capacity control can be expanded.

【0039】請求項2記載の発明によれば、タンク部6
での低沸点成分の保有及び放出に加えて、更に低圧タン
ク90での高沸点成分の保有及び放出も行え、幅広い組
成比の変更が可能となり、能力制御の制御幅を更に拡大
することができる。
According to the second aspect of the invention, the tank portion 6
In addition to holding and releasing low-boiling components in the low-pressure tank 90, holding and releasing high-boiling components in the low-pressure tank 90 can be performed, a wide range of composition ratios can be changed, and the control range of capacity control can be further expanded. .

【0040】請求項3記載の発明によれば、一つのタン
ク部6に低沸点冷媒と高沸点冷媒とを選択的に保有で
き、容量の大きな容器の数を最小限度に止めながら、幅
広い組成比の変更が可能となり、能力制御の制御幅を更
に拡大することができる。
According to the third aspect of the present invention, the low boiling point refrigerant and the high boiling point refrigerant can be selectively retained in one tank portion 6, and a wide composition ratio can be achieved while minimizing the number of vessels having a large capacity. Can be changed, and the control range of capacity control can be further expanded.

【0041】請求項4記載の発明によれば、凝縮器とな
る熱交換器の下流に介装する気液分離器51により、高
沸点冷媒と低沸点冷媒とを良好に分離することができ
る。
According to the fourth aspect of the present invention, the high-boiling-point refrigerant and the low-boiling-point refrigerant can be satisfactorily separated by the gas-liquid separator 51 provided downstream of the heat exchanger serving as the condenser.

【0042】請求項5記載の発明によれば、特別に気液
分離器を用いなくとも管外凝縮器のシェルSaを利用し
て高沸点冷媒と低沸点冷媒とを効率良く分離させること
ができ、それだけ構成を簡易にすることができる。
According to the fifth aspect of the invention, the high-boiling-point refrigerant and the low-boiling-point refrigerant can be efficiently separated by utilizing the shell Sa of the external condenser without using a gas-liquid separator. , The configuration can be simplified.

【0043】請求項6記載の発明によれば、特別に気液
分離器を用いなくとも管内凝縮器の凝縮冷媒の取出側の
ヘッダーH2を利用して高沸点冷媒と低沸点冷媒とを効
率良く分離させることができ、それだけ構成を簡易にす
ることができる。
According to the sixth aspect of the present invention, the high boiling point refrigerant and the low boiling point refrigerant can be efficiently used by utilizing the header H2 on the take-out side of the condensed refrigerant of the in-tube condenser without using a gas-liquid separator. They can be separated, and the structure can be simplified accordingly.

【0044】請求項7記載の発明によれば、特別に低圧
タンク等を用いなくとも管内蒸発器の蒸発冷媒の取出側
のヘッダーH1を利用して高沸点冷媒と低沸点冷媒とを
効率良く分離させることができ、それだけ構成を簡易に
することができる。
According to the invention of claim 7, the high boiling point refrigerant and the low boiling point refrigerant are efficiently separated by utilizing the header H1 on the take-out side of the evaporated refrigerant of the in-pipe evaporator without using a special low pressure tank or the like. The configuration can be simplified accordingly.

【0045】請求項8記載の発明によれば、主冷媒回路
の減圧機構3と別に設ける減圧手段30により、ビル空
調等の比較的大規模なセパレート空気熱源ヒートポンプ
システムなどで、主冷媒回路の減圧機構3の出口部に液
ヘッドに相当する圧力増加がある場合にも、タンク部6
を十分に冷すことができ、該タンク部6での低沸点成分
の液化を促進できると共にその保有量を多くすることが
できる。
According to the eighth aspect of the invention, the decompression means 30 provided separately from the decompression mechanism 3 of the main refrigerant circuit allows the decompression of the main refrigerant circuit in a relatively large-scale separate air heat source heat pump system such as a building air conditioner. Even when there is a pressure increase corresponding to the liquid head at the outlet of the mechanism 3, the tank 6
Can be sufficiently cooled, the liquefaction of the low boiling point component in the tank part 6 can be promoted, and the amount of the low boiling point component held can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施例の配管図。FIG. 1 is a piping diagram of a first embodiment of the present invention.

【図2】同第1実施例の作用説明図。FIG. 2 is an explanatory view of the operation of the first embodiment.

【図3】同第2実施例の配管図。FIG. 3 is a piping diagram of the second embodiment.

【図4】同第2実施例の作用説明図。FIG. 4 is an explanatory view of the operation of the second embodiment.

【図5】同第3実施例の配管図。FIG. 5 is a piping diagram of the third embodiment.

【図6】同第4実施例の配管図。FIG. 6 is a piping diagram of the fourth embodiment.

【図7】同第5実施例の配管図。FIG. 7 is a piping diagram of the fifth embodiment.

【図8】同第6実施例の配管図。FIG. 8 is a piping diagram of the sixth embodiment.

【図9】同第7実施例の配管図。FIG. 9 is a piping diagram of the seventh embodiment.

【図10】従来例の配管図。FIG. 10 is a piping diagram of a conventional example.

【図11】従来の問題点の説明図。FIG. 11 is an explanatory diagram of conventional problems.

【符号の説明】[Explanation of symbols]

5;分離部、51;気液分離器、6;タンク部、70;
逆止機構、71;第1開閉機構、72;第2開閉機構、
73;第3開閉機構、74;第4開閉機構、81;第1
連通路、82;第2連通路、83;第3連通路、84;
第4連通路、9;低圧分離部、Sa,Sb;シェル、T
a;冷却水配管、Tb;冷媒配管、H1,H2;ヘッダ
ー、3;減圧機構、30;減圧手段
5: Separation part, 51; Gas-liquid separator, 6; Tank part, 70;
Non-return mechanism, 71; first opening / closing mechanism, 72; second opening / closing mechanism,
73; third opening / closing mechanism, 74; fourth opening / closing mechanism, 81; first
Communication passage, 82; second communication passage, 83; third communication passage, 84;
Fourth communication passage, 9; low-pressure separation section, Sa, Sb; shell, T
a; cooling water pipe, Tb; refrigerant pipe, H1, H2; header, 3; pressure reducing mechanism, 30; pressure reducing means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮、凝縮、減圧及び蒸発を繰り返す冷
凍サイクルの系内に、高沸点冷媒と低沸点冷媒との混合
冷媒を封入した非共沸混合冷媒を用いた冷凍装置におい
て、高沸点冷媒を多く含む凝縮液と低沸点冷媒を多く含
む不凝縮ガスとを分離させる分離部(5)と、高沸点冷
媒を多く含む凝縮液を減圧した後の低温冷媒と熱交換さ
せるタンク部(6)とを設け、分離部(5)の上部ガス
域とタンク部(6)とを、第1開閉機構(71)をもつ
第1連通路(81)を介して接続すると共に、タンク部
(6)と冷凍サイクルにおける低圧部とを、第2開閉機
構(72)をもつ第2連通路(82)を介して接続した
ことを特徴とする非共沸混合冷媒を用いた冷凍装置。
1. A refrigeration system using a non-azeotropic mixed refrigerant in which a mixed refrigerant of a high boiling point refrigerant and a low boiling point refrigerant is enclosed in a refrigeration cycle system in which compression, condensation, decompression and evaporation are repeated, Separation part (5) for separating a condensed liquid containing a large amount of high boiling point refrigerant and non-condensed gas containing a large amount of low boiling point refrigerant, and a tank part (6) for exchanging heat with the low temperature refrigerant after depressurizing the condensed liquid containing a large amount of high boiling point refrigerant And the upper gas region of the separation part (5) and the tank part (6) are connected via the first communication passage (81) having the first opening / closing mechanism (71), and the tank part (6) is provided. A refrigeration system using a non-azeotropic mixed refrigerant, characterized in that the low pressure part in the refrigeration cycle is connected to the low pressure part via a second communication passage (82) having a second opening / closing mechanism (72).
【請求項2】 高沸点冷媒を多く含む不蒸発液と低沸点
冷媒を多く含む蒸発ガスとを分離して、高沸点冷媒を多
く含む不蒸発液を貯留する所定容量の低圧タンク(9
0)を設け、この低圧タンク(90)の下部と圧縮機の
吸入部とを、第3開閉機構(73)をもつ第3連通路
(83)を介して接続した請求項1記載の非共沸混合冷
媒を用いた冷凍装置。
2. A low-pressure tank (9) of a predetermined capacity for separating the non-evaporated liquid containing a large amount of high-boiling-point refrigerant and the evaporative gas containing a large amount of low-boiling-point refrigerant to store the non-evaporated liquid containing a large amount of high-boiling-point refrigerant.
0), and the lower part of the low-pressure tank (90) and the suction part of the compressor are connected via a third communication passage (83) having a third opening / closing mechanism (73). Refrigeration system using boiling mixed refrigerant.
【請求項3】 高沸点冷媒を多く含む不蒸発液と低沸点
冷媒を多く含む蒸発ガスとを分離させる低圧分離部
(9)を設け、この低圧分離部(9)の下部とタンク部
(6)とを、低圧分離部(9)からタンク部(6)への
流れのみを許容する逆止機構(70)と第3開閉機構
(73)とをもつ第3連通路(83)を介して接続する
と共に、タンク部(6)の上部ガス域と冷凍サイクルに
おける低圧部とを、第4開閉機構(74)をもつ均圧用
の第4連通路(84)を介して接続した請求項1記載の
非共沸混合冷媒を用いた冷凍装置。
3. A low-pressure separation section (9) for separating a non-evaporated liquid containing a large amount of high-boiling-point refrigerant and an evaporative gas containing a large amount of low-boiling-point refrigerant, the lower part of this low-pressure separation section (9) and a tank section (6). ) Through a third communication passage (83) having a non-return mechanism (70) that allows only the flow from the low pressure separation section (9) to the tank section (6) and a third opening / closing mechanism (73). The connection is made, and the upper gas region of the tank part (6) and the low pressure part in the refrigeration cycle are connected through a fourth pressure equalizing fourth communication passage (84) having a fourth opening / closing mechanism (74). Refrigeration system using the non-azeotropic mixed refrigerant.
【請求項4】 高沸点冷媒を多く含む凝縮液と低沸点冷
媒を多く含む不凝縮ガスとを分離させる分離部(5)
が、凝縮器となる熱交換器の下流に介装する気液分離器
(51)である請求項1又は請求項2若しくは請求項3
記載の非共沸混合冷媒を用いた冷凍装置。
4. A separation unit (5) for separating a condensate containing a large amount of high-boiling-point refrigerant and an uncondensed gas containing a large amount of low-boiling-point refrigerant.
Is a gas-liquid separator (51) interposed downstream of the heat exchanger serving as a condenser.
A refrigeration system using the described non-azeotropic mixed refrigerant.
【請求項5】 凝縮器となる熱交換器が、冷媒を開放す
るシェル(Sa)と、これに内装する冷却水配管(T
a)とをもった管外凝縮式のものであり、高沸点冷媒を
多く含む凝縮液と低沸点冷媒を多く含む不凝縮ガスとを
分離させる分離部(5)が、管外凝縮器のシェル(S
a)である請求項1又は請求項2若しくは請求項3記載
の非共沸混合冷媒を用いた冷凍装置。
5. A heat exchanger serving as a condenser comprises a shell (Sa) for releasing a refrigerant, and a cooling water pipe (T) installed therein.
(a) is an extra-condensation type, and the separation part (5) for separating a condensate containing a large amount of high-boiling-point refrigerant and a non-condensable gas containing a large amount of low-boiling-point refrigerant is a shell of the extra-tube condenser. (S
A refrigeration system using the non-azeotropic mixed refrigerant according to claim 1, 2 or 3, which is a).
【請求項6】 凝縮器となる熱交換器が、温水を生成す
るシェル(Sb)、これに内装する冷媒配管(Tb)、
及び冷媒出入れ用のヘッダー(H1,H2)をもった管
内凝縮式のものであり、高沸点冷媒を多く含む凝縮液と
低沸点冷媒を多く含む不凝縮ガスとを分離させる分離部
(5)が、凝縮冷媒の取出側のヘッダー(H2)である
請求項1又は請求項2若しくは請求項3記載の非共沸混
合冷媒を用いた冷凍装置。
6. A heat exchanger serving as a condenser, wherein a shell (Sb) for generating hot water, a refrigerant pipe (Tb) installed therein,
And a pipe condensing type having headers (H1, H2) for taking in and out the refrigerant, for separating a condensate containing a large amount of high boiling point refrigerant and a non-condensing gas containing a large amount of low boiling point refrigerant (5). Is a header (H2) on the take-out side of the condensed refrigerant, The refrigeration system using the non-azeotropic mixed refrigerant according to claim 1, 2 or 3.
【請求項7】 蒸発器となる熱交換器が、冷水を生成す
るシェル(Sb)、これに内装する冷媒配管(Tb)、
及び冷媒出入れ用のヘッダー(H1,H2)をもった管
内蒸発式のものであり、高沸点冷媒を多く含む不蒸発液
と低沸点冷媒を多く含む蒸発ガスとを分離させる低圧分
離部(9)が、蒸発冷媒の取出側のヘッダー(H1)で
ある請求項3記載の非共沸混合冷媒を用いた冷凍装置。
7. A heat exchanger serving as an evaporator, wherein a shell (Sb) for generating cold water, a refrigerant pipe (Tb) installed therein,
And a pipe evaporation type having headers (H1, H2) for putting in and out the refrigerant, and a low-pressure separation section (9) for separating a non-evaporated liquid containing a large amount of a high boiling point refrigerant and an evaporated gas containing a large amount of a low boiling point refrigerant. ) Is a header (H1) on the take-out side of the evaporated refrigerant, and the refrigerating apparatus using the non-azeotropic mixed refrigerant according to claim 3.
【請求項8】 タンク部(6)は、主冷媒回路の減圧機
構(3)と別に設ける減圧手段(30)で減圧させた低
温冷媒と熱交換するものである請求項1から請求項7何
れか一記載の非共沸混合冷媒を用いた冷凍装置。
8. The tank section (6) exchanges heat with a low-temperature refrigerant whose pressure is reduced by a pressure reducing means (30) provided separately from the pressure reducing mechanism (3) of the main refrigerant circuit. A refrigeration system using the non-azeotropic mixed refrigerant as described above.
JP25712294A 1994-10-21 1994-10-21 Refrigeration system using non-azeotropic refrigerant mixture Expired - Fee Related JP3368692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25712294A JP3368692B2 (en) 1994-10-21 1994-10-21 Refrigeration system using non-azeotropic refrigerant mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25712294A JP3368692B2 (en) 1994-10-21 1994-10-21 Refrigeration system using non-azeotropic refrigerant mixture

Publications (2)

Publication Number Publication Date
JPH08121887A true JPH08121887A (en) 1996-05-17
JP3368692B2 JP3368692B2 (en) 2003-01-20

Family

ID=17302040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25712294A Expired - Fee Related JP3368692B2 (en) 1994-10-21 1994-10-21 Refrigeration system using non-azeotropic refrigerant mixture

Country Status (1)

Country Link
JP (1) JP3368692B2 (en)

Also Published As

Publication number Publication date
JP3368692B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US5996356A (en) Parallel type refrigerator
JP4123829B2 (en) Refrigeration cycle equipment
EP3090217B1 (en) Cooling cycle apparatus for refrigerator
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
JP2012193897A (en) Refrigeration cycle device
CN107763774A (en) Air conditioner cooling cycle system and air conditioner
CN108463676B (en) Refrigeration cycle device
JP2001116376A (en) Supercritical vapor compression type refrigerating cycle
US20130055754A1 (en) Air conditioner
JPH10332212A (en) Refrigeration cycle of air conditioner
US3698202A (en) Control system for low temperature refrigeration system
JP2002081777A (en) Refrigeration cycle
US20230056774A1 (en) Sub-cooling a refrigerant in an air conditioning system
EP0524197B1 (en) Vapor compression cycle with apparatus for expanding the temperature glide for use with non-azeotropic working fluid mixture
JP3368692B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JP2006003023A (en) Refrigerating unit
CN105972864A (en) Non-azeotropic mixed working medium heat pump air-conditioning system with concentration adjustable
JP2711879B2 (en) Low temperature refrigerator
JP3804601B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JPH0861799A (en) Air conditioner
JP4000509B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
CN210951964U (en) Air-cooled heat pump unit
JP3480205B2 (en) Air conditioner
JP2574545B2 (en) Refrigeration cycle device
JPH09196481A (en) Method for altering composition of mixture refrigerant and structure of circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131115

LAPS Cancellation because of no payment of annual fees