JPH08119678A - Production of water-repellent antifouling glass - Google Patents

Production of water-repellent antifouling glass

Info

Publication number
JPH08119678A
JPH08119678A JP25193594A JP25193594A JPH08119678A JP H08119678 A JPH08119678 A JP H08119678A JP 25193594 A JP25193594 A JP 25193594A JP 25193594 A JP25193594 A JP 25193594A JP H08119678 A JPH08119678 A JP H08119678A
Authority
JP
Japan
Prior art keywords
water
glass
substrate
repellent antifouling
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25193594A
Other languages
Japanese (ja)
Inventor
Hiroaki Tada
弘明 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSG Techno Research Co Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Nippon Sheet Glass Techno Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Nippon Sheet Glass Techno Research Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP25193594A priority Critical patent/JPH08119678A/en
Publication of JPH08119678A publication Critical patent/JPH08119678A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3405Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE: To obtain a water-repellent antifouling glass excellent in durability by adsorbing NH3 and/or an amine on the surface of a glass and then coating the surface of the glass with fluoroalkylchlorosilane. CONSTITUTION: A glass substrate is set in a reactor after the surface is cleaned by washing and NH3 and/or vapor of an amine such as triethylamine is introduced into the reactor under about >=1mmHg vapor pressure and is adsorbed on the surface of the substrate by contact with the substrate for a prescribed time. The substrate is then taken out, washed with a solvent and set again in the reactor. The internal pressure of the reactor is reduced to about 10Torr, a fluoroakylchlorosilane represented by the formula R-Si(CH3 )3-1-m (X)1 (Cl)m [where R is a fluoroalkyl, X is OCH3 , OCOCH3 , OH, etc., (1) is 0-2 and (m) is 1-3], e.g. heptadecafluorodecyltrichlorosilane is introduced into the reactor and the surface of the substrate is coated with the fluoroalkylchlorosilane by CVD method under reduced pressure or other method to obtain the objective water-repellent antifouling glass excellent in durability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,自動車または建築用ガ
ラスとして用いる撥水防汚性ガラスの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing water-repellent antifouling glass used as glass for automobiles or construction.

【0002】[0002]

【従来の技術】建築,自動車などの風防ガラス,光学部
品レンズその他のガラス製品等に用いられるガラス物品
表面に撥水性を付与すると、1)汚染成分を含んだ水滴
がガラス表面に残存しないため,ガラス汚染防止や焼け
防止効果がある,2)撥水性ガラスを自動車のフロント
ガラスやサイドガラス等に使用した場合、雨天走行時で
も、ガラス表面に付着した雨水が風圧によって吹き飛ば
され、ドライバーの視野が確保され走行安全性が向上す
る,等種々の効果が期待される。
2. Description of the Related Art When water repellency is imparted to the surface of glass articles used for windshields for construction, automobiles, lenses for optical components, and other glass products, 1) water droplets containing contaminants do not remain on the glass surface. It has the effect of preventing glass contamination and burning, 2) When water-repellent glass is used for windshields and side windows of automobiles, rainwater adhered to the glass surface is blown away by wind pressure even when driving in the rain, ensuring the driver's view Various effects are expected, such as improved driving safety.

【0003】この様な撥水防汚性ガラスの製造方法とし
ては、ポリジメチルシロキサン系化合物を初めとする有
機シリコーンや含フッ素シリコーン化合物,アルキルシ
ラン化合物,さらにはフルオロアルキルシラン化合物を
湿式塗布(1),液相吸着法(2)等を用いて処理する
方法がある。また、同じ液相法としてアルコキシシラン
化合物とフルオロアルキルシラン化合物の加水分解物を
コーティングするゾルゲル法(3)も既に自動車用ガラ
スとして実用化されている。
As a method for producing such a water-repellent antifouling glass, a polydimethylsiloxane compound and other organic silicones, fluorine-containing silicone compounds, alkylsilane compounds, and further fluoroalkylsilane compounds are wet-coated (1). , A liquid phase adsorption method (2) or the like is used. Also, as the same liquid phase method, a sol-gel method (3) of coating a hydrolyzate of an alkoxysilane compound and a fluoroalkylsilane compound has already been put to practical use as glass for automobiles.

【0004】また、本発明者らは気相法によるフルオロ
アルキラン処理により撥水防汚性能に優れた単分子膜が
得られることを見いだしている((4)特願平6−95
119)。
Further, the present inventors have found that a fluoroalkylan treatment by a vapor phase method can provide a monomolecular film having excellent water repellency and antifouling performance ((4) Japanese Patent Application No. 6-95).
119).

【0005】[0005]

【発明が解決しようとする課題】一般に、(1)〜
(3)の液相法では,生産時に多量の廃液が発生し,環
境上問題があるばかりでなく,処理のために余分なコス
トがかかる。また,(4)の方法では強固な膜を作製す
るために80℃程度の加熱が必要である。さらに、
(1)〜(3)の液相法では、耐久性の良好な膜を得る
には150℃以上の熱処理が必要である。この熱処理も
コストアップの要因である。
Generally, (1)-
In the liquid phase method of (3), a large amount of waste liquid is generated during production, which is not only an environmental problem but also an extra cost for processing. Further, in the method (4), heating at about 80 ° C. is required to form a strong film. further,
In the liquid phase method of (1) to (3), heat treatment at 150 ° C. or higher is necessary to obtain a film having good durability. This heat treatment also causes a cost increase.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、第1段階でアンモニア及び/またはアミン類をガ
ラス表面に吸着させ、第2段階でフルオロアルキルクロ
ロシラン処理することにより常温で強固な撥水防汚膜を
ガラス基板上に形成させることができることを見いだし
た。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that ammonia and / or amines are adsorbed on the glass surface in the first step and treated with fluoroalkylchlorosilane in the second step to make them strong at room temperature. It has been found that a water-repellent antifouling film can be formed on a glass substrate.

【0007】この作用機構は次のように説明することが
できる。まず、アンモニア及び/またはアミン類は、シ
リケート系のガラス表面のSi−OH基に水素結合を介
して吸着する。この時に、(Si)O−H基の分極が進
む。この状態でフルオロアルキルクロロシランを導入す
ると、基板表面の、前記分極によって活性化した状態の
O原子がフルオロアルキルクロロシランのSi原子に対
して求核攻撃する性質が高まるために、フルオロアルキ
ルクロロシランの固定化反応が著しく促進されるものと
考えられる。アンモニアまたはアミン類は気体または液
体の形で、ガラスの表面に、常温または例えば50℃以
下で、数秒間〜数分間接触させることにより吸着させ
る。アンモニアまたはアミン類を気体の形で接触させる
場合、その蒸気圧は1mmHg以上であることが好まし
い。また水または有機溶剤で希釈して液体の形で接触さ
せる場合の濃度は1〜5重量%が好ましい。ガラスの表
面に吸着させるべきアンモニアまたはアミン類の量はご
くわずかでよく、例えばガラスの表面に単分子層で吸着
すれば十分である。
This mechanism of action can be explained as follows. First, ammonia and / or amines are adsorbed to Si-OH groups on the surface of silicate glass via hydrogen bonds. At this time, the polarization of the (Si) OH group proceeds. When the fluoroalkylchlorosilane is introduced in this state, the property that the O atom in the state activated by the polarization on the surface of the substrate nucleophilically attacks the Si atom of the fluoroalkylchlorosilane is enhanced, and thus the fluoroalkylchlorosilane is immobilized. It is considered that the reaction is significantly accelerated. Ammonia or amines in the form of gas or liquid is adsorbed on the surface of glass at room temperature or at, for example, 50 ° C. or lower by contacting for several seconds to several minutes. When the ammonia or amines are brought into contact with each other in the form of gas, the vapor pressure thereof is preferably 1 mmHg or more. When diluted with water or an organic solvent and contacted in a liquid form, the concentration is preferably 1 to 5% by weight. The amount of ammonia or amines to be adsorbed on the surface of the glass may be negligible, for example adsorbing a monolayer on the surface of the glass is sufficient.

【0008】本発明で用いられるアミン類としては、特
に限定はされず、1級−,2級−,3級−アミンいずれ
をも使用することができ、脂肪族アミン、芳香族アミ
ン、アミド、環式アミンのいずれも使用することができ
る。塩基性が強いほどSi−OH基と強い水素結合が形
成され、より反応性が増すこと、および蒸気圧が低いほ
ど低温で気化させ、基材表面に吸着させることから、塩
基性が強く蒸気圧が低いトリエチルアミンを好適に用い
ることができる。最終的に得られる膜中には、わずかの
アンモニアまたはアミン類の塩酸塩が残留するが、撥水
性能には影響しない。これは200℃以上に加熱する
か、高真空に引くことにより完全に除去することができ
る。
The amines used in the present invention are not particularly limited, and any of primary-, secondary-, and tertiary-amines can be used, and aliphatic amines, aromatic amines, amides, Any of the cyclic amines can be used. The stronger the basicity, the stronger the hydrogen bond is formed with the Si-OH group, and the more reactive it is. Also, the lower the vapor pressure, the lower the vaporization temperature and the higher the basicity, the stronger the basic vapor pressure. Low triethylamine can be preferably used. A slight amount of ammonia or the hydrochloride of amines remains in the finally obtained film, but it does not affect the water repellency. It can be completely removed by heating above 200 ° C. or by drawing a high vacuum.

【0009】一方、撥水防汚膜を形成する材料として
は、化学的耐久性に優れ、低表面自由エネルギー膜が得
られるフルオロアルキルクロロシランを好適に使用する
ことができる。フルオロアルキルクロロシランは(1)
式で示されるような1個のフルオロアルキル基(R)、
0〜2個のメチル基、および少なくとも1個の官能基
(X)からなるシランである。 R−Si(CH3)3-l-m(X)l(Cl)m (1) (ただし、R:フルオロアルキル基、 X:−OCH3、
−OC2H5、−OCOCH3、−OCOC2H5 、または
−OHであり、lは0、1または2であり、mは1、2
または3であり、lとmの和は1、2または3である)
On the other hand, as a material for forming the water-repellent antifouling film, fluoroalkylchlorosilane which is excellent in chemical durability and can obtain a low surface free energy film can be preferably used. Fluoroalkylchlorosilane is (1)
One fluoroalkyl group (R) as shown in the formula,
It is a silane composed of 0 to 2 methyl groups and at least one functional group (X). R-Si (CH3) 3-lm (X) l (Cl) m (1) (wherein R: fluoroalkyl group, X: -OCH3,
-OC2H5, -OCOCH3, -OCOC2H5, or -OH, l is 0, 1 or 2, m is 1, 2
Or 3 and the sum of l and m is 1, 2 or 3.)

【0010】フルオロアルキルクロロシランのメチル基
(−CH3) は不活性であり、フルオロアルキル基
(R)の効果に対して大きな影響はないが、官能基
(X)の数が多いほど固定化されやすいため、メチル基
の個数(3−l−m)は少ないほどよく、(3−l−
m)がゼロであるのが最も好ましい。
The methyl group (-CH3) of fluoroalkylchlorosilane is inactive and does not have a great influence on the effect of the fluoroalkyl group (R), but the larger the number of functional groups (X), the more easily it is immobilized. Therefore, the smaller the number of methyl groups (3-l-m), the better.
Most preferably m) is zero.

【0011】上記フルオロアルキル基はアルキル基の水
素原子の一部が弗素原子に置換されたもので、好ましく
は(2)式で示される。 Rf : −(CH22(CF2nCF3 (2) (ここでnはゼロまたは正の整数)
The fluoroalkyl group is a group in which some hydrogen atoms of the alkyl group are replaced with fluorine atoms, and is preferably represented by the formula (2). Rf: - (CH 2) 2 (CF 2) n CF 3 (2) ( where n is zero or a positive integer)

【0012】すなわち直鎖状のアルキル基においてシリ
コン原子側の2個の炭素原子を除いた末端側の炭素原子
に結合する水素原子が弗素原子に置換されたものがよ
い。例えば−(CH22CF3、−(CH22(CF2
2CF3、-(CH22(CF25CF3、−(CH2
2(CF27CF3などが挙げられ、 その中で−(C
22(CF25CF3、−(CH22(CF27CF3
が特に好ましい。その理由はフルオロアルキル基中のシ
リコン原子側に、−(CH22−が存在することによっ
て化合物が安定に存在しやすいためである。
That is, in the linear alkyl group, a hydrogen atom bonded to a carbon atom on the terminal side excluding two carbon atoms on the silicon atom side is preferably replaced by a fluorine atom. For example - (CH 2) 2 CF 3 , - (CH 2) 2 (CF 2)
2 CF 3, - (CH 2 ) 2 (CF 2) 5 CF 3, - (CH 2)
2 (CF 2 ) 7 CF 3 and the like, among which — (C
H 2) 2 (CF 2) 5 CF 3, - (CH 2) 2 (CF 2) 7 CF 3
Is particularly preferable. The reason is that the compound is likely to exist stably due to the presence of — (CH 2 ) 2 — on the silicon atom side in the fluoroalkyl group.

【0013】上記フルオロアルキル基の分子鎖長が大き
いほど、表面自由エネルギーが小さくなって好ましい
が、分子鎖長があまり大きすぎると蒸気圧は高くなって
気化しやすくなって好ましくないので、1分子当りのC
H2 単位の繰り返し数(n)は3〜9が良く、特にn=
7が最も好適である。本発明に用いることのできる処理
剤は官能基として塩素原子をもっていなければならない
理由は、フルオロアルキルクロロシランが、活性化され
た表面O原子により求核攻撃を受けたときに、固定化反
応を行わせるためにフルオロアルキルクロロシラン中の
いずれかの原子が容易に脱離する必要があるからであ
る。1分子当りの塩素原子の数(m)は1〜3のいずれ
でも良いが、得られる膜強度を高くするためには分子間
の縮合が可能なm=3が最適である。以上の条件を満足
するものであれば、どの様な処理剤でも使用することが
できるが、中でも前述の理由から、ヘプタデカフルオロ
デシルトリクロロシラン(HFTS)、ヘキサデカフル
オロデシルトリクロロシラン(HDFDTCS)など
の、(2)式におけるnが3〜9で、(1)式における
mが1〜3の物質の中で、ヘプタデカフルオロデシルト
リクロロシラン(HFTS)が最も良い。
The larger the molecular chain length of the fluoroalkyl group, the smaller the surface free energy, which is preferable. However, when the molecular chain length is too large, vapor pressure becomes high and vaporization tends to occur, which is not preferable. C per hit
The number of repetitions (n) of H2 unit is preferably 3 to 9, especially n =
7 is most preferred. The reason why the treating agent that can be used in the present invention must have a chlorine atom as a functional group is that the fluoroalkylchlorosilane undergoes an immobilization reaction when subjected to a nucleophilic attack by an activated surface O atom. This is because it is necessary for any atom in the fluoroalkylchlorosilane to be easily desorbed for the purpose. The number (m) of chlorine atoms per molecule may be any of 1 to 3, but in order to increase the strength of the obtained film, m = 3 that allows condensation between molecules is optimal. Any treatment agent can be used as long as it satisfies the above conditions, but for the reasons described above, heptadecafluorodecyltrichlorosilane (HFTS), hexadecafluorodecyltrichlorosilane (HDFDTCS), etc. Of the substances in which n in the formula (2) is 3 to 9 and m in the formula (1) is 1 to 3, heptadecafluorodecyltrichlorosilane (HFTS) is the best.

【0014】撥水防汚層の膜付け方法としては、特に限
定されず、公知のラビング法、ディッピング法などを用
いることができるが、多孔質内部への均一な膜形成の観
点から、減圧CVD法などの気相法が特に有効である。
CVD処理時の真空度は、十分なフロロシラン系の材料
の蒸気圧が得られるように設定すれば良い。従って、用
いるフロロシラン系の材料の種類によって異なるが、通
常は10Torr程度で十分である。
The method of forming the water-repellent antifouling layer is not particularly limited, and a known rubbing method, dipping method, or the like can be used, but from the viewpoint of forming a uniform film inside the porous structure, the reduced pressure CVD method is used. The vapor phase method such as is particularly effective.
The degree of vacuum during the CVD process may be set so that a sufficient vapor pressure of the fluorosilane-based material can be obtained. Therefore, about 10 Torr is usually sufficient, although it depends on the type of fluorosilane-based material used.

【0015】防汚層と基板表面との反応を常温で進行す
るので、CVD処理時に基板を加熱する必要はない。勿
論加熱しても差し支えないが、80℃以下にすべきであ
る。この反応はSi−OH基と塩素基を有するフロロシ
ランの脱塩酸反応である。撥水防汚膜の厚みは非常に小
さくても効果があり、単分子膜であることが好ましい。
Since the reaction between the antifouling layer and the surface of the substrate proceeds at room temperature, it is not necessary to heat the substrate during the CVD process. Of course, heating may be used, but it should be 80 ° C or lower. This reaction is a dehydrochlorination reaction of fluorosilane having Si-OH groups and chlorine groups. Even if the thickness of the water-repellent antifouling film is very small, it is effective, and a monomolecular film is preferable.

【0016】[0016]

【実施例】【Example】

実施例1 厚み3mmで300mm×300mmの寸法のソーダラ
イムガラス基板の表面を清浄化するために、UV/O3
洗浄(50℃−30分,酸素供給量=0.1NL/分,
基板−ランプ間距離=5mm,サムコ社製UVオゾンク
リーナー使用)を行った。次にガラス基板をチャンバー
内にセットし、チャンバーに連結したリザーバーの中に
1gのトリエチルアミン(TEA)を入れておき、リザ
ーバーに超音波照射しながらN2 ガスをTEAの上方を
通過させて、チャンバー内にTEA蒸気をチャンバー内
に約60秒間導入し、基板表面にTEA蒸気を接触させ
て吸着させた。未吸着TEAはチャンバー出口に取り付
けたコールドトラッパーで捕集した。基板をチャンバー
から取り出した後、チャンバー内をエタノールを用いて
十分に洗浄してから再度基板をチャンバー内にセット
し、常温に保ったチャンバー内を約10Torrに減圧
してから50μL(50×10-3CC)のヘプタデカフ
ルオロデシルトリクロロシラン(HFTS、純度98%
以上,東芝シリコーン製)を注射器でチャンバー内空間
に注入した。注入後、1時間真空引きすることにより、
未反応のHFTSをコールドトラップした。常圧に戻し
てから基板(サンプルA)を取り出した。基板表面に付
着したHFTSの膜厚は約15オングストロームであ
り、単分子層に相当する。チャンバー内温度は実験中常
に35℃に保持した。
Example 1 In order to clean the surface of a soda-lime glass substrate having a thickness of 3 mm and a size of 300 mm × 300 mm, UV / O 3 was used.
Washing (50 ° C.-30 minutes, oxygen supply amount = 0.1 NL / minute,
The distance between the substrate and the lamp was 5 mm, and UV ozone cleaner manufactured by Samco was used. Next, the glass substrate was set in the chamber, and 1 g of triethylamine (TEA) was placed in the reservoir connected to the chamber, and N 2 gas was passed over the TEA while irradiating the reservoir with ultrasonic waves. TEA vapor was introduced into the chamber for about 60 seconds, and TEA vapor was brought into contact with and adsorbed on the substrate surface. Unadsorbed TEA was collected with a cold trapper attached to the chamber outlet. After removing the substrate from the chamber, thoroughly wash the inside of the chamber with ethanol, set the substrate in the chamber again, and depressurize the chamber kept at room temperature to about 10 Torr and then 50 μL (50 × 10 − 3 CC) heptadecafluorodecyltrichlorosilane (HFTS, purity 98%
As described above, Toshiba Silicone) was injected into the chamber space with a syringe. By vacuuming for 1 hour after injection,
Unreacted HFTS was cold trapped. After returning to normal pressure, the substrate (Sample A) was taken out. The film thickness of HFTS attached to the substrate surface is about 15 angstroms, which corresponds to a monolayer. The chamber temperature was kept at 35 ° C. throughout the experiment.

【0017】比較例1 比較のために、TEAを吸着させずに、HFTSで処理
したサンプルB−2を次の様にして作製した。UV/O
3 洗浄したガラス基板をチャンバー内にセットしてから
約10Torrに減圧した。。80℃に昇温後、50μ
LのHFTSを注射器で注入し、1時間加熱した。さら
に、未反応のHFTSを除去するために、真空引きしな
がら100℃で1時間加熱を続けて、サンプルBが得ら
れた。
Comparative Example 1 For comparison, a sample B-2 treated with HFTS without adsorbing TEA was prepared as follows. UV / O
3 The cleaned glass substrate was set in the chamber and then depressurized to about 10 Torr. . After heating to 80 ℃, 50μ
L HFTS was injected with a syringe and heated for 1 hour. Furthermore, in order to remove unreacted HFTS, heating was continued at 100 ° C. for 1 hour while evacuation was performed, and sample B was obtained.

【0018】さらに比較のために、TEAを吸着させず
に、それ以外は実施例1と同一の操作によりHFTSで
処理したサンプルEを作製した。
For comparison, a sample E treated with HFTS was prepared by the same procedure as in Example 1 except that TEA was not adsorbed.

【0019】比較例2 処理剤の官能基による反応性の差異を調べるために、処
理剤としてHFTSの代わりにヘプタデカフルオロデシ
ルトリメトキシシラン(HFTMS)を用いた以外は実
施例1と全く同じ操作によりサンプルCを作製した。ま
た、処理剤として同じHFTMSを用いて、比較例1と
同じ操作によってサンプルDを作製した。
Comparative Example 2 In order to investigate the difference in reactivity depending on the functional group of the treating agent, the same operation as in Example 1 was carried out except that heptadecafluorodecyltrimethoxysilane (HFTMS) was used instead of HFTS as the treating agent. Sample C was manufactured according to. Further, using the same HFTMS as the treating agent, Sample D was prepared by the same operation as in Comparative Example 1.

【0020】ガラス表面自由エネルギーが小さいほど水
も汚れも付着しにくいと考えられることから、相対的な
撥水度及び汚れ難さの指標として水に対する接触角を採
用した。また、膜の強固さの尺度の1つとして沸騰水中
に浸漬した場合の水に対する接触角の経時変化を調べ
た。図1に結果を示す。沸騰水浸漬時間の増加とともに
全サンプルについて接触角の低下が認められる。しか
し、サンプルA(実施例1)は常温で処理したにもかか
わらず、80〜100℃で処理したサンプルB(比較例
2)よりも接触角の減少速度が小さく、耐久性が優れて
いることがわかる。この結果は、TEAの前吸着により
HFTSの表面固定化反応が著しく促進されたためと考
えられる。一方、サンプルC(比較例2)の耐水性はサ
ンプルD(比較例2)と同程度である。このことは、撥
水防汚剤の官能基が塩素基ではなくメトキシ基の場合に
はTEAの前吸着の効果が得られないことを示してい
る。なおサンプルEについての初期接触角は約95度で
あり、沸騰水浸漬時間が2時間および4時間の接触角は
それぞれ約90度および80度以下であった。
Since it is considered that the smaller the glass surface free energy is, the less water and stains are attached, the contact angle to water was adopted as an index of relative water repellency and stain resistance. Further, as one of the measures of the strength of the film, the change with time in the contact angle with respect to water when immersed in boiling water was examined. The results are shown in FIG. A decrease in contact angle is observed for all samples with increasing boiling water immersion time. However, although the sample A (Example 1) was treated at room temperature, the contact angle was reduced at a lower rate and the durability was superior to that of the sample B (Comparative Example 2) treated at 80 to 100 ° C. I understand. This result is considered to be because the surface immobilization reaction of HFTS was significantly promoted by the preadsorption of TEA. On the other hand, the water resistance of Sample C (Comparative Example 2) is about the same as that of Sample D (Comparative Example 2). This indicates that the effect of preadsorption of TEA cannot be obtained when the functional group of the water / fouling preventive agent is a methoxy group instead of a chlorine group. The initial contact angle of sample E was about 95 degrees, and the contact angles at boiling water immersion times of 2 hours and 4 hours were about 90 degrees and 80 degrees or less, respectively.

【0021】[0021]

【発明の効果】以上説明した様に、本発明の撥水防汚性
ガラスの製造方法によれば、常温処理にもかかわらず加
熱処理サンプル以上の耐久性を有する強固な撥水防汚膜
を得ることができる。さらに、膜形成法として減圧CV
D法などの気相法を用いた場合には廃液が出ないばかり
でなく、液管理が容易になる。従って、本発明による方
法で作製した撥水防汚性ガラスは、自動車,建築用の風
防ガラスとして好適に使用することが可能である。
As described above, according to the method for producing a water-repellent antifouling glass of the present invention, it is possible to obtain a strong water-repellent antifouling film having durability higher than that of the heat-treated sample despite the room temperature treatment. You can Further, as a film forming method, a reduced pressure CV is used.
When a gas phase method such as method D is used, not only is no waste liquid produced, but liquid management becomes easier. Therefore, the water-repellent antifouling glass produced by the method of the present invention can be suitably used as a windshield for automobiles and buildings.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の撥水防汚性ガラスの水に対
する接触角のボイル時間依存性を表わすグラフである。
FIG. 1 is a graph showing the boiling time dependence of the contact angle of water with respect to the water-repellent antifouling glass of one example of the present invention.

【図面の符号】[Drawing reference number]

A 本発明の実施例 B,C,D 比較例 A Example of the present invention B, C, D Comparative example

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス表面にアンモニア及び/またはア
ミン類を吸着させ、その後にガラス表面にフルオロアル
キルクロロシランを被覆することを特徴とする撥水防汚
性ガラスの製造方法。
1. A method for producing water-repellent antifouling glass, which comprises adsorbing ammonia and / or amines on the glass surface, and then coating the glass surface with fluoroalkylchlorosilane.
【請求項2】 前記アミン類がトリエチルアミンである
請求項1記載の撥水防汚性ガラスの製造方法。
2. The method for producing a water-repellent antifouling glass according to claim 1, wherein the amine is triethylamine.
【請求項3】 前記フルオロアルキルクロロシランがフ
ルオロアルキルトリクロロシランであり、これを気相で
被覆する請求項1記載の撥水防汚性ガラスの製造方法。
3. The method for producing a water-repellent antifouling glass according to claim 1, wherein the fluoroalkylchlorosilane is fluoroalkyltrichlorosilane, and the fluoroalkylchlorosilane is coated in a gas phase.
【請求項4】 前記フルオロアルキルトリクロロシラン
がヘプタデカフルオロデシルトリクロロシランである請
求項3記載の撥水防汚性ガラスの製造方法。
4. The method for producing a water-repellent antifouling glass according to claim 3, wherein the fluoroalkyltrichlorosilane is heptadecafluorodecyltrichlorosilane.
JP25193594A 1994-10-18 1994-10-18 Production of water-repellent antifouling glass Pending JPH08119678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25193594A JPH08119678A (en) 1994-10-18 1994-10-18 Production of water-repellent antifouling glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25193594A JPH08119678A (en) 1994-10-18 1994-10-18 Production of water-repellent antifouling glass

Publications (1)

Publication Number Publication Date
JPH08119678A true JPH08119678A (en) 1996-05-14

Family

ID=17230168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25193594A Pending JPH08119678A (en) 1994-10-18 1994-10-18 Production of water-repellent antifouling glass

Country Status (1)

Country Link
JP (1) JPH08119678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074195A (en) * 2002-03-28 2010-04-02 Osram Opto Semiconductors Gmbh Luminescent diode chip to be flip-chip mounted on carrier, and method for production thereof
WO2011146306A1 (en) * 2010-05-17 2011-11-24 Corning Incorporated Surface treatment and article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074195A (en) * 2002-03-28 2010-04-02 Osram Opto Semiconductors Gmbh Luminescent diode chip to be flip-chip mounted on carrier, and method for production thereof
WO2011146306A1 (en) * 2010-05-17 2011-11-24 Corning Incorporated Surface treatment and article

Similar Documents

Publication Publication Date Title
Krasnoslobodtsev et al. Effect of water on silanization of silica by trimethoxysilanes
TW315359B (en)
KR970001519B1 (en) Method for manufacturing a chemically absorbed film
EP0352180B1 (en) Glass pane provided with an anti-ice coating
KR940005773A (en) Method for producing chemisorbent membrane
RU2007105348A (en) SILICON OXYCARBIDE COATING HAVING LONG-TERM HYDROPHILIC PROPERTIES
JP3494622B2 (en) Manufacturing method of coating film
KR101137268B1 (en) Solvent for cleaning of organic thin film
EP1142845A1 (en) Anti-contaminant coating film, producing method thereof, anti-contaminant glass for automobile, producing method thereof, and automobile employing the glass
JP4094208B2 (en) Functional float glass and method for producing the same
WO2000015428A1 (en) Functional film and method for preparation thereof, and liquid crystal display element using the same and method for preparation thereof
US7138186B2 (en) Hydrophobic coatings and methods
JPH08119678A (en) Production of water-repellent antifouling glass
JPH0524886A (en) Water-repellent treatment of glass
JP3387141B2 (en) Water-repellent glass article
JP3579655B2 (en) Transparent substrate having antifouling hydrophobic coating and method for producing the same
JPH06138305A (en) Optical member subjected to water repelling treatment
JP2001300454A (en) Method for treating surface of substrate
JP3411207B2 (en) Method for producing oriented chemisorbed monolayer
JP3982426B2 (en) Silica film coated article
JP3130244B2 (en) Method for producing functional float glass
JP3672688B2 (en) Water repellent glass manufacturing method
JPH0826774A (en) Production of water-repellent article
JPH06114996A (en) Production of organic film
JP2981017B2 (en) Vacuum system equipment and manufacturing method thereof