JPH08120436A - Decision of thermal spraying condition - Google Patents

Decision of thermal spraying condition

Info

Publication number
JPH08120436A
JPH08120436A JP25027494A JP25027494A JPH08120436A JP H08120436 A JPH08120436 A JP H08120436A JP 25027494 A JP25027494 A JP 25027494A JP 25027494 A JP25027494 A JP 25027494A JP H08120436 A JPH08120436 A JP H08120436A
Authority
JP
Japan
Prior art keywords
thermal spraying
hardness
thermal
spraying
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25027494A
Other languages
Japanese (ja)
Other versions
JP3147277B2 (en
Inventor
Harunobu Suzuki
晴信 鈴木
Hitoshi Muramatsu
仁 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP25027494A priority Critical patent/JP3147277B2/en
Publication of JPH08120436A publication Critical patent/JPH08120436A/en
Application granted granted Critical
Publication of JP3147277B2 publication Critical patent/JP3147277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas

Abstract

PURPOSE: To simply estimate the temp. distribution of the thermal spraying face at a low cost and to optimize the thermal spraying conditions by thermal- spraying the surface of a thermosetting or thermosoftening plated film provided on the surface of parts and thereafter measuring the hardness of the plated film. CONSTITUTION: On the surface 2a of a base material 2 to be thermal-sprayed in parts 1, a plated film 3 constituted by a thermosetting or thermosoftening material is formed. Next, the surface 3a of the same plated film 3 is thermal- sprayed to form a sprayed coating 4. After that, the hardness of the same plated film 3 is measured. Based on the same hardness measured value, from the correlation between the heat treating temp. and hardness, the temp. distribution in the thermal spraying face is estimated. In accordance with the same temp. distribution, thermal spraying conditions such as thermal spraying distance or the like are optimally decided so as to prevent deterioration in the tight adhesion, excessive oxidation or the like in the sprayed coating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、部品表面に溶射皮膜を
形成する際の溶射条件(溶射距離等)を最適に決定する
ための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for optimally determining a spraying condition (spraying distance, etc.) when forming a sprayed coating on the surface of a component.

【0002】[0002]

【従来の技術】部品に溶射を行って部品の表面に溶射皮
膜を形成する場合、溶射時の熱により部品の一部分だけ
が高温に加熱されたりすると、その部分において溶射皮
膜の密着不良や過度の酸化等を生じ、皮膜品質に関わる
問題が発生する。そのため、部品に溶射を行なう場合に
は、その部品の各々の部分にどの程度の熱が作用して部
品表面の温度分布がどのようになるかを知ることが、最
適な溶射皮膜設計の上で必要不可欠である。
2. Description of the Related Art When spraying a part to form a sprayed film on the surface of the part, if only a part of the part is heated to a high temperature due to the heat of spraying, the adhesion of the sprayed film at that part may be insufficient or excessive. Oxidation etc. occurs, and problems related to film quality occur. Therefore, when performing thermal spraying on a part, it is important to know how much heat acts on each part of the part and what the temperature distribution on the surface of the part looks like in the optimum spray coating design. It is essential.

【0003】ところで、部品表面の温度を測定する一般
的な手段としては、通常、熱電対等が使用されている。
この熱電対を用いて部品表面の温度分布を測定する場合
には、溶射する面の裏側に熱電対を取付けて温度測定を
することが考えられる。
By the way, a thermocouple or the like is usually used as a general means for measuring the temperature of the surface of a component.
When measuring the temperature distribution on the surface of a component using this thermocouple, it is conceivable to attach the thermocouple to the back side of the surface to be sprayed and measure the temperature.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、溶射時
の部品表面の各部分の温度を熱電対にて測定して部品表
面の温度分布を知るような方法では、次のような各種の
問題点がある。すなわち、溶射面の裏面に熱電対を固定
することにより温度測定を容易に行なうことができる
が、部品の裏側からしか温度測定をすることができない
ため、複雑な形状の部品の場合にはその表面の温度分布
の様子を正確に知ることはできないのが実状である。さ
らに、熱電対では、部品の微小な部分の温度測定が難し
いという不具合もある。
However, the method of measuring the temperature of each part on the surface of the component at the time of thermal spraying by the thermocouple to know the temperature distribution on the surface of the component has the following various problems. is there. That is, the temperature can be easily measured by fixing the thermocouple to the back surface of the sprayed surface, but since the temperature can be measured only from the back side of the part, the surface of the part with complicated shape can be measured. In reality, it is not possible to know the temperature distribution of the water. Further, the thermocouple has a problem that it is difficult to measure the temperature of a minute portion of the component.

【0005】また、複雑な形状の部品でなくても、その
部品の温度分布を詳細に知るためには、非常に多くの熱
電対を必要とし、しかも温度測定作業が面倒である。な
お、多くの熱電対を使用したとしても、部品に点在箇所
のみの温度測定しかできず、溶射を行なう全ての面領域
での温度分布を知ることはできない。
Further, even if it is not a component having a complicated shape, in order to know the temperature distribution of the component in detail, an extremely large number of thermocouples are required, and the temperature measurement work is troublesome. Even if many thermocouples are used, the temperature can be measured only at the spots on the component, and the temperature distribution in all the surface regions where the thermal spraying is performed cannot be known.

【0006】また、溶射時に熱電対を部品表面に固定し
た状態で溶射を行いながら温度測定をすることは、多数
の熱電対の配線等の面で煩雑となってその測定作業が難
しいという問題点がある。特に、部品を回転させながら
溶射を行なう場合等には、熱電対の配線が非常に邪魔な
存在になる。
Further, when the temperature is measured while the thermocouple is fixed on the surface of the component during the thermal spraying, the temperature measurement is complicated and the measurement work is difficult because of the wiring of many thermocouples. There is. In particular, when performing thermal spraying while rotating the parts, the wiring of the thermocouple becomes a very disturbing existence.

【0007】本発明は、このような種々の問題点に鑑み
てなされたものであって、その目的は、特別な温度測定
装置を用いることなく、複雑な形状の部品の場合であっ
ても溶射を行なう全ての面領域での温度分布を簡単にか
つ低コストで測定することができ、この測定結果に基づ
いて最適な溶射条件を決定することができるような溶射
条件決定方法を提供することにある。
The present invention has been made in view of the above-mentioned various problems, and its object is to perform thermal spraying even in the case of a component having a complicated shape without using a special temperature measuring device. To provide a thermal spraying condition determination method capable of easily and at low cost measuring the temperature distribution in all surface areas for performing the thermal spraying, and determining the optimal thermal spraying condition based on the measurement result. is there.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明では溶射を行なうべき部品の表面に熱硬化
性又は熱軟化性の材料から成るめっき皮膜を形成してこ
のめっき皮膜上に溶射を行なった後に、前記めっき皮膜
の硬度を測定し、測定された硬度に基づいて前記部品の
溶射面における温度分布を推認すると共に、この推認さ
れた温度分布の結果に応じて溶射距離等の溶射条件を決
定するようにしている。
In order to achieve the above object, in the present invention, a plating film made of a thermosetting or thermosoftening material is formed on the surface of a component to be sprayed, and the plating film is formed on the plating film. After performing thermal spraying on, the hardness of the plating film is measured, and the temperature distribution on the thermal sprayed surface of the component is estimated based on the measured hardness, and the thermal spray distance and the like according to the result of the estimated temperature distribution. The conditions for thermal spraying are determined.

【0009】[0009]

【作用】部品の表面に形成された熱硬化性のめっき皮膜
(例えば、Ni −P等の合金めっき皮膜)又は熱軟化性
のめっき皮膜(例えば、Ni 等のめっき皮膜)は溶射時
の熱にて硬化又は軟化するので、溶射後の前記めっき皮
膜の硬度を測定すれば、溶射処理を行なうべき部品表面
が溶射時にどのような温度分布になるのかを把握でき
る。すなわち、前記めっき皮膜の加熱温度と皮膜硬度と
の関係を予め実験にて測定しておき、この測定結果に照
らして、溶射後の各部におけるめっき皮膜の硬度から部
品表面の温度分布を推認することができる。そして、こ
のようにして推認された部品表面の温度分布に応じて溶
射条件の再検討を行なうことにより、溶射皮膜の密着不
良や過度の酸化等を防止できるような最適な溶射条件を
決定して、その条件で溶射作業を最適に行なうことが可
能となる。なお、温度測定のための特別な装置は不要で
ある。
[Function] A thermosetting plating film (for example, an alloy plating film such as Ni-P) or a heat-softening plating film (for example, a plating film such as Ni) formed on the surface of a component is exposed to heat during thermal spraying. Since it hardens or softens, the hardness of the plating film after thermal spraying can be measured to understand what temperature distribution the surface of the component to be subjected to thermal spraying will have during thermal spraying. That is, the relationship between the heating temperature of the plating film and the film hardness is measured in advance by experiments, and in light of this measurement result, the temperature distribution of the surface of the component can be inferred from the hardness of the plating film in each part after thermal spraying. You can Then, by re-examining the thermal spraying conditions according to the temperature distribution of the surface of the parts thus estimated, it is possible to determine the optimum thermal spraying conditions that can prevent poor adhesion of the thermal spray coating and excessive oxidation. It becomes possible to optimally perform the thermal spraying work under the conditions. No special device for temperature measurement is required.

【0010】[0010]

【実施例】以下、本発明の一実施例について図1〜図3
を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
Will be described with reference to.

【0011】図1は本発明の第1実施例に使用される試
験片1を示すものであって、この試験片1は、母材2
(溶射すべき部品と同様の素材)の表面2aに熱硬化性
のNi−P−Si Cから成るめっき皮膜3を形成した後
に、このめっき皮膜3の表面3aに溶射を行って溶射皮
膜4を形成したものである。なお、この試験片1の平面
形状は図2に示すように長方形であって、縦の長さL1
が130mm,横の長さL2 が50mmである。
FIG. 1 shows a test piece 1 used in the first embodiment of the present invention. The test piece 1 comprises a base material 2
After the plating film 3 made of thermosetting Ni-P-SiC is formed on the surface 2a of (the same material as the component to be sprayed), the surface 3a of the plating film 3 is sprayed to form the sprayed film 4 thereon. It was formed. The plane shape of the test piece 1 is a rectangle as shown in FIG. 2, and the vertical length L 1
Is 130 mm and the lateral length L 2 is 50 mm.

【0012】また、図3は本発明に係る方法を実施する
手順を示すものであって、その実施工程は、めっき工程
と、溶射工程と、硬度測定工程とからなっている。具体
的に述べると、めっき工程では、アルカリエッチング,
水洗,混酸処理,水洗,Zn置換,水洗,硝酸処理,水
洗,Zn 置換,水洗,めっき処理を順次施行することに
より、母材2上にめっき皮膜3を形成する。なお、例え
ばNi −P−Si Cから成るめっき皮膜3を形成する場
合に用いるめっき浴の1例は、下記の成分のものであ
る。 めっき浴 試薬 濃度 スルファミン酸ニッケル : 400〜500 mg/l 塩化ニッケル : 10〜20 g/l ほう酸 : 40〜50 g/l サッカリンソーダ : 5〜10 g/l 次亜リン酸 : 1〜2 g/l Si C : 50〜100 g/l
Further, FIG. 3 shows a procedure for carrying out the method according to the present invention, and the carrying out steps are a plating step, a thermal spraying step, and a hardness measuring step. Specifically, in the plating process, alkali etching,
The plating film 3 is formed on the base material 2 by sequentially performing water washing, mixed acid treatment, water washing, Zn substitution, water washing, nitric acid treatment, water washing, Zn substitution, water washing, and plating treatment. Note that, for example, one example of the plating bath used when forming the plating film 3 made of Ni-P-SiC has the following components. Plating bath reagent Concentration Nickel sulfamate: 400 to 500 mg / l Nickel chloride: 10 to 20 g / l Boric acid: 40 to 50 g / l Saccharin soda: 5 to 10 g / l Hypophosphite: 1-2 g / l lSiC: 50-100 g / l

【0013】次いで、後続の溶射工程においては、脱脂
処理を行ってから溶射を行い、前記めっき皮膜3上に溶
射皮膜4を形成する。
Next, in the subsequent thermal spraying step, degreasing treatment is performed and then thermal spraying is performed to form a thermal spray coating 4 on the plating coating 3.

【0014】しかる後、後続の硬度測定工程において
は、部品切断(硬度を測定する部分を切り出す),切断
部分の樹脂への埋め込み,研磨(鏡面仕上げ),めっき
皮膜の切断面の硬度測定を順次施行する。
Thereafter, in the subsequent hardness measuring step, the parts are cut (the part whose hardness is to be measured is cut out), the cut part is embedded in resin, the polishing is performed (mirror finish), and the hardness of the cut surface of the plating film is measured in sequence. Enforce.

【0015】これとは別に、上述のめっき皮膜3の熱処
理温度と硬度(マイクロビッカース硬度Hv )との相関
関係を予め実験により測定しておく。その実験結果は、
下記の表1に示す通りであり、この測定結果をグラフで
示すと図4において折線αで示す如くである。なお、熱
硬化性の加熱硬化可能なめっき皮膜では、通常、熱処理
を決まった時間(例えば、400℃で1時間)だけ行な
うのであるが、溶射による皮膜硬化の場合には、溶射を
行っている短時間のうちに硬化することが実験により確
かめられている。従って、溶射時間は上述の相関関係の
特性に殆ど影響しない。
Separately from this, the correlation between the heat treatment temperature and the hardness (micro Vickers hardness Hv) of the plating film 3 is measured in advance by an experiment. The experimental result is
As shown in Table 1 below, the measurement result is shown in a graph as shown by the broken line α in FIG. In the case of a thermosetting heat-curable plating film, heat treatment is usually performed for a fixed time (for example, 1 hour at 400 ° C.), but in the case of film curing by thermal spraying, thermal spraying is performed. It has been confirmed by experiments that it cures in a short time. Therefore, the spraying time has almost no influence on the above-mentioned correlation characteristics.

【0016】[0016]

【表1】 [Table 1]

【0017】前記めっき皮膜3上に溶射皮膜4を形成す
るに当たっては、まず、図2において矢印Pで示すよう
に試験片1の一端側から他端側に向かってはしご状の溶
射経路に沿って溶射し、他端側の最下段で折り返して一
端側に向かう溶射経路に沿って溶射するようにした。
In forming the thermal spray coating 4 on the plating coating 3, first, as shown by the arrow P in FIG. 2, along the ladder-shaped thermal spray path from one end side to the other end side of the test piece 1. Thermal spraying was performed, and the coating was turned back at the lowermost stage on the other end side and sprayed along the thermal spray path toward the one end side.

【0018】そして、溶射完了後に、図2において符号
A,B,Cで示す3つの点在箇所の硬度(マイクロビッ
カース硬度Hv )をそれぞれ測定した。その測定結果
は、下記の表2に示す如くである。
After the thermal spraying was completed, the hardness (micro Vickers hardness Hv) at the three spots indicated by the symbols A, B and C in FIG. 2 was measured. The measurement results are as shown in Table 2 below.

【0019】[0019]

【表2】 [Table 2]

【0020】最初は溶射距離を一定にして溶射を行って
硬度を測定し、その測定結果を前記表1及び図4に示さ
れる熱処理温度と硬度との関係に照らし合わせてみたと
ころ、最も温度が上昇する箇所Cでは、硬度が810以
上であり、従って200℃以上に温度が上昇していると
の推察結果が得られた。すなわち、この場合には、溶射
に際して試験片1の他端部分(溶射経路の終わり部分)
がその一端部分(溶射経路の始まり部分)よりも高温に
加熱され、200℃以上の温度に加熱されていることが
わかった(表2の中欄参照)。
First, the hardness was measured by performing thermal spraying with the thermal spraying distance kept constant, and the measurement results were compared with the relationship between the heat treatment temperature and the hardness shown in Table 1 and FIG. At the rising portion C, the hardness was 810 or higher, and therefore, it was inferred that the temperature was raised to 200 ° C. or higher. That is, in this case, the other end portion of the test piece 1 during spraying (the end portion of the spray path)
Was heated to a temperature higher than that of its one end portion (starting portion of the thermal spray path) and was heated to a temperature of 200 ° C. or higher (see the middle column of Table 2).

【0021】そこで、この結果に基づいて、前記箇所C
部分の他端側では溶射距離を相対的に大きくして溶射を
行ったところ、前記箇所Cにおける硬度は810以下と
なり、従って200℃以下での溶射を行なうことができ
るようになった(表2の右欄参照)。しかして、実際の
溶射処理に際しての最終的な溶射条件を適宜に変更する
ことができ、溶射時に試験片1の一部分だけが他の部分
より高温に加熱されてしまうような不具合を回避できる
こととなる。
Therefore, based on this result, the point C
On the other end side of the portion, when the thermal spraying distance was relatively increased and the thermal spraying was performed, the hardness at the location C became 810 or less, so that it became possible to perform the thermal spraying at 200 ° C. or less (Table 2). See the right column). Therefore, the final thermal spraying conditions in the actual thermal spraying process can be appropriately changed, and it is possible to avoid the problem that only a part of the test piece 1 is heated to a higher temperature than other parts during the thermal spraying. .

【0022】ここで、溶射要件の変更の仕方を述べる
と、次ぎの通りである。まず、溶射時の温度制御を行な
う場合、特に問題になるのは部品の温度が上昇し過ぎる
ことなので、温度上昇に関係するパラメータを変更す
る。溶射条件としては、溶射距離,供給電流,粉末供給
ガス圧,補助ガス圧等があるが、これらの条件が溶射皮
膜の特性に与える影響は、相関式として実験的に得られ
ている。そこで、これらの条件のなかで温度上昇に関係
すると思われるもののうちで、特性を下げないように1
つ或いはそれ以上の条件を適宜に変更することにより、
温度を制御する。
The method of changing the thermal spraying requirements will be described below. First, when temperature control during thermal spraying is performed, the problem is that the temperature of the component rises too much, so the parameters related to the temperature rise are changed. The spraying conditions include the spraying distance, the supply current, the powder supply gas pressure, the auxiliary gas pressure, and the like, and the effect of these conditions on the characteristics of the sprayed coating has been experimentally obtained as a correlation equation. Therefore, among these conditions, among those that are thought to be related to temperature rise, do not lower the characteristics.
By changing one or more conditions as appropriate,
Control the temperature.

【0023】具体的な温度制御の例を説明すると、以下
の通りである。まず、部品への溶射処理において、ある
部分での温度上昇が著しいことがわかったと仮定する。
この場合には、既述の溶射条件のうちで制御が比較的に
容易でしかも効果が大きいと考えられる溶射距離を変更
する。但し、溶射距離についての条件変更に伴い、溶射
皮膜の密着強さが低下しないようにすることが前提条件
とされる。
A specific example of temperature control will be described below. First, it is assumed that it was found that the temperature rise in a certain part was remarkable in the thermal spraying process on the part.
In this case, among the above-mentioned thermal spraying conditions, the thermal spraying distance, which is considered to be relatively easy to control and has a large effect, is changed. However, it is a precondition that the adhesion strength of the thermal spray coating does not decrease with the change in the conditions regarding the thermal spray distance.

【0024】ここで、密着強さと溶射条件との相関式が
下記のような式で表されるとする。 密着強さ=ax+by+cz+d 但し、x:供給電流 y:溶射距離 z:粉末供給ガス圧 (1) b>0又はb=0の場合 溶射距離を大きくすると密着強さも上昇するので、問題
なし。 (2) b<0の場合 溶射距離を大きくすると密着強さが低下するので、溶射
距離を大きくするのをやめるか、或いは溶射距離の増加
量を最小にとどめる必要がある。このような場合には、
他の溶射条件を変更することによって対応する。 (3) b<0でかつbの値が充分に小さい場合 密着強さはそれほど変化しないので、問題なし。
Here, it is assumed that the correlation equation between the adhesion strength and the spraying condition is represented by the following equation. Adhesion strength = ax + by + cz + d However, x: supply current y: spraying distance z: powder supply gas pressure (1) When b> 0 or b = 0 Adhesion strength increases as the spraying distance increases, so there is no problem. (2) When b <0 Since the adhesion strength decreases as the spray distance increases, it is necessary to either stop increasing the spray distance or minimize the increase in the spray distance. In such cases,
This is dealt with by changing other thermal spraying conditions. (3) When b <0 and the value of b is sufficiently small, there is no problem because the adhesion strength does not change so much.

【0025】次に、本発明の第2実施例について述べる
と、以下の通りである。すなわち、本例では、図5に示
すように、熱硬化性のNi −P−Si Cから成るめっき
皮膜3に代えて熱軟化性のNi から成るめっき皮膜5を
母材2上に形成し、このめっき皮膜5上に溶射皮膜4を
形成した試験片6を用いた。
The second embodiment of the present invention will be described below. That is, in this example, as shown in FIG. 5, a plating film 5 made of thermosoftening Ni is formed on the base material 2 in place of the plating film 3 made of thermosetting Ni-P-SiC, A test piece 6 having the sprayed coating 4 formed on the plating coating 5 was used.

【0026】この場合、既述の第1実施例と同様に溶射
後の硬度を測定したところ、下記の表3に示す測定結果
を得た。そして、この測定結果をグラフにプロットした
結果は、図4において折線βで示す如くである。
In this case, the hardness after thermal spraying was measured in the same manner as in the first embodiment described above, and the measurement results shown in Table 3 below were obtained. The result of plotting this measurement result in a graph is as shown by the broken line β in FIG.

【0027】[0027]

【表3】 [Table 3]

【0028】このように熱軟化性のめっき皮膜5を溶射
皮膜4の下地めっきとした場合にも、予め加熱温度と皮
膜硬度との関係を測定しておけば、溶射後の前記めっき
皮膜5の硬度分布を測定することにより、溶射時におけ
る母材1の表面1a(部品表面)の温度分布を推測して
把握することができる。これにより、既述の第1実施例
と同様に、推測された温度分布を基に溶射距離等の溶射
条件を適宜に変更して最適な溶射条件を決定することが
可能である。
Even when the thermal softening plating film 5 is used as the undercoat of the thermal spray coating 4 as described above, if the relationship between the heating temperature and the coating hardness is measured in advance, the plating film 5 after thermal spraying By measuring the hardness distribution, the temperature distribution on the surface 1a (part surface) of the base material 1 during thermal spraying can be estimated and grasped. Accordingly, similar to the above-described first embodiment, it is possible to appropriately change the thermal spraying conditions such as the thermal spraying distance based on the estimated temperature distribution to determine the optimum thermal spraying conditions.

【0029】以上、本発明の実施例につき述べたが、本
発明はこれらの実施例に限定されるものではなく、本発
明の技術的思想に基づいて各種の変更が可能である。例
えば、既述の実施例ではNi −P−Si Cから成るめっ
き皮膜3又はNi から成るめっき皮膜5を母材1と溶射
皮膜4との間に介在させた試験片1又は6を用いて溶射
時の温度分布を測定するようにしているが、これに限ら
ず、Ni −P−Si C又はNi 以外の各種の熱硬化性又
は熱軟化性の素材から成るめっき皮膜を下地層として用
いることが可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications can be made based on the technical idea of the present invention. For example, in the above-mentioned embodiment, the test piece 1 or 6 in which the plating film 3 made of Ni-P-SiC or the plating film 5 made of Ni is interposed between the base material 1 and the sprayed coating 4 is sprayed. Although the temperature distribution at the time is measured, the present invention is not limited to this, and a plating film made of various thermosetting or thermosoftening materials other than Ni-P-SiC or Ni may be used as the underlayer. It is possible.

【0030】また、溶射経路Pの選び方や、溶射時の温
度分布に基づいて最適な溶射条件を決定する仕方は、必
要に応じて適宜に変更可能である。
The method of selecting the thermal spraying path P and the method of determining the optimum thermal spraying conditions based on the temperature distribution during thermal spraying can be appropriately changed as necessary.

【0031】[0031]

【発明の効果】以上の如く、本発明は、溶射を行なうべ
き部品の表面に熱硬化性又は熱軟化性の材料から成るめ
っき皮膜を形成してこのめっき皮膜上に溶射を行なった
後に、前記めっき皮膜の硬度を測定し、測定された硬度
に基づいて前記部品の溶射面における温度分布を推認す
ると共に、この推認された温度分布の結果に応じて溶射
距離等の溶射条件を決定するようにしたものであるか
ら、一部分だけが異常に加熱されて密着不良や過度の酸
化等の不具合を生じない最適な溶射条件を設定すること
ができる。すなわち、熱硬化性又は熱軟化性のめっき皮
膜(加熱温度に依存して硬度が変化する材料から成るめ
っき皮膜)の加熱温度と硬度との相互関係を予め測定し
ておき、この相互関係と実際に溶射した後に測定しため
っき皮膜の硬度とを照らし合わせることにより被溶射面
(部品表面)の温度分布を正確に把握することができ、
その結果に応じて溶射距離などの溶射条件が最適となる
ように適宜に変更することができる。
As described above, according to the present invention, a plating film made of a thermosetting or thermosoftening material is formed on the surface of a component to be sprayed, and after the plating film is sprayed, The hardness of the plating film is measured, and the temperature distribution on the sprayed surface of the component is estimated based on the measured hardness, and the spraying conditions such as the spraying distance are determined according to the result of the estimated temperature distribution. Therefore, it is possible to set the optimum thermal spraying conditions in which only a part is abnormally heated and problems such as poor adhesion and excessive oxidation do not occur. That is, the mutual relationship between the heating temperature and the hardness of a thermosetting or thermosoftening plating film (a plating film made of a material whose hardness changes depending on the heating temperature) is measured in advance, and this mutual relationship and the actual The temperature distribution of the surface to be sprayed (component surface) can be accurately grasped by comparing the hardness of the plating film measured after thermal spraying on the
Depending on the result, the spraying conditions such as the spraying distance can be appropriately changed so as to be optimum.

【0032】また、本発明に係る方法によれば、溶射を
行なう全ての箇所(全領域)での溶射時の温度分布を直
接測定することができると共に複雑な形状の部品でも各
部の微小部分の温度分布を正確に把握することができ、
温度分布の測定を行った結果を基に、溶射条件の再検討
を行なうことにより、溶射皮膜の密着不良や過度の酸化
等を防止できる最適な設計が可能となる。
Further, according to the method of the present invention, it is possible to directly measure the temperature distribution at the time of thermal spraying at all locations (all areas) where thermal spraying is performed, and even in the case of a part having a complicated shape, a minute portion of each part You can accurately understand the temperature distribution,
By re-examining the thermal spraying conditions based on the results of measuring the temperature distribution, it becomes possible to carry out an optimum design capable of preventing poor adhesion and excessive oxidation of the thermal spray coating.

【0033】しかも、熱電対等のような温度測定のため
の特別な測定装置を必要としないので低コストで済み、
測定作業も簡単であるという利点もある。
Moreover, since no special measuring device for temperature measurement such as a thermocouple is required, the cost is low.
There is also an advantage that the measurement work is simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に使用される試験片の断面
図である。
FIG. 1 is a sectional view of a test piece used in a first embodiment of the present invention.

【図2】上述の試験片の平面図である。FIG. 2 is a plan view of the test piece described above.

【図3】本発明に係る方法を実施する手順を示すフロー
チャートである。
FIG. 3 is a flow chart showing the procedure for carrying out the method according to the present invention.

【図4】めっき皮膜の熱処理温度とマイクロビッカース
硬度との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the heat treatment temperature of the plating film and the micro Vickers hardness.

【図5】本発明の第2実施例に使用される試験片の断面
図である。
FIG. 5 is a cross-sectional view of a test piece used in a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,6 試験片 2 母材 2a 表面(部品表面) 3 Ni −P−Si Cから成るめっき皮膜 3a 表面 4 溶射皮膜 5 Ni から成るめっき皮膜 1,6 Test piece 2 Base material 2a Surface (part surface) 3 Ni-P-SiC plating film 3a Surface 4 Thermal spray coating 5 Ni plating film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶射を行なうべき部品の表面に熱硬化性
又は熱軟化性の材料から成るめっき皮膜を形成してこの
めっき皮膜上に溶射を行なった後に、前記めっき皮膜の
硬度を測定し、測定された硬度に基づいて前記部品の溶
射面における温度分布を推認すると共に、この推認され
た温度分布の結果に応じて溶射距離等の溶射条件を決定
するようにしたことを特徴とする溶射条件決定方法。
1. A plating film made of a thermosetting or heat-softening material is formed on the surface of a component to be sprayed, and after spraying the plating film, the hardness of the plating film is measured, The thermal spraying condition is characterized in that the temperature distribution on the sprayed surface of the part is estimated based on the measured hardness, and the spraying conditions such as the spraying distance are determined according to the result of the estimated temperature distribution. How to decide.
JP25027494A 1994-10-17 1994-10-17 Spraying condition determination method Expired - Fee Related JP3147277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25027494A JP3147277B2 (en) 1994-10-17 1994-10-17 Spraying condition determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25027494A JP3147277B2 (en) 1994-10-17 1994-10-17 Spraying condition determination method

Publications (2)

Publication Number Publication Date
JPH08120436A true JPH08120436A (en) 1996-05-14
JP3147277B2 JP3147277B2 (en) 2001-03-19

Family

ID=17205463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25027494A Expired - Fee Related JP3147277B2 (en) 1994-10-17 1994-10-17 Spraying condition determination method

Country Status (1)

Country Link
JP (1) JP3147277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017837A1 (en) * 1996-10-21 1998-04-30 Kabushiki Kaisha Toshiba Spraying robot system and spraying method wherein spray conditions are determined by using computer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089782C (en) * 1997-11-11 2002-08-28 中国科学院长春应用化学研究所 Method for preparing positive electrode material of lithium secondary cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017837A1 (en) * 1996-10-21 1998-04-30 Kabushiki Kaisha Toshiba Spraying robot system and spraying method wherein spray conditions are determined by using computer
US6348232B1 (en) 1996-10-21 2002-02-19 Kabushiki Kaisha Toshiba Spraying robot system and spraying method wherein spray conditions are determined by using computer

Also Published As

Publication number Publication date
JP3147277B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
US3469953A (en) Lead frame assembly for semiconductor devices
EP0393957A3 (en) Method and apparatus for sputter coating stepped wafers - case b
US5749165A (en) Electric pressing iron with coated soleplate
JPH08120436A (en) Decision of thermal spraying condition
JP3777285B2 (en) Saw wire
KR102473510B1 (en) Marking method to express various colors on plastic plating surface using laser
US2195499A (en) Process of metal coating
BR9307532A (en) Sliding element and process for your production
US7879157B2 (en) Method for pretreating the surfaces of weld parts of aluminum or alloys thereof and corresponding weld parts
US3519543A (en) Process for electrolytically cleaning and polishing electrical contacts
JP2885407B2 (en) Method for producing wear-resistant aluminum alloy member
JPS5941479A (en) Removal of titanium nitride film
CN112496691A (en) Metal shell surface treatment method
JPH02197517A (en) Induction-hardening device
JP2005105301A (en) Induction hardening method for member with stepping parts
US1871770A (en) Method of depositing on chromium
JP2021137819A (en) Method of manufacturing display body
US6875079B2 (en) Methods of working, especially polishing, inhomogeneous materials
KR100572993B1 (en) Ball chain die manufacture method
KR100189377B1 (en) Surface processing of air bearing
JPH11130566A (en) Ceramic having distinguishing display
JPH02270992A (en) Production of tinned or tin alloy plated wire
JPS6130619A (en) Quick cooling method
JPS61117266A (en) Manufacture of sliding material for parer machine
US205981A (en) Improvement in the manufacture of toughened enameled glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees