JPH08118351A - Production of fiber reinforced resin composite material - Google Patents

Production of fiber reinforced resin composite material

Info

Publication number
JPH08118351A
JPH08118351A JP26284794A JP26284794A JPH08118351A JP H08118351 A JPH08118351 A JP H08118351A JP 26284794 A JP26284794 A JP 26284794A JP 26284794 A JP26284794 A JP 26284794A JP H08118351 A JPH08118351 A JP H08118351A
Authority
JP
Japan
Prior art keywords
component
resin
composite material
fiber
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26284794A
Other languages
Japanese (ja)
Inventor
Seiichi Hino
征一 日野
Shoichi Sato
正一 佐藤
Yoshihiro Sakamoto
吉弘 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP26284794A priority Critical patent/JPH08118351A/en
Publication of JPH08118351A publication Critical patent/JPH08118351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce a fiber reinforced resin composite material long in usable time without requiring a long time curing process. CONSTITUTION: The first component of a two-pack curable resin is applied to the single surface of a reinforcing base material and the second component thereof is applied to the other surface of the base material and, if necessary, a plurality of the coated base materials are laminated and cured to produce a fiber reinforced resin composite material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強化繊維によって補強さ
れた繊維強化樹脂複合材料の製造方法に関する。更に詳
しくは加熱が不要な繊維強化樹脂複合材料の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced resin composite material reinforced with reinforcing fibers. More specifically, it relates to a method for producing a fiber-reinforced resin composite material that does not require heating.

【0002】[0002]

【従来の技術】炭素繊維に代表される強化繊維をマトリ
ックス樹脂で賦形した繊維強化樹脂複合材料が、高強
度、高弾性率という特徴をいかして、航空・宇宙分野、
スポーツ分野等で使用されている。この分野で使用され
る繊維強化樹脂複合材料は、比較的貯蔵安定性の良い熱
硬化樹脂が補強基材に含浸されたプリプレグを中間基材
として、それを賦形してオーブン、オートクレーブ等で
加熱硬化して所望の成形物を得ているものである。一方
その高強度、高弾性率を利用して土木・建築分野でも金
属、コンクリートの代替または補強用にこの繊維強化樹
脂複合材料が利用され始めている。しかし、この分野で
は対象物が大型になり、また、その性格上、現場施工が
中心となるため、従来の熱硬化型のプリプレグは適用が
困難であった。そのため、熱硬化型のプリプレグを常温
硬化型接着剤を介して対象物に接着させることにより、
常温でプリプレグを硬化させる方法が提案されている
(特開平3−208626)。この方法では加熱処理が
不要であるが、硬化時間が長くなるという欠点があっ
た。また、接着剤中の溶媒による作業環境の悪化、硬化
物の表面性状が良好でないという問題もあった。
2. Description of the Related Art Fiber-reinforced resin composite materials obtained by shaping reinforcing fibers represented by carbon fibers with a matrix resin are utilized in the aviation and aerospace fields because of their high strength and high elastic modulus.
It is used in the sports field. Fiber-reinforced resin composite materials used in this field use a prepreg in which a thermosetting resin with relatively good storage stability is impregnated into a reinforcing base material as an intermediate base material, which is shaped and heated in an oven, an autoclave, or the like. The desired molded product is obtained by curing. On the other hand, by utilizing its high strength and high elastic modulus, this fiber-reinforced resin composite material has begun to be used in the field of civil engineering and construction as a substitute for metal or concrete or for reinforcement. However, in this field, since the target object becomes large, and due to its nature, it is mainly used on site construction, so that it is difficult to apply the conventional thermosetting prepreg. Therefore, by adhering the thermosetting prepreg to the object via the room temperature curable adhesive,
A method of curing a prepreg at room temperature has been proposed (JP-A-3-208626). This method does not require heat treatment, but has a drawback that the curing time becomes long. There are also problems that the working environment is deteriorated by the solvent in the adhesive and the surface properties of the cured product are not good.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、溶媒
による作業環境の悪化がなく、常温で迅速に硬化し、表
面性状が良好で、高度な機械的強度を有する繊維強化樹
脂複合材料の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fiber-reinforced resin composite material which does not deteriorate the working environment due to a solvent, cures rapidly at room temperature, has good surface properties, and high mechanical strength. It is intended to provide a manufacturing method.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは前
記問題点を解決するために、鋭意検討の結果、補強基材
の両面に2液硬化型樹脂の各成分を各々塗布すること
で、加熱することなく、常温で適度な硬化速度で硬化す
ることを見出し、本発明に到達した。即ち、本発明の要
旨は補強基材の片面に2液硬化型樹脂の第一成分を塗布
し、その反対側の面に2液硬化型樹脂の第二成分を塗布
し、必要に応じてこれを複数枚積層して、硬化させるこ
とを特徴とする繊維強化樹脂複合材料の製造方法、に存
する。以下本発明について詳述する。
In order to solve the above-mentioned problems, the inventors of the present invention have made earnest studies, and as a result, by applying each component of the two-component curable resin to both surfaces of the reinforcing base material, However, they have found that they cure at an appropriate curing rate at room temperature without heating, and have reached the present invention. That is, the gist of the present invention is to apply the first component of the two-component curable resin to one surface of the reinforcing base material, and apply the second component of the two-component curable resin to the opposite surface thereof. And a method for producing a fiber-reinforced resin composite material, which comprises: The present invention will be described in detail below.

【0005】本発明における補強基材は、強化繊維を一
方向に配列した一方向材、強化繊維を縦糸、横糸に使用
した織物、また、比較的短い繊維をランダムに配向した
マット、シート等のいずれの形態も使用できる。これら
のうち、機械的強度の観点からは、一方向材が好まし
い。また、これら補強基材に予め熱硬化樹脂を含浸し
た、いわゆるプリプレグも使用でき、この場合には予め
含浸する樹脂は2液硬化樹脂と同系統の樹脂が好まし
い。
The reinforcing base material in the present invention is a unidirectional material in which reinforcing fibers are arranged in one direction, a woven fabric in which reinforcing fibers are used as warp threads or weft threads, and a mat or sheet in which relatively short fibers are randomly oriented. Either form can be used. Of these, the unidirectional material is preferable from the viewpoint of mechanical strength. A so-called prepreg obtained by previously impregnating these reinforcing base materials with a thermosetting resin can also be used. In this case, the resin impregnated beforehand is preferably a resin of the same system as the two-component curing resin.

【0006】ここで、補強基材中の強化繊維の量として
は2液硬化樹脂の浸透する速度との関係から、好ましく
は50〜1000g/m2 、より好ましくは100〜5
00g/m2 である。また、強化繊維の種類としては特
に限定されるものではないが、例えば、ガラス繊維、炭
素繊維、アラミド繊維、アルミナ繊維、ポリエチレン繊
維等が用途に応じて、適宜使用可能である。特に比強
度、比弾性率に優れ、低弾性率から高弾性率まで幅広く
選択可能な炭素繊維が、軽量な繊維強化樹脂複合材料を
製造するのに好ましい。
Here, the amount of the reinforcing fibers in the reinforcing base material is preferably 50 to 1000 g / m 2 , more preferably 100 to 5 in view of the rate of penetration of the two-component curing resin.
It is 00 g / m 2 . The type of reinforcing fiber is not particularly limited, but for example, glass fiber, carbon fiber, aramid fiber, alumina fiber, polyethylene fiber, etc. can be appropriately used according to the application. In particular, carbon fibers which are excellent in specific strength and specific elastic modulus and can be widely selected from low elastic modulus to high elastic modulus are preferable for producing a lightweight fiber-reinforced resin composite material.

【0007】本発明における2液硬化型樹脂とは2液を
混合する前は室温付近では安定であるが、2液を混合す
ることで硬化するものである。通常は2成分以上の硬化
剤成分が2分割された主剤にそれぞれ分割されて混合さ
れており、それらを混合することで硬化反応が開始され
るものである。本発明ではこれらの2液硬化型樹脂であ
れば特に限定されないが、例えば、エポキシ樹脂、フェ
ノール樹脂、不飽和ポリエステル樹脂、ビニルエステル
樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、ビ
スマレイミド樹脂、ポリイミド樹脂等が具体的に挙げら
れる。なかでもラジカル重合性2液硬化型樹脂が好まし
い。好適なラジカル重合性2液硬化型樹脂とは不飽和ポ
リエステル樹脂、ビニルエステル樹脂、不飽和単量体及
びこれらの混合物等である。
The two-component curing type resin in the present invention is stable at around room temperature before the two components are mixed, but it is cured by mixing the two components. Usually, two or more curing agent components are divided into two main components and mixed, and the curing reaction is started by mixing them. In the present invention, it is not particularly limited as long as it is these two-component curable resins, but for example, epoxy resin, phenol resin, unsaturated polyester resin, vinyl ester resin, polyurethane resin, diallyl phthalate resin, bismaleimide resin, polyimide resin, etc. Specific examples include: Of these, a radical polymerizable two-component curable resin is preferable. Suitable radical-polymerizable two-component curable resins include unsaturated polyester resins, vinyl ester resins, unsaturated monomers and mixtures thereof.

【0008】不飽和ポリエステル樹脂としては、マレイ
ン酸で代表される不飽和ジカルボン酸またはこれの誘導
体をジカルボン酸成分としたものであり、ビニルエステ
ル樹脂としてはビスフェノールAのジグリシジルエーテ
ルで代表されるポリエポキシ化合物と(メタ)アクリル
酸等の不飽和モノカルボン酸との反応生成物であり、更
にジイソシアネート化合物で変性したものも含まれる。
不飽和単量体としてはスチレン、ジビニルベンゼン等の
芳香族ビニル化合物、メチル(メタ)アクリレート、エ
チル(メタ)アクリレート、2−ヒドロキシエチル(メ
タ)アクリレート、エチレングリコールジ(メタ)アク
リレート、トリメチロールプロパントリ(メタ)アクリ
レート、ポリアルキレングリコールジ(メタ)アクリレ
ート等の(メタ)アクリル酸エステル類、ジアリルフタ
レート、トリアリルイソシアヌレート等のアリル化合物
等を挙げることができる。これらは単独でも使用できる
が、一般には2種以上を併用する。不飽和ポリエステル
樹脂またはビニルエステル樹脂と不飽和単量体とを混合
することにより、粘度が低下し、取扱い性が向上するた
め、特に好ましい。この場合の塗布液の粘度範囲として
は0.05〜1000ポイズが好ましく、1〜100ポ
イズがより好ましい。この範囲以下では十分な塗布量を
確保することが難しく、これ以上では塗布性の問題と硬
化反応の速度が遅くなる可能性がある。また、これら2
液硬化型樹脂には、必要に応じて、炭酸カルシウム、雲
母、シリカ、カーボンブラック、二酸化チタン、アルミ
ナ、三酸化アンチモン、セルロース粉末、ポリビニルア
セタール、ゴム等の増量剤、充填剤、強化剤、着色剤、
難燃剤、流動性調節剤等の高分子添加剤を適宜添加する
ことができる。
The unsaturated polyester resin is an unsaturated dicarboxylic acid represented by maleic acid or a derivative thereof as a dicarboxylic acid component, and the vinyl ester resin is a polyglyceride represented by diglycidyl ether of bisphenol A. It is a reaction product of an epoxy compound and an unsaturated monocarboxylic acid such as (meth) acrylic acid, and further includes a product modified with a diisocyanate compound.
As unsaturated monomers, aromatic vinyl compounds such as styrene and divinylbenzene, methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, ethylene glycol di (meth) acrylate, trimethylolpropane. Examples thereof include (meth) acrylic acid esters such as tri (meth) acrylate and polyalkylene glycol di (meth) acrylate, and allyl compounds such as diallyl phthalate and triallyl isocyanurate. These can be used alone, but generally two or more kinds are used in combination. Mixing the unsaturated polyester resin or vinyl ester resin with the unsaturated monomer is particularly preferable because the viscosity is lowered and the handleability is improved. In this case, the viscosity range of the coating liquid is preferably 0.05 to 1000 poise, more preferably 1 to 100 poise. If it is less than this range, it is difficult to secure a sufficient coating amount, and if it is more than this range, there is a possibility that the problem of coating property and the speed of the curing reaction may become slow. In addition, these 2
Liquid-curable resin, if necessary, calcium carbonate, mica, silica, carbon black, titanium dioxide, alumina, antimony trioxide, cellulose powder, polyvinyl acetal, extenders such as rubber, fillers, reinforcing agents, coloring Agent,
Polymer additives such as flame retardants and fluidity regulators can be added as appropriate.

【0009】以上説明した2液硬化型樹脂には硬化剤と
硬化促進剤の少なくとも2成分を必須としているが、こ
の硬化剤と硬化促進剤をそれぞれ独立に上記2液硬化型
樹脂に溶解、分散した2つの樹脂組成物である。ここで
使用される硬化剤の具体例としてはメチルエチルケトン
パーオキサイド、シクロヘキサノンパーオキサイド等の
ケトンパーオキサイド化合物、1,1−ビス−(t−ブ
チルパーオキシ)3,3,5−トリメチルシクロヘキサ
ノン等のパーオキシケタール、キュメンハイドロパーオ
キサイド、p−メンタンハイドロパーオキサイド等のハ
イドロパーオキサイド化合物、ジ−t−ブチルパーオキ
サイド、ジクミルパーオキサイド等のジアルキルパーオ
キサイド化合物、ベンゾイルパーオキサイド、ラウロイ
ルパーオキサイド等のジアシルパーオキサイド化合物、
t−ブチルパーオキシピバレート、t−ブチルパーオキ
シ−2−エチルヘキソエート等のパーオキシエステル化
合物等を挙げることができる。また、硬化促進剤として
はジメチルアニリン、ジエチルアニリン等の3級アミン
化合物、ナフテン酸コバルト、ナフテン酸マンガン等の
金属塩化合物、ラウリルメルカプタン等のメルカプタン
化合物、ジフェニルジスルフィド等のジスルフィド化合
物等が挙げられる。これら硬化剤と硬化促進剤を任意に
組み合わせて使用することができる。特に好ましい組み
合せとしては、ベンゾイルパーオキサイドとジメチルア
ニリンあるいはケトンパーオキサイド化合物とナフテン
酸コバルトが挙げられる。
At least two components, a curing agent and a curing accelerator, are indispensable for the two-component curing type resin described above. The curing agent and the curing accelerator are independently dissolved and dispersed in the two-component curing type resin. The two resin compositions described above. Specific examples of the curing agent used here include ketone peroxide compounds such as methyl ethyl ketone peroxide and cyclohexanone peroxide, and peroxides such as 1,1-bis- (t-butylperoxy) 3,3,5-trimethylcyclohexanone. Hydroperoxide compounds such as oxyketal, cumene hydroperoxide, p-menthane hydroperoxide, dialkyl peroxide compounds such as di-t-butyl peroxide, dicumyl peroxide, diacyl such as benzoyl peroxide, lauroyl peroxide Peroxide compounds,
Examples include peroxy ester compounds such as t-butyl peroxypivalate and t-butyl peroxy-2-ethylhexoate. Examples of the curing accelerator include tertiary amine compounds such as dimethylaniline and diethylaniline, metal salt compounds such as cobalt naphthenate and manganese naphthenate, mercaptan compounds such as lauryl mercaptan, and disulfide compounds such as diphenyldisulfide. These curing agents and curing accelerators can be used in any combination. A particularly preferable combination is benzoyl peroxide and dimethylaniline or a ketone peroxide compound and cobalt naphthenate.

【0010】本発明の製造方法をより具体的に説明す
る。前もって、上記硬化剤を含有する樹脂液A、上記硬
化促進剤を含有する樹脂液Bの2種類の樹脂液を調製す
る。補強基材の両面に樹脂液A、Bをそれぞれ塗布し、
必要に応じて、それらを順次積層し、室温で放置するこ
とで硬化反応を生じさせ、目的の成形物を得ることがで
きる。もちろん積層を必要としない場合には、それぞれ
の面からそれぞれの樹脂液が浸透していき、硬化反応を
生じ、目的の成形物を得ることができる。別の方法とし
ては、樹脂液A、Bをそれぞれの面に塗布した補強基材
に、樹脂液Aを塗布した別の補強基材を樹脂液Aと樹脂
液Bが接するように積層し、その後未塗布の面に樹脂液
Bを塗布し、必要に応じてこれらを繰り返すことで多層
の積層を行い、その後室温で放置することで硬化反応を
生じさせ、目的の成形物を得る方法がある。この場合に
硬化剤、硬化促進剤の量を調節することで、可使時間、
環境温度、成形物の大きさ等に対応することもできる。
また、必要に応じて加熱処理を併用することで反応を促
進することも可能である。
The manufacturing method of the present invention will be described more specifically. In advance, two types of resin liquids, a resin liquid A containing the above-mentioned curing agent and a resin liquid B containing the above-mentioned curing accelerator, are prepared. Apply resin solutions A and B on both sides of the reinforcing base material,
If necessary, they can be sequentially laminated and left at room temperature to cause a curing reaction to obtain the desired molded product. Of course, when the lamination is not required, the respective resin liquids permeate from the respective surfaces to cause a curing reaction, and the desired molded product can be obtained. As another method, another reinforcing base material coated with the resin liquid A is laminated on the reinforcing base material coated with the resin liquids A and B so that the resin liquid A and the resin liquid B are in contact with each other, and There is a method in which the resin liquid B is applied to the uncoated surface and, if necessary, these are repeated to form a multi-layer lamination, and then the mixture is left at room temperature to cause a curing reaction to obtain a target molded product. In this case, by adjusting the amount of curing agent and curing accelerator,
It is also possible to deal with the environmental temperature, the size of the molded product, and the like.
Further, the reaction can be promoted by using a heat treatment together if necessary.

【0011】又、更に別の方法としては、補強基板に樹
脂液A又はBのみを両面に塗布した補強基材を作り、こ
れを交互に積層することにより、樹脂液AとBが接し、
硬化反応を生じるようにしてもよい。この場合、補強基
材の浸透性が良好であることが好ましく、前述の強化繊
維の量の目安である上限の1000g/m2 を越えない
ようにすることが、より重要となる。又、この場合でも
両端になる基材、例えば10枚積層するなら1枚目と1
0枚目は、樹脂液A、Bを片面づつに塗布した基材を用
いることがより好ましい。これらの場合の硬化反応は型
内で適度の加圧状態で行うことが、最終成形物の形状が
安定したものになるので好ましい。このようにして得ら
れた硬化反応の終了した成形物を利用して、既存建築物
等に接着剤等を利用して接着することで、補強工事を行
うことができる。この他用途として、航空、宇宙、スポ
ーツ分野、あるいは土木・建築分野での金属、コンクリ
ート等の代替として使用することができる。
As another method, a reinforcing substrate is prepared by coating the reinforcing substrate with only the resin liquid A or B on both sides, and by alternately stacking these, the resin liquids A and B are in contact with each other.
A curing reaction may occur. In this case, it is preferable that the reinforcing base material has good permeability, and it is more important not to exceed the upper limit of 1000 g / m 2 , which is a guideline for the amount of the reinforcing fibers. Also in this case, the base material on both ends, for example, if 10 sheets are laminated,
For the 0th sheet, it is more preferable to use a substrate in which the resin liquids A and B are applied to each side. The curing reaction in these cases is preferably carried out in the mold under an appropriate pressure, because the shape of the final molded product becomes stable. Reinforcing work can be performed by using the thus obtained molded product that has undergone the curing reaction and adhering it to an existing building or the like using an adhesive or the like. In addition to this, it can be used as a substitute for metal, concrete, etc. in the fields of aviation, space, sports, or civil engineering / construction.

【0012】[0012]

【実施例】次に比較例および実施例に基づいて、本発明
を更に詳細に説明するが、その要旨を越えない限り以下
の例に限定されるものではない。 (実施例1)不飽和ポリエステル樹脂(日本ユピカ製、
「ユピカ4007A」)100重量部に、硬化剤(日本
ユピカ製、「バーキュアーA」)2重量部を混合して樹
脂液Aを調製した。同じ不飽和ポリエステル樹脂100
重量部に、硬化促進剤(日本ユピカ製、「PR−M」)
1.5重量部を混合して樹脂液Bを調製した。一方向に
引き揃えられた炭素繊維束をガラス繊維で100mm間
隔に固定した補強基材シート(目付量200g/m2
の片面に樹脂液Aを塗布し、その裏側に樹脂液Bを等量
塗布した。次に同様に樹脂液を塗布した補強基材シート
10枚を樹脂液Aと樹脂液Bが接触するように順次重ね
合わせた。余分な樹脂を除去した後、型内で23℃、1
kg/cm2 の圧力で2時間放置した結果、形状保持可
能な程度まで硬化していた。型より取り出し、23℃で
7日間放置した後、“ASTMD2344”に準拠し
て、硬化物の層間剪断強度を測定したところ7.2kg
/cm2 であった。
EXAMPLES The present invention will be described in more detail based on the following comparative examples and examples, but the invention is not limited to the following examples as long as the gist thereof is not exceeded. (Example 1) Unsaturated polyester resin (manufactured by Nippon Yupica,
Resin solution A was prepared by mixing 100 parts by weight of "Yupika 4007A") with 2 parts by weight of a curing agent (manufactured by Nippon Yupica, "Vercure A"). Same unsaturated polyester resin 100
In parts by weight, a curing accelerator ("PR-M" manufactured by Nippon Yupica)
Resin solution B was prepared by mixing 1.5 parts by weight. Reinforcement substrate sheet in which unidirectionally aligned carbon fiber bundles are fixed with glass fibers at 100 mm intervals (weight per unit area: 200 g / m 2 ).
The resin liquid A was applied to one side of the above, and the resin liquid B was applied to the back side in an equal amount. Next, similarly, ten reinforcing base material sheets coated with the resin liquid were sequentially stacked so that the resin liquid A and the resin liquid B were in contact with each other. After removing the excess resin, 23 ℃ in the mold, 1
As a result of being left for 2 hours at a pressure of kg / cm 2 , it was cured to the extent that it could retain its shape. After removing it from the mold and leaving it at 23 ° C. for 7 days, the interlaminar shear strength of the cured product was measured according to “ASTM D2344”.
Was / cm 2 .

【0013】(実施例2)ビニルエステル樹脂(昭和高
分子製、「H600」)100重量部にメチルエチルケ
トンパーオキサイド(日本油脂製、「パーメックN」)
3重量部を混合して樹脂液Aを調製した。同じビニルエ
ステル樹脂にナフテン酸コバルト溶液(キシダ化学製、
コバルト含量6%)1重量部を混合して樹脂液Bを調製
した。この樹脂液A、Bを用いて、他は実施例1と同様
な操作で硬化物を得た。その硬化物の層間剪断強度は
6.9kg/cm2 であった。
(Example 2) 100 parts by weight of vinyl ester resin ("H600" manufactured by Showa High Polymer) and methyl ethyl ketone peroxide ("Permek N" manufactured by NOF CORPORATION)
Resin solution A was prepared by mixing 3 parts by weight. Cobalt naphthenate solution (made by Kishida Chemical,
Resin solution B was prepared by mixing 1 part by weight of cobalt content 6%). A cured product was obtained using the resin liquids A and B in the same manner as in Example 1 except for the above. The interlaminar shear strength of the cured product was 6.9 kg / cm 2 .

【0014】(実施例3)補強基材を炭素繊維の織物
(東レ製、「トレクロスC06343」)にした以外は
実施例1と同様にして硬化物を得た。その硬化物の層間
剪断強度は5.2kg/cm2 であった。 (実施例4)積層するシートを、A液のみを塗布したも
のとB液のみを塗布したものを交互に積層したものと
し、かつ1枚目と10枚目は、片面に樹脂液A、片面に
樹脂液Bを塗布したものを用いた以外は、実施例1と同
様にして硬化物を得た。その硬化物の層間剪断強度は、
実施例1とほぼ同等の6.5kg/cm2 であった。 (比較例1)実施例1で調製した樹脂液A、Bを等量混
合して、実施例1で使用した補強基材に塗布、積層しよ
うとしたが、10分後には混合液の粘度が上昇して、塗
布することができなくなった。
(Example 3) A cured product was obtained in the same manner as in Example 1 except that the reinforcing base material was a carbon fiber woven fabric ("Trecross C06343" manufactured by Toray Industries, Inc.). The interlaminar shear strength of the cured product was 5.2 kg / cm 2 . (Example 4) The sheets to be laminated were alternately laminated with the liquid A only and the liquid B only, and the first and tenth sheets were the resin liquid A on one side and the one side. A cured product was obtained in the same manner as in Example 1 except that the resin liquid B was applied to the above. The interlaminar shear strength of the cured product is
The value was 6.5 kg / cm 2 , which was almost the same as in Example 1. (Comparative Example 1) The resin liquids A and B prepared in Example 1 were mixed in equal amounts, and an attempt was made to apply and laminate to the reinforcing base material used in Example 1, but after 10 minutes, the viscosity of the mixed liquid was It rose and became unable to be applied.

【0015】[0015]

【発明の効果】本発明の繊維強化樹脂複合材料の製造方
法は従来のような加熱あるいは長時間の硬化工程が不要
となり、また十分な可使時間を確保できるので生産効率
が高くなり、また、補強基材の強度を十分に発現するこ
とが可能である。
EFFECT OF THE INVENTION The method for producing a fiber-reinforced resin composite material of the present invention does not require heating or a long curing step as in the prior art, and can secure a sufficient pot life, resulting in high production efficiency. It is possible to sufficiently develop the strength of the reinforcing base material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 67:06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C08L 67:06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 補強基材の片面に2液硬化型樹脂の第一
成分を塗布し、その反対側の面に2液硬化型樹脂の第二
成分を塗布し、必要に応じてこれを複数枚積層して、硬
化させることを特徴とする繊維強化樹脂複合材料の製造
方法。
1. A first component of a two-component curable resin is applied to one surface of a reinforcing base material, and a second component of a two-component curable resin is applied to the opposite surface thereof, and a plurality of such components are applied if necessary. A method for producing a fiber-reinforced resin composite material, which comprises laminating and curing the sheets.
【請求項2】 補強基材の片面に2液硬化型樹脂の第一
成分を塗布し、その反対側の面に2液硬化型樹脂の第二
成分を塗布した後、2液硬化型樹脂の第一成分を片面に
塗布した他の補強基材を2液硬化型樹脂の第一成分と第
二成分が接するように積層し、未塗布の面に2液硬化型
樹脂の第二成分を塗布し、必要に応じてこれを複数回繰
り返して、硬化させることを特徴とする繊維強化樹脂複
合材料の製造方法。
2. A first component of a two-component curable resin is applied to one surface of a reinforcing base material, a second component of the two-component curable resin is applied to the opposite surface thereof, and then a second component of the two-component curable resin is applied. The other reinforcing base material coated with the first component on one side is laminated so that the first component and the second component of the two-component curing resin are in contact with each other, and the second component of the two-component curing type resin is applied to the uncoated face. Then, if necessary, this is repeated a plurality of times to cure the fiber-reinforced resin composite material.
【請求項3】 2層以上の補強基材を積層して使用する
繊維強化樹脂複合材料の製造方法において、両面に2液
硬化型樹脂の第一成分を塗布した補給基材と両面に2液
硬化型樹脂の第二成分を塗布した補強基材とを交互に積
層して2液硬化型樹脂を硬化させることを特徴とする繊
維強化樹脂複合材料の製造方法。
3. A method for producing a fiber-reinforced resin composite material, which comprises stacking two or more reinforcing base materials for use, and a replenishment base material having both surfaces coated with a first component of a two-part curable resin and two liquid parts on both sides. A method for producing a fiber-reinforced resin composite material, comprising alternately laminating a reinforcing base material coated with a second component of a curable resin to cure a two-component curable resin.
【請求項4】 2液硬化型樹脂が、不飽和ポリエステル
またはビニルエステルであることを特徴とする請求項1
ないし3のいずれか記載の繊維強化樹脂複合材料の製造
方法。
4. The two-part curable resin is unsaturated polyester or vinyl ester.
4. The method for producing a fiber-reinforced resin composite material according to any one of 3 to 3.
JP26284794A 1994-10-26 1994-10-26 Production of fiber reinforced resin composite material Pending JPH08118351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26284794A JPH08118351A (en) 1994-10-26 1994-10-26 Production of fiber reinforced resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26284794A JPH08118351A (en) 1994-10-26 1994-10-26 Production of fiber reinforced resin composite material

Publications (1)

Publication Number Publication Date
JPH08118351A true JPH08118351A (en) 1996-05-14

Family

ID=17381452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26284794A Pending JPH08118351A (en) 1994-10-26 1994-10-26 Production of fiber reinforced resin composite material

Country Status (1)

Country Link
JP (1) JPH08118351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387479B1 (en) 1995-11-01 2002-05-14 Mitsubishi Rayon Co., Ltd. Method of repairing/reinforcing existing structures and anisotropic woven fabrics used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387479B1 (en) 1995-11-01 2002-05-14 Mitsubishi Rayon Co., Ltd. Method of repairing/reinforcing existing structures and anisotropic woven fabrics used therefor

Similar Documents

Publication Publication Date Title
US4824500A (en) Method for repairing damaged composite articles
US9290631B2 (en) Adhesive formulations for bonding composite materials
US20050266219A1 (en) Coupling of reinforcing fibres to resins in curable composites
WO2011021516A1 (en) Resin composition for fiber-reinforced composite materials, cured product thereof, fiber-reinforced composite materials, moldings of fiber-reinforced resin, and process for production thereof
US9550313B2 (en) Process for the production of storage-stable epoxy prepregs, and composites produced therefrom, based on epoxides and acids amenable to free-radical polymerisation
WO2011034042A1 (en) Resin composition for fiber-reinforced composite material, cured object obtained therefrom, fiber-reinforced composite material, fiber-reinforced molded resin, and process for producing same
US11865794B2 (en) Prepreg and method for manufacturing molded prepreg article
KR102245148B1 (en) Resin composition for sheet molding compound and sheet molding compound using the same
JP2015078310A (en) Prepreg
WO2021131566A1 (en) Prepreg and molded article
JPS5890958A (en) Room-temperature cured polyester laminate
JP6846927B2 (en) Manufacturing method of thermosetting sheet-shaped molding material and fiber reinforced plastic
TWI743495B (en) Resin laminated body and manufacturing method of resin laminated body
JPH08118351A (en) Production of fiber reinforced resin composite material
EP1083274A1 (en) Method for repairing and reinforcing existing concrete structure and resin
JPH08253604A (en) Prepreg, fiber-reinforced resin composite material and reinforcement of structure using prepreg
JPS6145663B2 (en)
EP3145969B1 (en) A method for preparing finished and semi-finished products such as prepregs based on an epoxy resin composition, and composition therefor
US20150151522A1 (en) Method for improving adhesion of polyurethane adhesive to polyester based laminate without surface preparation
JP2019202547A (en) Prepreg
JPH08118535A (en) Reinforcement of structure
JPH02212544A (en) Impregnating resin composition, and production of both prepreg and laminate
JPS59219364A (en) Fiber-reinforced plastic intermediate material
JP2023160676A (en) Metal resin composite material, vehicle using the same, and method for disassembling metal resin composite material
JPH07309963A (en) Prepreg and molded composite material