JPH08121885A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH08121885A
JPH08121885A JP26343294A JP26343294A JPH08121885A JP H08121885 A JPH08121885 A JP H08121885A JP 26343294 A JP26343294 A JP 26343294A JP 26343294 A JP26343294 A JP 26343294A JP H08121885 A JPH08121885 A JP H08121885A
Authority
JP
Japan
Prior art keywords
compressor
oil
refrigerating machine
flow path
machine oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26343294A
Other languages
Japanese (ja)
Inventor
Shinichi Sato
真一 佐藤
Kazuhisa Ichimoto
和久 市本
Jun Tozaki
準 戸崎
Etsuko Yoshinaga
悦子 吉永
Takehiro Kaneko
岳広 金子
Yoshihiko Kenmori
仁彦 権守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26343294A priority Critical patent/JPH08121885A/en
Publication of JPH08121885A publication Critical patent/JPH08121885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE: To prevent the decrease in refrigerating capacity due to the retention of refrigerating machine oil in an evaporator and the decrease in lubricity due to lack of supply oil to a compressor sliding part in a refrigerator using non-compatible refrigerant and the oil. CONSTITUTION: A channel branch vessel 4 is disposed between a dryer 3 and a capillary tube 5 in a refrigerating cycle. Refrigerating machine oil discharged together with refrigerant from a compressor 1 and fed to a condenser 2, the dryer 3 and the vessel 4 is shut off by a filter 10 installed in the vessel and the liquid refrigerant of the lower layer of separated two layers, retained at the center of the vessel, and returned to the compressor 1 from an oil discharge pipe 7a by opening a switching valve 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、相互溶解性の少ない冷
媒と冷凍機油を使用した冷蔵庫に関し、冷凍機油の蒸発
器内での滞留による冷凍能力の低下と、圧縮機摺動部へ
の給油不足による潤滑特性の低下を低減するために、ま
た、圧縮機の冷却効果を促進させるために、冷媒と共に
圧縮機から冷凍サイクル内に流入した冷凍機油を、蒸発
器内に流入させずに圧縮機内に戻すように冷凍サイクル
を構成した冷蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator using a refrigerant having a low mutual solubility and a refrigerating machine oil, and lowering the refrigerating capacity due to the accumulation of the refrigerating machine oil in the evaporator and supplying oil to a sliding portion of the compressor. In order to reduce the deterioration of lubrication characteristics due to a shortage and to accelerate the cooling effect of the compressor, the refrigerating machine oil that has flowed into the refrigeration cycle from the compressor together with the refrigerant does not flow into the evaporator The present invention relates to a refrigerator in which a refrigerating cycle is configured to be returned to.

【0002】[0002]

【従来の技術】従来の冷蔵庫に使用している冷媒のう
ち、塩素を含む冷媒、例えばCFC−12は、塩素の作
用により圧縮機摺動部等に塩化鉄の膜が発生し、極圧作
用が生じるため、潤滑特性の向上が図れる利点がある。
一方、現在地球上の大気中へ放出されるフロン、特にC
FC−11,CFC−12,CFC−113,CFC−
114,CFC−115等は、その冷媒の持つ特有の性
質により大気中のオゾン層を破壊して紫外線の地球表面
への到達量が増加するため、医学上及び環境上の問題と
なっており、現在では冷媒CFC−12の代替冷媒とし
て、オゾン層破壊係数の低い冷媒HFC−134a等を
使用した冷蔵庫への切り換えが要求されている。しかし
ながら、冷媒HFC−134aを冷蔵庫の冷凍サイクル
に使用した場合には、冷媒中に塩素を含まないために、
冷媒CFC−12に比べて潤滑特性が低下して圧縮機摺
動部が摩耗するという問題点がある。
2. Description of the Related Art Among refrigerants used in conventional refrigerators, a refrigerant containing chlorine, for example, CFC-12, causes an iron chloride film to form on a sliding portion of a compressor due to the action of chlorine, resulting in extreme pressure action. Therefore, there is an advantage that the lubrication characteristics can be improved.
On the other hand, CFCs currently released into the atmosphere on the earth, especially C
FC-11, CFC-12, CFC-113, CFC-
114, CFC-115 and the like have a medical and environmental problem, because the unique properties of the refrigerant destroy the ozone layer in the atmosphere and increase the amount of ultraviolet rays reaching the earth's surface. At present, it is required to switch to a refrigerator using a refrigerant such as HFC-134a having a low ozone depletion coefficient as an alternative refrigerant to the refrigerant CFC-12. However, when the refrigerant HFC-134a is used in the refrigeration cycle of the refrigerator, since the refrigerant does not contain chlorine,
As compared with the refrigerant CFC-12, there is a problem that the lubrication characteristics are deteriorated and the sliding parts of the compressor are worn.

【0003】また、冷媒CFC−12用冷凍機油として
一般的に使用している鉱油等は、冷媒HFC−134a
と相互溶解性が少ないため、冷媒HFC−134a用冷
凍機油としては相互溶解性のあるエステル油が一般的に
は候補に挙げられているが、エステル油は吸湿性が高
く、油の加水分解によるスラッジ生成、圧縮機摺動部の
耐摩耗性の低下などに対応する必要があり、冷凍サイク
ル中の水分やコンタミの除去、圧縮機摺動部材質の変更
などを行っているため、製造コストが増加するという問
題がある。一方、冷媒HFC−134a用冷凍機油とし
て相互溶解性のないノンエステル油を用いた場合には、
圧縮機から冷媒と共に冷凍サイクル中に流入して二層分
離した冷凍機油が、低温である蒸発器内で滞留して熱交
換性能が低下したり、圧縮機内の冷凍機油の量が不足す
るために圧縮機摺動部への給油不足により潤滑特性が低
下するなどの問題点がある。
Mineral oil or the like generally used as a refrigerating machine oil for the refrigerant CFC-12 is a refrigerant HFC-134a.
As a refrigerating machine oil for the refrigerant HFC-134a, ester oil having mutual solubility is generally listed as a candidate because it has low mutual solubility. However, ester oil has a high hygroscopic property and is due to hydrolysis of oil. It is necessary to deal with sludge generation, deterioration of abrasion resistance of the sliding parts of the compressor, etc., to remove water and contaminants during the refrigeration cycle, and to change the material of the sliding parts of the compressor. There is a problem of increase. On the other hand, when a non-ester oil having no mutual solubility is used as the refrigerating machine oil for the refrigerant HFC-134a,
Because the refrigerating machine oil that has flowed into the refrigerating cycle from the compressor and separated into two layers stays in the evaporator at low temperature and heat exchange performance deteriorates, or the amount of refrigerating machine oil in the compressor is insufficient. There is a problem that lubrication characteristics deteriorate due to insufficient oil supply to the sliding parts of the compressor.

【0004】現在、冷媒HFC−134aを使用した冷
蔵庫において上述の問題点を検討した一例としては特開
平5−157379号公報があり、その冷凍サイクルの
構成例を図4により説明すると、圧縮機1、凝縮器2、
ドライヤ3、キャピラリチューブ5、蒸発器6、冷媒液
溜めアキュムレータ41が環状にそれぞれが配管7で接
続されて構成された冷凍サイクルにおいて、冷凍機油と
して冷媒HFC−134aと相互溶解性の少ないノンエ
ステル系のハードアルキルベンゼン油を使用しており、
耐摩耗性低下やスラッジ生成などがエステル油を使用し
た場合よりも改善されている。また、冷凍サイクル中へ
流入した冷凍機油の圧縮機への油戻りを促進させる手段
としては、前記アキュムレータ41の上方側に蒸発器6
出口側を接続し、下方側に圧縮機1吸入側を接続して、
その吸入配管を前記アキュムレータ41内に挿入して上
方に延長することにより、アキュムレータ41内に流入
した冷媒と油が二層分離した状態で、上層の油が吸入配
管入口から圧縮機1吸込側に戻るような構造とし、アキ
ュムレータ41内での冷凍機油の滞留を防止している。
また、油の粘度を低くして、蒸発器1内での油の低温流
動性を確保し、蒸発器1内壁に付着する油量を抑制して
熱交換性能低下を防止している。また、圧縮機1の油吐
出量を低減させている。
At present, there is JP-A-5-157379 as an example in which the above-mentioned problems are studied in a refrigerator using a refrigerant HFC-134a. An example of the configuration of the refrigerating cycle will be described with reference to FIG. , Condenser 2,
In a refrigeration cycle in which a dryer 3, a capillary tube 5, an evaporator 6, and a refrigerant liquid accumulator 41 are annularly connected to each other by a pipe 7, a non-ester system having a low mutual solubility with a refrigerant HFC-134a as refrigerating machine oil. Using hard alkyl benzene oil,
The deterioration of abrasion resistance and sludge formation are improved as compared with the case of using ester oil. Further, as means for accelerating the return of the refrigerating machine oil that has flowed into the refrigeration cycle to the compressor, an evaporator 6 is provided above the accumulator 41.
Connect the outlet side, connect the compressor 1 suction side to the lower side,
By inserting the suction pipe into the accumulator 41 and extending it upward, the refrigerant and the oil flowing into the accumulator 41 are separated into two layers, and the oil in the upper layer flows from the suction pipe inlet to the suction side of the compressor 1. The structure is such that it returns to prevent accumulation of refrigerating machine oil in the accumulator 41.
Further, the viscosity of the oil is lowered to secure the low temperature fluidity of the oil in the evaporator 1, and the amount of oil adhering to the inner wall of the evaporator 1 is suppressed to prevent the heat exchange performance from deteriorating. Further, the oil discharge amount of the compressor 1 is reduced.

【0005】以上に述べたように、特開平5−1573
79号公報では、冷媒HFC−134aを使用した冷蔵
庫において、冷凍機油として相互溶解性の少ないノンエ
ステル油を使用し、冷凍サイクル中に流入した冷凍機油
をサイクル中に滞留させずに圧縮機に戻すためのサイク
ル構成要素の改善を行ない、圧縮機摺動部への給油不足
や蒸発器内での油の滞留による冷凍能力の低下を低減し
ている。
As described above, Japanese Patent Application Laid-Open No. 5-15733 / 1993
According to Japanese Patent Publication No. 79, in a refrigerator using a refrigerant HFC-134a, a non-ester oil having a low mutual solubility is used as a refrigerating machine oil, and the refrigerating machine oil flowing into the refrigeration cycle is returned to the compressor without being retained in the cycle. Therefore, the cycle components have been improved to reduce the deterioration of the refrigeration capacity due to insufficient oil supply to the sliding parts of the compressor and oil retention in the evaporator.

【0006】[0006]

【発明が解決しようとする課題】特開平5−15737
9号公報では、冷媒HFC−134aを使用した冷蔵庫
において、相互溶解性の少ないノンエステル油を冷凍機
油として使用し、主にサイクル構成要素の改善によって
圧縮機への油戻りを促進させているが、アキュムレータ
内では冷凍機油の滞留を低減できるが、蒸発器内では冷
凍機油ある程度滞留することが避けられず、蒸発器の熱
伝達率が悪くなって冷凍能力が低下するという問題につ
いては解決されていない。また、特にロータリ圧縮機に
おいては、圧縮機のシリンダ内で偏心回動をして冷媒を
圧縮させるローラと、シリンダとローラで仕切られた空
間を往復運動をしながら冷媒圧縮空間に区切るベーンと
の接触部の潤滑が境界潤滑になりやすく摺動部の摩耗を
引き起こしやすいため、この摩耗を抑制するために摺動
部の温度を低下させることが重要となるが、前記発明に
おいては、圧縮機摺動部の冷却に関してはあまり考慮さ
れていなかった。
[Problems to be Solved by the Invention]
According to Japanese Patent Publication No. 9, in a refrigerator using a refrigerant HFC-134a, a non-ester oil having a low mutual solubility is used as a refrigerating machine oil, and an oil return to a compressor is promoted mainly by improving cycle components. However, the accumulation of refrigerating machine oil in the accumulator can be reduced, but the refrigerating machine oil inevitably accumulates in the evaporator to some extent, and the problem that the heat transfer coefficient of the evaporator is deteriorated and the refrigerating capacity is reduced has been solved. Absent. Further, particularly in a rotary compressor, a roller that eccentrically rotates in the cylinder of the compressor to compress the refrigerant and a vane that divides the space partitioned by the cylinder and the roller into the refrigerant compression space while reciprocating Since the lubrication of the contact portion is likely to be boundary lubrication and the wear of the sliding portion is likely to occur, it is important to lower the temperature of the sliding portion in order to suppress this wear. Little consideration was given to the cooling of the moving part.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めの手段として、 (1)相互溶解性の少ない冷媒と冷凍機油を使用した冷
蔵庫の冷凍サイクルにおいて、ドライヤとキャピラリチ
ューブの間の配管途中に流路分岐容器を配設し、流路分
岐容器により、冷凍機油の流れを、圧縮機、凝縮器、ド
ライヤ、流路分岐容器、圧縮機と循環するように、すな
わち、冷凍機油を、キャピラリチューブおよび蒸発器を
介さずに圧縮機に戻すように冷凍サイクルを構成して、
圧縮機摺動部への給油および圧縮機の冷却を促進すると
共に、冷凍機油の蒸発器内での滞留を防止する。
[Means for Solving the Problems] As means for solving the above problems, (1) In the refrigerating cycle of a refrigerator using a refrigerant having a low mutual solubility and refrigerating machine oil, in the middle of piping between a dryer and a capillary tube. A flow path branch container is disposed in the flow path branch container so that the flow of the refrigerating machine oil is circulated through the compressor, the condenser, the dryer, the flow path branching container, and the compressor. Configure the refrigeration cycle to return to the compressor without going through a tube and evaporator,
Oil supply to the sliding parts of the compressor and cooling of the compressor are promoted, and refrigerating machine oil is prevented from accumulating in the evaporator.

【0008】(2)流路分岐容器から突出させた油吐出
パイプの途中に開閉弁を設け、圧縮機運転中に開閉弁を
断続的に開閉することにより、冷凍機油を開閉弁を介し
て圧縮機内に戻すように冷凍サイクルを構成する。
(2) A refrigerating machine oil is compressed through the on-off valve by providing an on-off valve in the middle of the oil discharge pipe protruding from the flow path branch container and intermittently opening and closing the on-off valve during operation of the compressor. The refrigeration cycle is configured to return to the cabin.

【0009】(3)凝縮器から流路分岐容器内に流入し
て二層分離した上層側の冷凍機油および下層側の液冷媒
のうち、圧縮機運転中において開閉弁が閉じているとき
に上層側の冷凍機油を流路分離容器内部に溜めておき、
開閉弁が開いているときに開閉弁を介して圧縮機内に戻
すように冷凍サイクルを構成する。
(3) Of the upper-layer side refrigerating machine oil and the lower-layer side liquid refrigerant which flow into the flow path branching container from the condenser and are separated into two layers, the upper layer is when the on-off valve is closed during the operation of the compressor. Refrigerator oil on the side is stored inside the flow path separation container,
The refrigeration cycle is configured to return to the inside of the compressor via the opening / closing valve when the opening / closing valve is open.

【0010】(4)圧縮機運転中において、開閉弁が閉
じているときに、流路分岐容器内で二層分離した上層側
の冷凍機油が、流路分離容器内から溢れて凝縮器内に流
入するのを防止するため、容器内で冷凍機油が溜る上限
量以上に流路分離容器の内容積を確保する。
(4) During operation of the compressor, when the on-off valve is closed, the upper-layer side refrigerating machine oil separated into two layers in the flow passage branch container overflows from the flow passage separation container and enters the condenser. In order to prevent the inflow, the internal volume of the flow path separation container is ensured to be equal to or larger than the upper limit amount of refrigerating machine oil accumulated in the container.

【0011】(5)油吐出パイプと圧縮機との間の油戻
り流路に相当する配管途中に油通過用キャピラリチュー
ブを設け、凝縮器から流路分岐容器内に流入して二層分
離した上層側の冷凍機油を油吐出パイプを介して直接に
圧縮機内に戻すように、油通過用キャピラリチューブの
流量抵抗を設定する。
(5) An oil passage capillary tube is provided in the middle of the pipe corresponding to the oil return flow passage between the oil discharge pipe and the compressor, and the oil is passed from the condenser into the flow passage branch container to separate into two layers. The flow resistance of the oil passage capillary tube is set so that the refrigerating machine oil on the upper layer side is directly returned into the compressor through the oil discharge pipe.

【0012】(6)流路分岐容器の内部空間で油吐出パ
イプの突出位置より上方に、ガス冷媒と冷凍機油を分離
してガス冷媒だけを透過させるフィルタを設置し、さら
に流路分岐容器のフィルタ位置より上方からガス冷媒吐
出パイプを突出させて流路分岐容器とキャピラリチュー
ブの間の配管途中まで配管により接続する。
(6) A filter that separates the gas refrigerant from the refrigerating machine oil and allows only the gas refrigerant to pass through is installed above the protruding position of the oil discharge pipe in the internal space of the flow path branching container. The gas refrigerant discharge pipe is projected from above the filter position, and is connected to the middle of the pipe between the flow path branch container and the capillary tube by a pipe.

【0013】(7)流路分岐容器内のガス冷媒が、油吐
出パイプを介して圧縮機内に戻ることなく、フィルタか
らガス冷媒吐出パイプを介してキャピラリチューブから
蒸発器内に流入するように、流路分岐容器と蒸発器の間
のキャピラリチューブの流量抵抗と、流路分岐容器と圧
縮機の間の油通過用キャピラリチューブあるいは開閉弁
の流量抵抗を設定する。
(7) The gas refrigerant in the flow path branch container is allowed to flow from the filter through the gas refrigerant discharge pipe into the evaporator through the gas refrigerant discharge pipe without returning to the compressor through the oil discharge pipe. The flow resistance of the capillary tube between the flow path branch container and the evaporator and the flow resistance of the oil passage capillary tube or the on-off valve between the flow path branch container and the compressor are set.

【0014】(8)ロータリ圧縮機を搭載した冷蔵庫の
冷凍サイクルにおいて、冷凍機油を油吐出パイプを介し
て圧縮機シリンダ内に直接に戻すように油戻り流路を構
成し、冷媒の圧縮過程において冷凍機油をシリンダ内に
吸入させる。
(8) In a refrigerating cycle of a refrigerator equipped with a rotary compressor, an oil return passage is constituted so as to directly return refrigerating machine oil into a compressor cylinder through an oil discharge pipe, and in a refrigerant compression process. Intake refrigeration oil into the cylinder.

【0015】(9)レシプロ圧縮機を搭載した冷蔵庫の
冷凍サイクルにおいて、冷凍機油を油吐出パイプを介し
て圧縮機吸込パイプの途中または圧縮機チャンバ内に直
接に戻すように油戻り流路を構成する。特に、蒸発器と
圧縮機の間の配管途中にSタンクが配設してある場合に
は、冷凍機油をSタンクの直前に戻すように構成する。
(9) In a refrigeration cycle of a refrigerator equipped with a reciprocating compressor, an oil return flow path is constructed so that refrigerating machine oil is returned directly to the middle of the compressor suction pipe or directly into the compressor chamber via the oil discharge pipe. To do. In particular, when an S tank is provided in the middle of the pipe between the evaporator and the compressor, the refrigerating machine oil is returned immediately before the S tank.

【0016】[0016]

【作用】従来の冷凍サイクルでは、冷媒と共に圧縮機内
から冷凍サイクル中に流入した冷凍機油は、低温のため
に油粘度が増加する蒸発器内に滞留しやすく、蒸発器の
内壁に付着して熱伝達率が低下し、吸熱効果が低下する
ため、冷凍能力が低下する。また、冷凍機油のサイクル
内での滞留によって圧縮機内で冷凍機油の量が不足する
ために圧縮機摺動部への給油不足を生じ、摺動部の摩耗
の原因となる。相互溶解性の少ない冷媒と冷凍機油を使
用した冷蔵庫において、図4に示したような主にサイク
ル構成要素の改善では、これらの問題点の解消にはまだ
不十分と予想される。しかしながら、本発明によれば、
ドライヤとキャピラリチューブの間の配管途中に油戻り
機構を備えた流路分岐容器を配設することにより、圧縮
機運転中に冷凍機油の蒸発器内への流入をほとんど防止
し、冷凍機油を圧縮機内に効率的に戻すことができ、凝
縮器によって冷却された冷凍機油によって圧縮機の冷却
が促進されるため、上記の問題点を解消することができ
る。
In the conventional refrigeration cycle, the refrigerating machine oil that has flowed into the refrigerating cycle from the compressor together with the refrigerant tends to stay in the evaporator where the oil viscosity increases due to the low temperature, and the refrigerating machine oil adheres to the inner wall of the evaporator and heats up. Since the transmissivity is reduced and the endothermic effect is reduced, the refrigerating capacity is reduced. Further, since the amount of refrigerating machine oil in the compressor is insufficient due to the accumulation of refrigerating machine oil in the cycle, insufficient supply of oil to the sliding parts of the compressor causes wear of the sliding parts. In a refrigerator using a refrigerant and a refrigerating machine oil having low mutual solubility, it is expected that improvement of the cycle components as shown in Fig. 4 is still insufficient for solving these problems. However, according to the present invention,
By installing a flow path branching container equipped with an oil return mechanism in the middle of the pipe between the dryer and the capillary tube, the flow of refrigerating machine oil into the evaporator is almost prevented during compressor operation, and refrigerating machine oil is compressed. Since the compressor oil can be efficiently returned to the inside of the machine and the cooling of the compressor is promoted by the refrigerating machine oil cooled by the condenser, the above problems can be solved.

【0017】圧縮機から冷凍サイクル内に流入した相互
溶解性の少ない冷媒および冷凍機油は、凝縮器を通過後
に流路分岐容器内に流入して、凝縮器によって凝縮され
た液冷媒が下層側に、冷凍機油が上層側に二層分離す
る。凝縮器によって凝縮し切れなかった少量のガス冷媒
が冷凍機油の上層側に溜る。
Refrigerant and refrigerating machine oil having a low mutual solubility flowing from the compressor into the refrigeration cycle flow into the flow path branch container after passing through the condenser, and the liquid refrigerant condensed by the condenser is directed to the lower layer side. , Refrigerating machine oil is separated into two layers on the upper layer side. A small amount of gas refrigerant that has not been completely condensed by the condenser accumulates on the upper layer side of the refrigerating machine oil.

【0018】流路分岐容器から突出させた油吐出パイプ
の途中に開閉弁を設けて、圧縮機運転中に弁を断続的に
開閉し、弁が閉じているときに、上層側の冷凍機油を流
路分離容器内部に溜めておき、弁が開いているときに、
油吐出パイプから吐出させて開閉弁を介して直接に圧縮
機内に戻す。
An on-off valve is provided in the middle of the oil discharge pipe protruding from the flow path branching container to intermittently open and close the valve during operation of the compressor, and when the valve is closed, the refrigerating machine oil on the upper layer side is supplied. Stored inside the flow path separation container, and when the valve is open,
It is discharged from the oil discharge pipe and returned directly into the compressor via the on-off valve.

【0019】また、油吐出パイプと圧縮機との間の油戻
り流路に相当する配管途中に油通過用キャピラリチュー
ブを設け、凝縮器から流路分岐容器内に流入して二層分
離した上層側の冷凍機油を油吐出パイプを介して直接に
圧縮機内に戻すように、油通過用キャピラリチューブの
流量抵抗を設定する。
Further, an oil passage capillary tube is provided in the middle of the pipe corresponding to the oil return passage between the oil discharge pipe and the compressor, and the upper layer separated from the condenser into the passage branch container is separated into two layers. The flow resistance of the oil passage capillary tube is set so that the refrigerating machine oil on the side is returned directly into the compressor via the oil discharge pipe.

【0020】また、流路分岐容器の内部空間で油吐出パ
イプの突出位置より上方に、ガス冷媒と冷凍機油を分離
してガス冷媒だけを透過させるフィルタを設置し、さら
に流路分岐容器のフィルタ位置より上方からガス冷媒吐
出パイプを突出させて流路分岐容器とキャピラリチュー
ブの間の配管途中まで配管により接続し、冷凍機油の上
層に溜った少量のガス冷媒を、フィルタを透過させてガ
ス冷媒吐出パイプを介してキャピラリチューブから蒸発
器内に流入させる。一方、冷凍機油はフィルタで遮られ
てガス冷媒吐出パイプに流入することなく、油吐出パイ
プを介して直接に圧縮機内に戻るようにする。また、ガ
ス冷媒が冷凍機油と共に油吐出パイプを介して圧縮機内
に戻らないように、流路分岐容器と蒸発器の間のキャピ
ラリチューブの流量抵抗と、流路分岐容器と圧縮機の間
の油通過用キャピラリチューブの流量抵抗の比率を設定
する。
A filter for separating the gas refrigerant and the refrigerating machine oil and allowing only the gas refrigerant to pass therethrough is installed above the protruding position of the oil discharge pipe in the internal space of the flow path branching container, and the filter of the flow path branching container is further provided. The gas refrigerant discharge pipe is projected from above the position and connected by a pipe halfway between the flow path branch container and the capillary tube, and a small amount of gas refrigerant accumulated in the upper layer of the refrigerating machine oil is passed through the filter to pass through the gas refrigerant. Flow from the capillary tube into the evaporator through the discharge pipe. On the other hand, the refrigerating machine oil is not blocked by the filter and flows into the gas refrigerant discharge pipe, and is returned directly into the compressor through the oil discharge pipe. In addition, the flow resistance of the capillary tube between the flow path branch container and the evaporator and the oil between the flow path branch container and the compressor are adjusted so that the gas refrigerant does not return into the compressor through the oil discharge pipe together with the refrigeration oil. Set the flow resistance ratio of the passing capillary tube.

【0021】以上の作用により、流路分岐容器内の液冷
媒は、流路分岐容器の底部に溜ってキャピラリチューブ
を介して蒸発器内に流入し、流路分岐容器内のガス冷媒
は、冷凍機油の上層部に溜ってフィルタを透過してから
ガス冷媒吐出パイプ、キャピラリチューブを介して蒸発
器内に流入し、流路分岐容器内の冷凍機油は、液冷媒と
ガス冷媒の間の容器内中央部に溜って開閉弁が開いたと
きに油吐出パイプ、油通過用キャピラリチューブを介し
て圧縮機内に流入する。したがって、冷凍機油は蒸発器
内への流入を防止して圧縮機内に戻すことができ、冷媒
は凝縮器から圧縮機内への直通を防止して蒸発器内に流
入させることができる。
As a result of the above operation, the liquid refrigerant in the flow path branch container accumulates at the bottom of the flow path branch container and flows into the evaporator through the capillary tube, and the gas refrigerant in the flow path branch container is frozen. Refrigerant machine oil in the flow path branch container collects in the upper layer of machine oil and permeates the filter, then flows into the evaporator through the gas refrigerant discharge pipe and the capillary tube, and is stored in the container between the liquid refrigerant and the gas refrigerant. When it collects in the central portion and the on-off valve opens, it flows into the compressor through the oil discharge pipe and the oil passage capillary tube. Therefore, the refrigerating machine oil can be prevented from flowing into the evaporator and returned to the compressor, and the refrigerant can be prevented from flowing directly from the condenser into the compressor and allowed to flow into the evaporator.

【0022】これらの結果、蒸発器内での冷凍機油の滞
留を防止して、冷凍能力を向上させることができる。ま
た、圧縮機摺動部への十分な給油を確保し、潤滑性低下
を防止して信頼性を向上させることができる。また、特
にロータリ圧縮機を使用した冷凍サイクルの場合には、
凝縮器で冷却された冷凍機油を冷媒圧縮過程において圧
縮機のシリンダ内に供給することによって、圧縮機の冷
却効果が得られる。
As a result, the refrigerating capacity can be improved by preventing the refrigerating machine oil from staying in the evaporator. Further, it is possible to secure sufficient oil supply to the sliding portion of the compressor, prevent deterioration of lubricity, and improve reliability. Moreover, especially in the case of a refrigeration cycle using a rotary compressor,
By supplying the refrigerating machine oil cooled in the condenser into the cylinder of the compressor during the refrigerant compression process, the cooling effect of the compressor can be obtained.

【0023】[0023]

【実施例】本発明の一実施例を図1〜図3により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.

【0024】図1〜図3は、本発明の冷蔵庫の冷凍サイ
クル系統図であり、図1はロータリ圧縮機を搭載した冷
蔵庫、図2〜図3はレシプロ圧縮機を搭載した冷蔵庫の
冷凍サイクルを示す。
1 to 3 are refrigeration cycle system diagrams of the refrigerator of the present invention. FIG. 1 shows a refrigerator equipped with a rotary compressor, and FIGS. 2 to 3 show a refrigeration cycle equipped with a reciprocating compressor. Show.

【0025】図1において、冷媒および冷凍機油は相互
溶解性の少ないHFC−134aとノンエステル系冷凍
機油を使用しており、冷媒HFC−134aは圧縮機1
で圧縮されて高温高圧のガスとして吐出され、凝縮器2
で凝縮されて液化し、ドライヤ3で冷媒中の水分が吸収
され、流路分岐容器4内に流入する。ここで、液冷媒は
冷凍機油と二層分離して下層側、すなわち流路分岐容器
4の底部に溜ってキャピラリチューブ5に流入し、ガス
冷媒は液冷媒と二層分離した上層側の冷凍機油の上部か
らフィルタ10を透過してガス冷媒吐出パイプ7bを介
してキャピラリチューブ5に流入する。キャピラリチュ
ーブ5に流入した冷媒は減圧されて、蒸発器6で蒸発、
気化して低温低圧のガスとなり、圧縮機1に吸入されて
再圧縮され、上述のサイクルを繰り返す。一方、ノンエ
ステル系冷凍機油は、圧縮機1から冷媒の共に吐出さ
れ、凝縮器2、ドライヤ3を通過して、流路分岐容器4
内に流入する。ここで、冷凍機油は液冷媒と二層分離し
て上層側、すなわち容器内中央に溜り、圧縮機運転中に
開閉弁11が開いたときに油吐出パイプ7aに吸い込ま
れて油通過用キャピラリチューブ9を介して圧縮機1の
シリンダ内に冷媒圧縮過程において流入する。なお、流
路分岐容器4内の冷凍機油は、上方はフィルタ10によ
り、下方は液冷媒により遮断されているため、蒸発器6
内への流入はほぼ防止できる。また、流路分岐容器4内
の冷凍機油が容器内から溢れないように流路分岐容器4
の内容積を設定することにより、開閉弁11が閉じてい
るときに冷凍機油の凝縮器2内への流入を防止できる。
尚、前記冷凍サイクルを構成する各要素は、それぞれ適
切な配管7にて密封して接続されている。
In FIG. 1, the refrigerant and the refrigerating machine oil are HFC-134a and non-ester type refrigerating machine oil, which have low mutual solubility, and the refrigerant HFC-134a is the compressor 1
Is compressed by the compressor and discharged as high-temperature and high-pressure gas.
Is condensed and liquefied, the moisture in the refrigerant is absorbed by the dryer 3, and the moisture flows into the flow path branch container 4. Here, the liquid refrigerant is separated into two layers from the refrigerating machine oil, and is accumulated in the lower layer side, that is, at the bottom of the flow path branching container 4, and flows into the capillary tube 5, and the gas refrigerant is separated into two layers from the liquid refrigerant and the upper layer side refrigerating machine oil is separated. Permeate the filter 10 from above and flow into the capillary tube 5 through the gas refrigerant discharge pipe 7b. The refrigerant flowing into the capillary tube 5 is decompressed and evaporated in the evaporator 6,
The gas is vaporized into a low temperature and low pressure gas, which is sucked into the compressor 1 and recompressed, and the above cycle is repeated. On the other hand, the non-ester type refrigerating machine oil is discharged together with the refrigerant from the compressor 1, passes through the condenser 2 and the drier 3, and is passed through the flow path branching container 4
Flows into. Here, the refrigerating machine oil is separated into two layers from the liquid refrigerant, and is collected in the upper layer side, that is, in the center of the container, and is sucked into the oil discharge pipe 7a when the opening / closing valve 11 is opened during the operation of the compressor and the oil passage capillary tube. It flows into the cylinder of the compressor 1 via 9 in the refrigerant compression process. Since the refrigerating machine oil in the flow path branch container 4 is blocked by the filter 10 at the upper side and by the liquid refrigerant at the lower side, the evaporator 6 is blocked.
Inflow to the inside can be almost prevented. Further, the flow path branching container 4 is provided so that refrigeration oil in the flow path branching container 4 does not overflow from the container.
By setting the internal volume of the refrigerating machine oil, it is possible to prevent the refrigerating machine oil from flowing into the condenser 2 when the on-off valve 11 is closed.
In addition, each element which comprises the said refrigeration cycle is hermetically connected by the suitable piping 7, respectively.

【0026】圧縮機1への油戻り流路8に関しては、圧
縮機吸込7cに接続する方法もあるが、この場合には吸
込ガス冷媒の温度上昇によって圧縮機1の容積効率が低
下するため、本実施例では、油戻り流路8を圧縮機1内
の主軸受に接続し、シリンダ内で偏心回動をして冷媒を
圧縮するローラの端面部によって開閉される位置に開通
させて、その流路が開くタイミングは、前記ローラが回
転してガス冷媒を圧縮する途中とした。これにより、圧
縮機1の容積効率を低下させることなく、圧縮中のガス
冷媒および圧縮機1の摺動部を冷凍機油によって冷却さ
せることができ、シリンダ内に吐出された冷凍機油は、
ローラとベーンの接触部の潤滑性向上にも寄与する。な
お、油通過用キャピラリチューブ9の流量抵抗を調整す
ることによって、開閉弁11を省略することができる。
The oil return passage 8 to the compressor 1 may be connected to the compressor suction 7c, but in this case, the volume efficiency of the compressor 1 is lowered due to the temperature rise of the suction gas refrigerant. In the present embodiment, the oil return passage 8 is connected to the main bearing in the compressor 1, and is opened to a position opened and closed by the end surface portion of the roller that eccentrically rotates in the cylinder to compress the refrigerant, The timing of opening the flow path was during the compression of the gas refrigerant by the rotation of the roller. Accordingly, the gas refrigerant being compressed and the sliding portion of the compressor 1 can be cooled by the refrigerating machine oil without lowering the volumetric efficiency of the compressor 1, and the refrigerating machine oil discharged into the cylinder is
It also contributes to improving the lubricity of the contact area between the roller and the vane. The on-off valve 11 can be omitted by adjusting the flow resistance of the oil passage capillary tube 9.

【0027】前記の実施例によって、圧縮機運転中に冷
凍機油が蒸発器内へ流入するのを防止して、蒸発器の熱
交換量低下に伴う冷凍能力の低下を補うことができる。
また、圧縮機運転中にサイクル中に流入した冷凍機油
を、蒸発器を介さずに圧縮機内に戻すことによって、圧
縮機内の冷凍機油の量を確保して圧縮機摺動部への給油
を促進させる。また、冷凍機油を冷媒圧縮過程において
圧縮機シリンダ内に戻すことによって、ローラとベーン
の接触部の潤滑性低下を防止し、圧縮機容積効率を向上
させる。さらに、凝縮器によって冷却された冷凍機油を
圧縮機内に戻すことによって圧縮機の冷却が促進され
る。したがって、圧縮機の信頼性を向上することができ
る。
According to the above-described embodiment, it is possible to prevent the refrigerating machine oil from flowing into the evaporator during the operation of the compressor, and to compensate the deterioration of the refrigerating capacity due to the decrease of the heat exchange amount of the evaporator.
In addition, by returning the refrigerating machine oil that has flowed into the cycle during operation of the compressor to the compressor without passing through the evaporator, it is possible to secure the amount of refrigerating machine oil in the compressor and promote lubrication to the sliding parts of the compressor. Let Further, by returning the refrigerating machine oil to the inside of the compressor cylinder during the refrigerant compression process, it is possible to prevent deterioration of lubricity of the contact portion between the roller and the vane, and improve the compressor volume efficiency. Further, the cooling of the compressor is promoted by returning the refrigerating machine oil cooled by the condenser into the compressor. Therefore, the reliability of the compressor can be improved.

【0028】本発明をレシプロ圧縮機を搭載した冷蔵庫
に適用した場合には、ロータリ圧縮機の場合のような圧
縮機の冷却効果を得ることはできないが、蒸発器内で冷
凍機油の滞留を防止することによって、冷凍能力低下を
防止し、圧縮機内で必要な冷凍機油を確保して圧縮機摺
動部への給油を促進することによって、耐摩耗性を向上
させることができる。
When the present invention is applied to a refrigerator equipped with a reciprocating compressor, it is not possible to obtain the cooling effect of the compressor as in the case of the rotary compressor, but the refrigerating machine oil is prevented from accumulating in the evaporator. By doing so, it is possible to improve the wear resistance by preventing the deterioration of the refrigerating capacity, securing the necessary refrigerating machine oil in the compressor, and promoting the oil supply to the sliding parts of the compressor.

【0029】図2はレシプロ圧縮機を搭載した冷蔵庫の
冷凍サイクルにおいて、油戻り流路8を油吐出パイプ7
aから油通過用キャピラリチューブ9を介して圧縮機1
チャンバ内に接続した実施例であり、その他の部分のサ
イクル構成は図1に準ずる。
FIG. 2 shows the oil return flow path 8 through the oil discharge pipe 7 in the refrigeration cycle of the refrigerator equipped with the reciprocating compressor.
Compressor 1 from a through the oil passage capillary tube 9
This is an example in which it is connected to the inside of the chamber, and the cycle configuration of the other parts conforms to FIG.

【0030】図3はレシプロ圧縮機を搭載した冷蔵庫の
冷凍サイクルにおいて、油戻り流路8を油吐出パイプ7
aから油通過用キャピラリチューブ9を介して圧縮機吸
込パイプ7cに接続することによって、圧縮機吸込パイ
プ7cの吸圧により流路分岐容器4内に溜った冷凍機油
を速やかに圧縮機1内に戻すことができる。その他の部
分のサイクル構成は図1に準ずる。
FIG. 3 shows an oil return flow path 8 through an oil discharge pipe 7 in a refrigeration cycle of a refrigerator equipped with a reciprocating compressor.
By connecting from a to the compressor suction pipe 7c via the oil passage capillary tube 9, the refrigerating machine oil accumulated in the flow path branch container 4 due to the suction pressure of the compressor suction pipe 7c is promptly transferred to the compressor 1. Can be returned. The cycle configuration of the other parts conforms to FIG.

【0031】ただし、図2および図3に示したレシプロ
圧縮機を搭載した冷蔵庫の場合には、キャピラリチュー
ブ5と油通過用キャピラリチューブ9に関し、内径およ
び長さを変えて油通過用キャピラリチューブ9の方の流
量抵抗を大きくし、冷媒と冷凍機油の流量を調整する方
法により、開閉弁11を省略することができる。
However, in the case of a refrigerator equipped with the reciprocating compressor shown in FIGS. 2 and 3, regarding the capillary tube 5 and the oil passage capillary tube 9, the oil passage capillary tube 9 is changed by changing the inner diameter and the length. The on-off valve 11 can be omitted by increasing the flow resistance of the above and adjusting the flow rates of the refrigerant and the refrigerating machine oil.

【0032】なお、ここで記載した実施例では、冷媒お
よび冷凍機油として相互溶解性の少ないHFC−134
aとノンエステル系冷凍機油を使用した冷蔵庫に関する
ものであるが、本発明をHCFC−22およびR502
代替冷媒である混合冷媒とノンエステル系冷凍機油を使
用した冷蔵庫に適用した場合でも同様の効果を得ること
ができる。
In the embodiment described here, HFC-134 having a low mutual solubility as a refrigerant and a refrigerating machine oil is used.
The present invention relates to a refrigerator using a and a non-ester type refrigerating machine oil. The present invention relates to HCFC-22 and R502.
Similar effects can be obtained even when applied to a refrigerator using a mixed refrigerant which is an alternative refrigerant and a non-ester type refrigerating machine oil.

【0033】[0033]

【発明の効果】以上のように、本発明は、冷凍機油の蒸
発器内での滞留による冷凍能力の低下と、圧縮機摺動部
への給油不足による潤滑特性の低下を防止するために、
冷媒と共に圧縮機から冷凍サイクル内に吐出した冷凍機
油を、蒸発器内に流入させずに圧縮機内に戻すように冷
凍サイクルを構成したものであり、ドライヤとキャピラ
リチューブの間の配管途中に流路分岐容器を配設し、冷
凍機油を蒸発器を介さずに圧縮機に戻すことにより、冷
凍機油の蒸発器内での滞留を防止して冷凍能力を向上さ
せることができる。また、圧縮機内の油量を確保して十
分に摺動部へ給油し、潤滑性を向上させて圧縮機及び冷
凍システム全体の信頼性を向上させることができる。さ
らに、ロータリ圧縮機を採用した冷蔵庫においては、上
記の効果に加えて、圧縮機の冷却効果が得られ、圧縮機
摺動部の耐摩耗性を向上させてさらに信頼性を向上させ
ることができる。
As described above, according to the present invention, in order to prevent deterioration of refrigerating capacity due to retention of refrigerating machine oil in the evaporator and deterioration of lubricating characteristics due to insufficient oil supply to the sliding parts of the compressor,
The refrigeration cycle is configured so that the refrigeration oil discharged from the compressor into the refrigeration cycle together with the refrigerant is returned to the compressor without flowing into the evaporator.A flow path is provided in the middle of the pipe between the dryer and the capillary tube. By disposing the branching container and returning the refrigerating machine oil to the compressor without passing through the evaporator, the refrigerating capacity can be improved by preventing the refrigerating machine oil from staying in the evaporator. In addition, it is possible to secure the amount of oil in the compressor, sufficiently supply the oil to the sliding portion, improve the lubricity, and improve the reliability of the compressor and the refrigeration system as a whole. Further, in the refrigerator employing the rotary compressor, in addition to the above effects, the cooling effect of the compressor can be obtained, and the abrasion resistance of the compressor sliding portion can be improved to further improve the reliability. .

【図面の簡単な説明】[Brief description of drawings]

【図1】ロータリ圧縮機を搭載した本発明の冷凍サイク
ルの系統図である。
FIG. 1 is a system diagram of a refrigeration cycle of the present invention equipped with a rotary compressor.

【図2】レシプロ圧縮機を搭載した本発明の冷凍サイク
ルの系統図である。
FIG. 2 is a system diagram of a refrigeration cycle of the present invention equipped with a reciprocating compressor.

【図3】レシプロ圧縮機を搭載した本発明の冷凍サイク
ルの系統図である。
FIG. 3 is a system diagram of a refrigeration cycle of the present invention equipped with a reciprocating compressor.

【図4】従来例の冷凍サイクルの系統図である。FIG. 4 is a system diagram of a conventional refrigeration cycle.

【符号の説明】 1…圧縮機、 2…凝縮器、 3…ドライヤ、 4…流路分岐容器、 5…キャピラリチューブ、 6…蒸発器、 7…配管、 7a…油吐出パイプ、 7b…ガス冷媒吐出パイプ、 7c…圧縮機吸込パイプ、 8…油戻り流路、 9…油通過用キャピラリチューブ、 10…フィルタ、 11…開閉弁、 41…アキュムレータ。[Explanation of Codes] 1 ... Compressor, 2 ... Condenser, 3 ... Dryer, 4 ... Flow path branch container, 5 ... Capillary tube, 6 ... Evaporator, 7 ... Piping, 7a ... Oil discharge pipe, 7b ... Gas refrigerant Discharge pipe, 7c ... Compressor suction pipe, 8 ... Oil return flow passage, 9 ... Oil passage capillary tube, 10 ... Filter, 11 ... Open / close valve, 41 ... Accumulator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉永 悦子 栃木県下都賀郡大平町大字富田800番地株 式会社日立製作所リビング機器事業部内 (72)発明者 金子 岳広 栃木県下都賀郡大平町大字富田709番地の 2株式会社日立栃木エレクトロニクス内 (72)発明者 権守 仁彦 栃木県下都賀郡大平町大字富田800番地株 式会社日立製作所リビング機器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuko Yoshinaga 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Living Equipment Division, Hitachi, Ltd. Address No. 2 within Hitachi Tochigi Electronics Co., Ltd. (72) Inventor, Yoshihiko Gonmori 800, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Living Equipment Division, Hitachi Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、ドライヤ、キャピラリチ
ューブ、蒸発器が配管によって環状に接続されて構成さ
れ、相互溶解性の少ない冷媒と冷凍機油を使用した冷蔵
庫の冷凍サイクルにおいて、ドライヤとキャピラリチュ
ーブの間の配管途中に流路分岐容器を配設し、前記流路
分岐容器により、冷媒の流れを、圧縮機、凝縮器、ドラ
イヤ、前記流路分岐容器、キャピラリチューブ、蒸発
器、前記圧縮機と循環させるのに対し、冷凍機油の流れ
を、圧縮機、凝縮器、ドライヤ、前記流路分岐容器、前
記圧縮機と循環させるように冷凍サイクルを構成したこ
とを特徴とする冷蔵庫。
1. A compressor, a condenser, a dryer, a capillary tube, and an evaporator are connected in a ring shape by pipes, and in a refrigerating cycle of a refrigerator using a refrigerant and a refrigerating machine oil having a low mutual solubility, the dryer and the capillary are used. A flow path branching container is arranged in the middle of the pipe between the tubes, and the flow path of the refrigerant is flown by the compressor, the condenser, the dryer, the flow path branching container, the capillary tube, the evaporator, and the compression unit. A refrigerator characterized in that a refrigerating cycle is configured so that a flow of refrigerating machine oil is circulated through a compressor, a condenser, a dryer, the flow path branching container, and the compressor, while being circulated with a machine.
【請求項2】前記流路分岐容器から突出させた油吐出パ
イプの途中に開閉弁を設け、圧縮機運転中に前記開閉弁
を断続的に開閉することにより、冷凍機油を前記開閉弁
を介して圧縮機内に戻すように冷凍サイクルを構成した
ことを特徴とする請求項1記載の冷蔵庫。
2. An on-off valve is provided in the middle of an oil discharge pipe projecting from the flow path branching container, and the on-off valve is opened and closed intermittently during operation of a compressor to allow refrigerating machine oil to pass through the on-off valve. The refrigerator according to claim 1, wherein the refrigeration cycle is configured to be returned to the inside of the compressor by means of a refrigerator.
【請求項3】凝縮器から前記流路分岐容器内に流入して
二層分離した上層側の冷凍機油および下層側の液冷媒の
うち、圧縮機運転中において前記開閉弁が閉じていると
きに上層側の冷凍機油を前記流路分離容器内部に溜めて
おき、前記開閉弁が開いているときに前記流路分離容器
内部に溜めておいた上層側の冷凍機油を前記開閉弁を介
して圧縮機内に戻すように冷凍サイクルを構成したこと
を特徴とする請求項1又は2記載の冷蔵庫。
3. Of the refrigerating machine oil on the upper layer side and the liquid refrigerant on the lower layer side, which flow into the flow path branching container from the condenser and are separated into two layers, when the on-off valve is closed during operation of the compressor. Refrigerating machine oil on the upper layer side is stored inside the flow path separation container, and the refrigerating machine oil on the upper layer side stored inside the flow path separation container is compressed through the opening / closing valve when the opening / closing valve is open. The refrigerator according to claim 1 or 2, wherein the refrigeration cycle is configured to be returned to the inside of the machine.
【請求項4】凝縮器から前記流路分岐容器内に流入して
二層分離した上層側の冷凍機油および下層側の液冷媒の
うち、上層側の冷凍機油が前記流路分離容器内から溢れ
ないように、前記流路分離容器の内容積を確保したこと
を特徴とする請求項1,2又は3記載の冷蔵庫。
4. The upper layer refrigerating machine oil out of the upper layer refrigerating machine oil and the lower layer side liquid refrigerant flowing from the condenser into the channel branching vessel and separated into two layers overflows from the channel separating vessel. The refrigerator according to claim 1, 2, or 3, wherein an internal volume of the flow path separation container is secured so as not to exist.
【請求項5】前記油吐出パイプと圧縮機との間の油戻り
流路に相当する配管途中に油通過用キャピラリチューブ
を設け、凝縮器から前記流路分岐容器内に流入して二層
分離した上層側の冷凍機油および下層側の液冷媒のう
ち、上層側の冷凍機油を前記油吐出パイプを介して直接
に圧縮機内に戻すように、前記油通過用キャピラリチュ
ーブの流量抵抗を設定したことを特徴とする請求項1な
いし4のいずれか1項に記載の冷蔵庫。
5. An oil passage capillary tube is provided in the middle of a pipe corresponding to an oil return flow passage between the oil discharge pipe and the compressor, and the oil is passed through the condenser into the flow passage branch container to separate into two layers. Of the upper layer side refrigerating machine oil and the lower layer side liquid refrigerant, the flow rate resistance of the oil passage capillary tube was set so as to directly return the upper layer side refrigerating machine oil into the compressor through the oil discharge pipe. The refrigerator according to claim 1, wherein the refrigerator is a refrigerator.
【請求項6】前記流路分岐容器の内部空間で前記油吐出
パイプの突出位置より上方に、ガス冷媒と冷凍機油を分
離してガス冷媒だけを透過させるフィルタを設置し、さ
らに前記流路分岐容器の前記フィルタ位置より上方から
ガス冷媒吐出パイプを突出させて前記流路分岐容器とキ
ャピラリチューブの間の配管途中まで配管により接続し
たことを特徴とする請求項1ないし5のいずれか1項に
記載の冷蔵庫。
6. A filter for separating the gas refrigerant and the refrigerating machine oil and allowing only the gas refrigerant to pass through is installed above the protruding position of the oil discharge pipe in the internal space of the flow path branching container, and the flow path branching is further provided. The gas refrigerant discharge pipe is projected from above the filter position of the container, and is connected by a pipe to a midway of the pipe between the flow path branch container and the capillary tube. Refrigerator described.
【請求項7】凝縮器内で凝縮し切れずに前記流路分岐容
器内で二層分離した冷凍機油の上層に溜った少量のガス
冷媒が、前記油吐出パイプを介して圧縮機内に戻ること
なく、前記フィルタから前記ガス冷媒吐出パイプを介し
てキャピラリチューブから蒸発器内に流入するように、
前記流路分岐容器と蒸発器の間のキャピラリチューブの
流量抵抗と、前記流路分岐容器と圧縮機の間の前記油通
過用キャピラリチューブあるいは前記開閉弁の流量抵抗
を設定したことを特徴とする請求項1ないし6のいずれ
か1項に記載の冷蔵庫。
7. A small amount of gas refrigerant, which is not completely condensed in a condenser and is accumulated in the upper layer of refrigerating machine oil separated into two layers in the flow path branch container, returns to the compressor through the oil discharge pipe. Instead, to flow from the filter through the gas refrigerant discharge pipe into the evaporator from the capillary tube,
The flow resistance of the capillary tube between the flow path branch container and the evaporator, and the flow resistance of the oil passage capillary tube or the on-off valve between the flow path branch container and the compressor are set. The refrigerator according to any one of claims 1 to 6.
【請求項8】ロータリ圧縮機を搭載した冷蔵庫の冷凍サ
イクルにおいて、冷凍機油を前記を油吐出パイプを介し
て圧縮過程において圧縮機シリンダ内に直接に戻すよう
に油戻り流路を配管で構成したことを特徴とする請求項
1ないし7のいずれか1項に記載の冷蔵庫。
8. In a refrigeration cycle of a refrigerator equipped with a rotary compressor, an oil return passage is constituted by piping so as to return the refrigerating machine oil directly into a compressor cylinder during a compression process through an oil discharge pipe. The refrigerator according to claim 1, wherein the refrigerator is a refrigerator.
【請求項9】レシプロ圧縮機を搭載した冷蔵庫の冷凍サ
イクルにおいて、冷凍機油を前記油吐出パイプを介して
圧縮機吸込パイプまたは圧縮機チャンバ内に直接に戻す
ように油戻り流路を配管で構成したことを特徴とする請
求項1ないし7のいずれか1項に記載の冷蔵庫。
9. In a refrigeration cycle of a refrigerator equipped with a reciprocating compressor, an oil return flow path is constituted by piping so as to directly return refrigerating machine oil into the compressor suction pipe or the compressor chamber via the oil discharge pipe. The refrigerator according to claim 1, wherein the refrigerator is used.
【請求項10】CFC−12代替冷媒であるHFC−1
34aあるいはHCFC−22およびR502代替冷媒
である混合冷媒とノンエステル系冷凍機油を使用した冷
蔵庫の冷凍サイクルにおいて、前記流路分岐容器を配設
したことを特徴とする請求項1ないし9のいずれか1項
に記載の冷蔵庫。
10. HFC-1 which is a CFC-12 alternative refrigerant.
34a or a refrigerating cycle of a refrigerator using a mixed refrigerant which is a substitute refrigerant for HCFC-22 and R502 and a non-ester type refrigerating machine oil, wherein the flow path branching container is arranged. The refrigerator according to item 1.
JP26343294A 1994-10-27 1994-10-27 Refrigerator Pending JPH08121885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26343294A JPH08121885A (en) 1994-10-27 1994-10-27 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26343294A JPH08121885A (en) 1994-10-27 1994-10-27 Refrigerator

Publications (1)

Publication Number Publication Date
JPH08121885A true JPH08121885A (en) 1996-05-17

Family

ID=17389428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26343294A Pending JPH08121885A (en) 1994-10-27 1994-10-27 Refrigerator

Country Status (1)

Country Link
JP (1) JPH08121885A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201190A (en) * 2000-01-18 2001-07-27 Kobe Steel Ltd Ammonia refrigerating apparatus
JP2010014349A (en) * 2008-07-03 2010-01-21 Mayekawa Mfg Co Ltd Refrigeration cycle and oil-cooled refrigerating machine
JPWO2022085112A1 (en) * 2020-10-21 2022-04-28

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201190A (en) * 2000-01-18 2001-07-27 Kobe Steel Ltd Ammonia refrigerating apparatus
JP2010014349A (en) * 2008-07-03 2010-01-21 Mayekawa Mfg Co Ltd Refrigeration cycle and oil-cooled refrigerating machine
JPWO2022085112A1 (en) * 2020-10-21 2022-04-28
WO2022085112A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Cold source unit and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP3965717B2 (en) Refrigeration equipment and refrigerator
KR0156879B1 (en) Air-tight compressor
EP0852324B1 (en) Refrigerant circulating apparatus
TW200401096A (en) Refrigeration control
US20090031737A1 (en) Refrigeration System
JP5012070B2 (en) Shunt
JPH09222083A (en) Refrigerating cycle and compressor
US5531078A (en) Low volume inlet reciprocating compressor for dual evaporator refrigeration system
US20100326125A1 (en) Refrigeration system
JPH08121885A (en) Refrigerator
JP4815808B2 (en) Rotary compressor
JP2001124420A (en) Refrigerating and air-conditioning device and method of renewal of the same
JP3237867B2 (en) Ammonia refrigeration equipment
JP4277597B2 (en) Refrigeration equipment
JP2018004220A (en) Refrigerator
JPH0763427A (en) Refrigerating plant
JP3492427B2 (en) Refrigeration air conditioner
JP2003185285A (en) Ice making refrigeration unit
JPH10148422A (en) Oil separator
JPH07190568A (en) Refrigerant recovering apparatus
JP2001201190A (en) Ammonia refrigerating apparatus
JP2001263871A (en) Refrigerating unit
KR20070025332A (en) Refrigerating system
KR20050075833A (en) Device of refrigeration cycle
JPH06300368A (en) Freezing device