JPH08117746A - Composite type filtering and desalting apparatus - Google Patents

Composite type filtering and desalting apparatus

Info

Publication number
JPH08117746A
JPH08117746A JP6284452A JP28445294A JPH08117746A JP H08117746 A JPH08117746 A JP H08117746A JP 6284452 A JP6284452 A JP 6284452A JP 28445294 A JP28445294 A JP 28445294A JP H08117746 A JPH08117746 A JP H08117746A
Authority
JP
Japan
Prior art keywords
chamber
hollow fiber
fiber membrane
water
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6284452A
Other languages
Japanese (ja)
Other versions
JP3212816B2 (en
Inventor
Yoshio Sunaoka
好夫 砂岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP28445294A priority Critical patent/JP3212816B2/en
Publication of JPH08117746A publication Critical patent/JPH08117746A/en
Application granted granted Critical
Publication of JP3212816B2 publication Critical patent/JP3212816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: To reduce a required installation area while reducing part cost and anchoring construction quantity by integrally combining a filter chamber in which a compact hollow yarn membrane module is arranged and a desalting chamber having an ion exchange bed in one container up and down. CONSTITUTION: The interior of a vertical container 12 is divided up and down by a partition wall 14 to form an upper filter chamber 16 and a lower desalting chamber 18. A hollow yarn membrane module 20 is arranged in the filter chamber 16 so as to communicate with the desalting chamber 18 through the hollow yarn membranes of the module. An ion exchange bed 5 packed with an ion exchange material is formed within the desalting chamber 18. Further, an introducing port of water to be treated is provided to the container wall of the filter chamber 16 and a sending-out port 58 of treated water subjected to filtering and desalting treatment is provided to the container wall of the desalting chamber 18. The water to be treated introduced into the filter chamber 16 is transmitted from the outside of hollow yarn membranes to the inside thereof and transmitted water is guided to the desalting chamber 18 to be allowed to flow through the ion exchange bed 56 from above to below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被処理水中に含まれる
不純物を除去するために濾過処理及び脱塩処理の双方を
行う水処理装置に関し、更に詳細には、火力発電所等か
ら出た復水を再びボイラー用水として使用できるように
処理する水処理装置として好適な、特に原子力発電所の
復水系のように大流量の水を濾過及び脱塩処理する水処
理装置として最適なコンパクトな複合型濾過脱塩装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment apparatus which performs both filtration treatment and desalination treatment in order to remove impurities contained in water to be treated, and more specifically, it relates to a water treatment apparatus which is used in a thermal power plant or the like. Suitable as a water treatment device that treats the condensate water so that it can be used again as boiler water, and is a compact complex that is particularly suitable as a water treatment device for filtering and desalting a large flow of water such as the condensate system of a nuclear power plant The present invention relates to a type filtration desalination apparatus.

【0002】[0002]

【従来の技術】火力発電所又は原子力発電所では、ボイ
ラー又は原子炉で発生させた蒸気を復水タービンに送
り、発電機を駆動すると共にその蒸気を復水器で凝縮さ
せ、次いで復水処理装置に導いて必要な処理を施した
後、再びボイラー又は原子炉に送入している。一般に、
このような復水のリサイクルシステムを復水システムと
称している。
2. Description of the Related Art In a thermal power plant or a nuclear power plant, steam generated in a boiler or a nuclear reactor is sent to a condensing turbine to drive a generator and condense the steam in a condenser, and then condensate treatment. After being guided to the equipment and subjected to the necessary treatment, it is again fed into the boiler or reactor. In general,
Such a condensate recycling system is called a condensate system.

【0003】ところで、沸騰水型(BWR型)原子力発
電所(以下、簡単に原子力発電所と称する)の復水シス
テムに設けられる復水処理装置の構成に当たっては、大
量の復水を処理できること、復水中の溶解性物質及び懸
濁物質(機器及び配管から生じた腐食生成物が主たるも
のであって、酸化鉄、水酸化鉄等を含み、クラッドと称
される)を除去して原子炉に必要な水質を長期間にわた
り確実に維持できること、復水器で冷却水として使用し
ている海水が万一漏洩した場合でも海水中のイオン、異
物を完全に除去して原子炉に流入しないようにできるこ
と等が原子炉を安全かつ継続的に運転する上で必須の要
件とされている。
By the way, in constructing a condensate treatment apparatus provided in a condensate system of a boiling water type (BWR type) nuclear power plant (hereinafter simply referred to as a nuclear power plant), a large amount of condensate can be treated. Soluble substances and suspended substances in condensate (mainly corrosion products generated from equipment and pipes, including iron oxide, iron hydroxide, etc., called clad) are removed to the reactor. Ensure that the required water quality can be maintained for a long period of time, and even if the seawater used as cooling water in the condenser should leak, it should be possible to completely remove the ions and foreign substances in the seawater and prevent it from flowing into the reactor. What can be done is an essential requirement for safe and continuous operation of the reactor.

【0004】そのような要件を満たすために、最近の原
子力発電所用復水処理装置は、多数の中空糸膜モジュー
ルを塔内に配設した濾過塔を多数並列に配置した中空糸
膜濾過装置と、それに後続する、イオン交換樹脂を充填
した脱塩塔を多数並列に配置したイオン交換式脱塩装置
とをそれぞれ別個に設置し、それを直列に接続すること
により構成されている。例えば、6,600Ton/Hrの復
水を処理する場合、塔径3m位の濾過塔と脱塩塔とをそ
れぞれ5〜8基必要とされる。中空糸膜濾過装置は復水
中のクラッドを除去するために、またイオン交換式脱塩
装置は復水中のイオンを除去するために設けられてい
る。特に、イオン交換式脱塩装置は、復水器で海水の漏
洩が万一発生した場合に、海水から持込まれるイオンを
完全に除去できるだけの容量を備えている必要があり、
これが装置規模の決定因子となる。
In order to meet such requirements, a recent condensate treatment apparatus for a nuclear power plant has a hollow fiber membrane filtration device in which a large number of filtration towers in which a large number of hollow fiber membrane modules are arranged in the tower are arranged in parallel. , And an ion-exchange type desalination apparatus in which a large number of deionization towers filled with ion-exchange resin are arranged in parallel, which are installed separately from each other, and are connected in series. For example, when treating 6,600 Ton / Hr of condensate, 5 to 8 filtration towers and 3 to 8 desalting towers each having a diameter of about 3 m are required. The hollow fiber membrane filtering device is provided for removing the clad in the condensate, and the ion exchange desalting device is provided for removing the ions in the condensate. In particular, the ion-exchange desalination device must have a capacity sufficient to completely remove the ions carried from the seawater should seawater leak in the condenser.
This is a determinant of the scale of the device.

【0005】[0005]

【発明が解決しようとする課題】ところで、原子力発電
所の復水処理装置については、次の理由から、復水処理
装置の所要設置面積を小さくし、かつ全体をコンパクト
にすると共に復水処理装置の設備費を低減することが緊
急の課題となっている。理由の第1には、原子力発電所
の立地が益々難しくなっている最近の事情を考慮して、
原子力発電所の敷地面積を出来るだけ小さくしたいと言
う要請があり、そのために、復水処理装置の設置面積を
小さくする必要があるからである。第2には、原子力発
電所の復水処理装置は、放射性物質を含む復水を処理す
る装置であるために、遮蔽用の鉄筋コンクリート製の厚
い壁で密閉された建屋の中に配置されている。鉄筋コン
クリート製の建屋の建設は莫大な費用を要するので、復
水処理装置を収める建屋を出来るだけ小さくして建設費
を低減させる必要があるからである。第3には、復水処
理装置の設備費を節減して原子力発電所全体の設備費を
低くすることが必要であるからである。
By the way, regarding the condensate treatment apparatus of a nuclear power plant, the required installation area of the condensate treatment apparatus is made small and the entire condensate treatment apparatus is made compact for the following reasons. It is an urgent issue to reduce the equipment cost. The first reason is that in consideration of the recent circumstances where the location of nuclear power plants is becoming increasingly difficult,
This is because there is a demand to make the site area of the nuclear power plant as small as possible, and for that reason, it is necessary to reduce the installation area of the condensate treatment device. Secondly, since the condensate treatment device of a nuclear power plant is a device for treating condensate containing radioactive substances, it is placed in a building sealed by a thick wall made of reinforced concrete for shielding. . This is because the construction of a building made of reinforced concrete requires enormous cost, and it is necessary to reduce the construction cost by making the building containing the condensate treatment device as small as possible. Thirdly, it is necessary to reduce the facility cost of the condensate treatment device and reduce the facility cost of the entire nuclear power plant.

【0006】しかし、それぞれ分離して設置された中空
糸膜濾過装置とイオン交換式脱塩装置とを直列に接続し
た従来の復水処理装置は、復水中のクラッドを効率的に
除去できる膜技術と復水中の陽イオン及び陰イオンを効
率的に除去できるイオン交換技術のそれぞれの特長を活
かした優れた装置であるものの、その設置面積及び設備
費を大幅に節減することは次の理由から難しかった。そ
れは、中空糸膜濾過装置において、中空糸膜モジュール
を高性能化してモジュール数を削減することにより、濾
過塔の塔径を小さくでき、また濾過塔の塔数を削減でき
たとしても、或いはイオン交換式脱塩装置において、通
水流速を速くできるようにイオン交換材を高性能化して
その充填量を削減することにより、脱塩塔の塔径を小さ
くでき、また濾過塔の塔数を削減できたとしても、各装
置内での個々の改良に留まるため、装置の大幅な所要面
積の削減及びコストの削減は困難であるからである。
However, the conventional condensate treatment apparatus in which a hollow fiber membrane filtration apparatus and an ion-exchange desalination apparatus, which are separately installed, are connected in series, is a membrane technology capable of efficiently removing the clad in the condensate. Although it is an excellent device that takes advantage of each feature of ion exchange technology that can efficiently remove cations and anions in condensate, it is difficult to significantly reduce the installation area and equipment cost for the following reasons. It was In the hollow fiber membrane filtration device, by improving the performance of the hollow fiber membrane module to reduce the number of modules, the tower diameter of the filtration tower can be reduced, and even if the number of filtration towers can be reduced, or In the exchange-type desalination equipment, the diameter of the desalting tower can be reduced and the number of filtration towers can be reduced by improving the performance of the ion exchange material and reducing the filling amount so that the water flow rate can be increased. Even if it can be done, it is difficult to significantly reduce the required area of the device and the cost because it is limited to the individual improvement in each device.

【0007】ところで、上述の復水処理装置とは別に、
濾過処理と脱塩処理を同時に行う方法も、幾つか提示さ
れている。例えば、逆浸透膜技術を復水処理装置に適用
する試みが提案されているが、それは以下の技術的及び
経済的問題のために未だ実用化の域に達していない。第
1には、水が逆浸透膜を透過するためには少なくとも1
0kg/cm2程度の圧力損失が生じる。そのため、逆浸透膜
装置に送水するポンプの揚程が大幅に高くなり、動力費
が高くなる。第2には、濾過とは異なり、逆浸透膜では
透過水の回収率を100%まで高めることが脱塩性能上
困難である。そのため、多量の濃縮液が透過水と共に発
生し、この濃縮液をそのまま放流することはできないの
で、濃縮液処理装置を別途必要とする。また、脱塩性能
がイオン交換樹脂よりも劣るので、その対策も必要であ
る。
By the way, in addition to the above-mentioned condensate treatment device,
Several methods for simultaneously performing the filtration treatment and the desalting treatment have been proposed. For example, attempts have been made to apply reverse osmosis membrane technology to condensate treatment equipment, but it has not reached the stage of practical application due to the following technical and economic problems. First, at least 1 is required for water to permeate the reverse osmosis membrane.
A pressure loss of about 0 kg / cm 2 occurs. Therefore, the head of the pump for supplying water to the reverse osmosis membrane device is significantly increased, and the power cost is increased. Secondly, unlike filtration, it is difficult for the reverse osmosis membrane to increase the recovery rate of permeated water to 100% in terms of desalination performance. Therefore, a large amount of the concentrated liquid is generated together with the permeated water, and this concentrated liquid cannot be discharged as it is, so that a separate concentrated liquid treatment device is required. Further, since the desalination performance is inferior to that of the ion exchange resin, it is necessary to take measures against it.

【0008】更に別の方法として、イオン交換機能を付
加した中空糸膜(以下、簡単に複合型中空糸膜と略称す
る)を利用する方法が特開昭61−47592号公報、
特開平1−297149号公報等に提案されているが、
以下のような問題が指摘されている。第1には、複合型
中空糸膜のイオン交換能とイオン交換容量の問題であ
る。即ち、イオン交換基を付加することにより中空糸膜
の耐久性が低下するため、また中空糸膜が中空形でしか
も多孔性であるため、イオン交換樹脂の充填層と同等の
密度で多量のイオン交換基を中空糸膜に付加することは
技術的に無理である。従って、複合型中空糸膜の1本当
たりのイオン交換容量が小さい。また、粒状のカチオン
樹脂とアニオン樹脂とを混合してイオン交換層を形成す
る場合とは異なり、複合型中空糸膜は膜自体が固定され
ているため、カチオン交換基を有する部分とアニオン交
換基を有する部分とを組合わせて、陽イオン及び陰イオ
ンの双方を効率良く脱塩する方法を確立することが難し
く、未だ実用化には至っていない。また、複合型中空糸
膜を使用する場合、濾過特性を維持するためには中空糸
膜間に有る程度の間隔を開け、しかもモジュール化する
ために中空糸膜を保護する役目をなす保護筒などの中空
糸膜以外の材料を使用する必要がある。更に、このよう
な複合型のモジュールを塔内に装着する関係上、モジュ
ール間にかなり大きな間隔を要する。以上の理由から、
粒状のイオン交換樹脂を稠密に充填したイオン交換層と
比較すると、言わばイオン交換基の容積効率が著しく低
くなり、複合型中空糸膜を装着する塔の寸法が大きくな
る。従って、複合型中空糸膜を大容量の復水処理装置に
適用すると装置が著しく大きくなる。
As another method, a method of using a hollow fiber membrane having an ion exchange function (hereinafter simply referred to as a composite type hollow fiber membrane) is disclosed in JP-A-61-47592.
Although proposed in Japanese Patent Laid-Open No. 1-297149 and the like,
The following problems have been pointed out. First, there is a problem of ion exchange capacity and ion exchange capacity of the composite hollow fiber membrane. That is, since the durability of the hollow fiber membrane is reduced by adding an ion exchange group, and because the hollow fiber membrane is hollow and porous, a large amount of ions with the same density as the packed layer of the ion exchange resin is obtained. It is technically impossible to add an exchange group to the hollow fiber membrane. Therefore, the ion exchange capacity per composite hollow fiber membrane is small. Further, unlike the case of forming an ion exchange layer by mixing a granular cation resin and an anion resin, since the membrane itself is fixed in the composite hollow fiber membrane, the portion having a cation exchange group and the anion exchange group are It is difficult to establish a method for efficiently desalting both a cation and an anion in combination with a moiety having a, and it has not yet been put to practical use. In addition, when using a composite hollow fiber membrane, in order to maintain the filtration characteristics, a certain amount of space is provided between the hollow fiber membranes, and in addition, a protective tube that functions to protect the hollow fiber membranes for modularization, etc. It is necessary to use a material other than the hollow fiber membrane. Furthermore, because of mounting such a composite type module in the tower, a considerably large space is required between the modules. For the above reasons,
Compared with an ion exchange layer in which a granular ion exchange resin is densely packed, the volume efficiency of the ion exchange group is remarkably low, and the size of the column in which the composite hollow fiber membrane is mounted becomes large. Therefore, when the composite hollow fiber membrane is applied to a large capacity condensate treatment apparatus, the size of the apparatus becomes significantly large.

【0009】第2には、イオン交換基が固定した中空糸
膜に装着されているので、そのままの状態でイオン交換
基の再生を行う必要があるが、かかる再生処理は技術的
に難しく、未だ確立された技術がない。再生を行わず
に、廃棄する方法も考えられるが、元来、複合型中空糸
膜のイオン交換容量は小さいため、交換寿命が短く、交
換コストが高くなる。
Secondly, since the ion-exchange group is attached to the hollow fiber membrane which is fixed, it is necessary to regenerate the ion-exchange group as it is, but such regeneration treatment is technically difficult and still not possible. There is no established technology. A method of discarding without regenerating is also conceivable, but since the ion exchange capacity of the composite hollow fiber membrane is originally small, the exchange life is short and the exchange cost is high.

【0010】また、特開昭64−67206号公報や特
開平3−56126号公報には中空糸膜モジュール内部
にイオン交換樹脂を充填した複合型中空糸膜モジュール
が提案されているが、以下のような問題が指摘されてい
る。第1には、中空糸膜モジュール内に確保できるイオ
ン交換樹脂充填用のスペースには明らかに限界があるた
めに、複合型中空糸膜モジュール1本当たりのイオン交
換容量が小さい。従って、復水用の脱塩装置に適用する
と、装置の規模が上述した複合型中空糸膜と同様に著し
く大きくなる。第2には、イオン交換樹脂層を通過する
流速が早くなり過ぎるため、脱塩効率が低下する。第3
には、イオン交換樹脂が固定された複合型中空糸膜モジ
ュールに充填されているために、前述の複合型中空糸膜
と同様にイオン交換樹脂の再生が技術的に困難なことで
ある。そこで、中空糸膜モジュールを1本毎に濾過塔か
ら取り出して新品のイオン交換樹脂と交換したり、中空
糸膜の部分はまだ使用できるにも拘らず廃棄して新品と
交換する必要が生じる。
Further, Japanese Unexamined Patent Publication No. 64-67206 and Japanese Unexamined Patent Publication No. 3-56126 propose a composite type hollow fiber membrane module in which an ion exchange resin is filled in the hollow fiber membrane module. Such problems have been pointed out. First, since the space for filling the ion exchange resin that can be secured in the hollow fiber membrane module is obviously limited, the ion exchange capacity per composite hollow fiber membrane module is small. Therefore, when it is applied to a demineralizer for condensate, the scale of the device becomes remarkably large like the composite hollow fiber membrane described above. Secondly, the flow rate through the ion-exchange resin layer becomes too fast, so that the desalination efficiency decreases. Third
In this case, since the composite hollow fiber membrane module to which the ion exchange resin is fixed is filled, it is technically difficult to regenerate the ion exchange resin like the composite hollow fiber membrane described above. Therefore, it is necessary to take out each hollow fiber membrane module from the filtration tower and replace it with a new ion-exchange resin, or to discard the hollow fiber membrane part and replace it with a new one, although it is still usable.

【0011】以上のように、濾過処理と脱塩処理を同時
に行う方法として幾つかの方法が提示されているが、い
ずれも原理的には可能ではあるものの、機能的に劣って
いたり、設備が大きくなったりするために、未だ実用化
するには至らない技術であると言わざるを得ない。
As described above, several methods have been proposed as methods for simultaneously carrying out the filtration treatment and the desalting treatment. However, although all of them are possible in principle, they are inferior in function or have equipment. It must be said that this is a technology that has yet to be put to practical use because it grows in size.

【0012】以上のような状況に照らし、本発明の目的
は、濾過処理及び脱塩処理の双方を行う水処理装置、特
に原子力発電所等の復水の処理に好適な水処理装置であ
って、従来の水処理装置に比べて、コンパクトで所要設
置面積が小さく、かつ設備コストが低い装置を提供する
ことである。
In view of the above situation, an object of the present invention is to provide a water treatment apparatus which performs both filtration treatment and desalination treatment, and particularly to a water treatment apparatus suitable for condensate treatment of nuclear power plants and the like. The object of the present invention is to provide a device which is compact, requires a small installation area, and has a low equipment cost as compared with the conventional water treatment device.

【0013】[0013]

【課題を解決するための手段】本発明者は、上述した種
々の方法を検討した結果、上記目的を達成するために
は、中空糸膜濾過装置とイオン交換式脱塩装置とを備え
た従来の水処理装置を改良するべきであるとの結論を以
下のようにして得た。水処理装置、特に原子力発電所の
復水処理用に設置される水処理装置は、原子炉に送るボ
イラ用水に求められる水質になるように復水を処理する
ことを長期間にわたり確実にかつ継続的に行う必要があ
り、特に復水器での細管の破断等により蒸気冷却用の海
水が多量に流入した場合でもイオンを含む海水中の不純
物を完全に除去して、海水の不純物から原子炉、ボイラ
ー、蒸気発生器等を保護する重要な役割を担っている。
従って、水処理装置は、技術的に確立されている信頼性
の高い実証済みの技術に基づいていることが必須であ
る。よって、濾過装置の濾材としては、通水速度が高
く、しかも確実にクラッドを効率的に除去できる中空糸
膜が最適であり、また、脱塩装置としては、優れたイオ
ン除去能と大きなイオン交換容量を有し、しかも再生容
易な最も技術的に信頼できるイオン交換樹脂の充填層が
最適である。以上の理由から、本発明者は、中空糸膜濾
過装置とイオン交換式脱塩装置を1つの装置として、コ
ンパクトに一体化した水処理装置を実現し、前述の緊急
の課題を解決することにした。
As a result of studying the above-mentioned various methods, the present inventor has found that, in order to achieve the above-mentioned object, a conventional method equipped with a hollow fiber membrane filtration device and an ion-exchange type desalination device. It was concluded that the water treatment equipment of the above should be improved as follows. Water treatment equipment, especially water treatment equipment installed for condensate treatment at nuclear power plants, must reliably and continuously treat condensate for a long time to achieve the water quality required for boiler water sent to the reactor. In particular, even if a large amount of seawater for steam cooling flows in due to breakage of thin tubes in the condenser, impurities in seawater including ions are completely removed, and the impurities in the seawater are removed from the reactor. , Plays an important role in protecting boilers, steam generators, etc.
Therefore, it is essential that the water treatment equipment is based on proven technology that is technically established and reliable. Therefore, the hollow fiber membrane that has a high water flow rate and can reliably and efficiently remove the clad is the most suitable as the filter material of the filtration device, and the desalination device has excellent ion removal ability and large ion exchange capacity. The most technically reliable packed bed of ion exchange resin that has a capacity and is easy to regenerate is optimum. For the above reasons, the present inventor has realized a compact and integrated water treatment device with a hollow fiber membrane filtration device and an ion exchange type desalination device as one device, and has solved the aforementioned urgent problem. did.

【0014】上記知見に基づいて、上述した目的を達成
するために、本発明に係る複合型濾過脱塩装置は、竪型
容器の内部を隔壁により上下に分割して形成された上方
の濾過室と下方の脱塩室とを備え、濾過室には中空糸膜
モジュールが中空糸膜の内側で脱塩室と連通するように
配設され、脱塩室にはイオン交換材を充填してなるイオ
ン交換層が形成され、被処理水の導入口が濾過室の容器
壁に、濾過及び脱塩処理された処理水の送出口が脱塩室
の容器壁にそれぞれ設けられ、濾過室に導入した被処理
水を各中空糸膜の外側から内側に透過させ、更に透過水
を脱塩室に導いてイオン交換層を上方から下方に流下さ
せ、処理水を送出口から外部に流出させるようにしたこ
とを特徴としている。
In order to achieve the above-mentioned object based on the above knowledge, the composite type filter desalting apparatus according to the present invention has an upper filtration chamber formed by vertically dividing the inside of a vertical container by partition walls. And a lower desalting chamber, and the hollow fiber membrane module is arranged in the filtration chamber so as to communicate with the desalting chamber inside the hollow fiber membrane, and the desalting chamber is filled with an ion exchange material. An ion exchange layer is formed, an inlet for the water to be treated is provided on the container wall of the filtration chamber, and an outlet for the filtered and desalted treated water is provided on the container wall of the desalination chamber, and introduced into the filtration chamber. The water to be treated was permeated from the outside to the inside of each hollow fiber membrane, and the permeated water was further guided to the desalting chamber to allow the ion exchange layer to flow downward from above, so that the treated water was allowed to flow out from the outlet. It is characterized by that.

【0015】本発明で使用する中空糸膜モジュールは、
被処理水を濾過できる中空糸膜の束を備えている限り、
その構造及び中空糸膜の寸法、材料等に関し制約はな
く、既知の中空糸膜モジュールを使用できる。イオン交
換材は、好適には再生可能なイオン交換材、例えば既知
の粒状の陽イオン交換樹脂及び陰イオン交換樹脂を混合
したものを使用するが、この他にイオン交換繊維なども
使用できる。また、装着する中空糸膜モジュールの仕
様、本数、イオン交換材の充填量、イオン交換層の層高
さ、イオン交換層の通水速度等の条件は、既知の仕様、
数値に基づいて良い。本発明に係る複合型濾過脱塩装置
は、濾過処理と脱塩処理の双方を必要とする限り、特に
被処理水の種類に制約は無く、水蒸気を凝縮して得た復
水、特に原子力発電所等の大量の復水を処理する装置と
して最適である。
The hollow fiber membrane module used in the present invention is
As long as it has a bundle of hollow fiber membranes that can filter the water to be treated,
There is no restriction on the structure, dimensions of the hollow fiber membranes, materials, etc., and known hollow fiber membrane modules can be used. As the ion exchange material, preferably a regenerable ion exchange material, for example, a mixture of known granular cation exchange resin and anion exchange resin is used, but ion exchange fibers and the like can also be used. The specifications of the hollow fiber membrane module to be mounted, the number, the filling amount of the ion exchange material, the layer height of the ion exchange layer, the water flow rate of the ion exchange layer, etc., the known specifications,
Good based on numbers. The combined filtration desalination apparatus according to the present invention is not particularly limited in the type of water to be treated as long as it requires both filtration and desalination treatment, and condensate obtained by condensing steam, particularly nuclear power generation. It is most suitable as a device for treating a large amount of condensate at a place.

【0016】本発明の好適な実施態様では、濾過室に配
設された中空糸膜モジュールは、閉止された上端部と開
放された下端部とを備え、かつ隔壁に設けられた貫通孔
を介して中空糸膜の内側で脱塩室に連通するように下端
部で隔壁に着脱自在に固定されて、直立していることを
特徴としている。これにより、中空糸膜モジュールの設
置が容易になる。ここで、「閉止された上端部」とは、
透過水が上端部から中空糸膜モジュールの外に流出しな
いように上端部が閉止されていることを意味し、透過水
以外の流体を流出させる開口を設けること、例えば空気
抜きノズルを設けて上端部に滞留する空気を放出できる
ようにすることまで禁止するものではない。また、「開
放された下端部」とは、透過水が下端部から中空糸膜モ
ジュールの外に流出するように下端部に開口を備えてい
ることを意味する。
In a preferred embodiment of the present invention, the hollow fiber membrane module disposed in the filtration chamber has a closed upper end portion and an open lower end portion, and through a through hole provided in the partition wall. The inside of the hollow fiber membrane is detachably fixed to the partition wall at the lower end so as to communicate with the desalting chamber, and is upright. This facilitates the installation of the hollow fiber membrane module. Here, "closed upper end" means
It means that the upper end is closed so that the permeated water does not flow out of the hollow fiber membrane module from the upper end, and that an opening for letting out a fluid other than the permeated water is provided, for example, an air vent nozzle is provided and the upper end is provided. It is not prohibited to release air that stays in the air. The term "opened lower end portion" means that the lower end portion has an opening so that permeated water flows out of the hollow fiber membrane module from the lower end portion.

【0017】本発明の別の好適な実施態様では、濾過室
の上部が、竪型容器の横断方向に延びる第2の隔壁によ
り透過水の集水室として区画され、かつ連通管により脱
塩室と連通し、濾過室に配設された中空糸膜モジュール
は、開放された上端部と閉止された下端部とを備え、か
つ第2の隔壁に設けられた貫通孔を介して中空糸膜の内
側で集水室に連通するように上端部で第2の隔壁に着脱
自在に固定されて吊り下げられていることを特徴として
いる。ここで、「開放された上端部」及び「閉止された
下端部」の意味は、上述の定義に準ずる。
In another preferred embodiment of the present invention, the upper part of the filtration chamber is defined as a permeate collection chamber by a second partition extending in the transverse direction of the vertical container, and the desalination chamber is formed by a communication pipe. The hollow fiber membrane module, which is in communication with the hollow fiber membrane module and is provided in the filtration chamber, has an open upper end portion and a closed lower end portion, and the hollow fiber membrane module of the hollow fiber membrane is provided through a through hole provided in the second partition wall. It is characterized in that it is detachably fixed to the second partition wall at the upper end so as to be suspended so as to communicate with the water collection chamber inside. Here, the meanings of “opened upper end” and “closed lower end” are in accordance with the above definition.

【0018】本発明の更に別の好適な実施態様では、濾
過室の上部が、竪型容器の横断方向に延びる第2の隔壁
により透過水の集水室として区画され、かつ連通管によ
り脱塩室と連通し、濾過室に配設された中空糸膜モジュ
ールは、開放された両端部を備え、かつ隔壁及び第2の
隔壁にそれぞれ設けられた貫通孔を介して中空糸膜の内
側で脱塩室及び集水室に連通するように上端部及び下端
部で隔壁及び第2の隔壁にそれぞれ着脱自在に固定され
ていることを特徴としている。
In still another preferred embodiment of the present invention, the upper portion of the filtration chamber is defined as a permeate collection chamber by a second partition extending in the transverse direction of the vertical container, and desalination is performed by a communication pipe. The hollow fiber membrane module, which is in communication with the chamber and is disposed in the filtration chamber, has both open ends and is detached inside the hollow fiber membrane through through holes provided in the partition wall and the second partition wall, respectively. It is characterized in that it is detachably fixed to the partition wall and the second partition wall at the upper end and the lower end so as to communicate with the salt chamber and the water collecting chamber, respectively.

【0019】本発明の更に別の好適な実施態様では、集
水室と脱塩室とは、隔壁と第2隔壁とで区画された室を
貫通して配設された連通管を介して連通していることを
特徴としている。
In still another preferred embodiment of the present invention, the water collection chamber and the desalination chamber are communicated with each other through a communication pipe which is arranged so as to penetrate through a chamber partitioned by a partition wall and a second partition wall. It is characterized by doing.

【0020】本発明の更に別の好適な実施態様では、集
水室に第2の送出口を、かつ脱塩室の送出口に閉止弁を
設け、脱塩室の送出口を閉止することにより透過水を第
2の送出口から送出するようにしたことを特徴としてい
る。
In still another preferred embodiment of the present invention, a second outlet is provided in the water collecting chamber and a shutoff valve is provided at the outlet of the desalting chamber to close the outlet of the desalting chamber. The feature is that the permeated water is delivered from the second delivery port.

【0021】本発明の更に別の好適な実施態様では、気
体を導入して水中に気泡を発生させ、発生した気泡を各
中空糸膜の外表面近傍に分散させるようにした洗浄機構
を中空糸膜モジュールの下方の濾過室内に備え、各中空
糸膜の外表面近傍に分散された気泡により水を攪拌して
中空糸膜外表面に付着した汚染物を剥離するようにした
ことを特徴としている。これにより、通水終了時に、各
中空糸膜の外側に付着したクラッド等の汚染物を剥離す
るいわゆるスクラビング洗浄を行うことができる。本発
明で使用する洗浄機構は、気泡攪拌により中空糸膜面上
の汚染物を剥離できるものであれば特にその構成に限定
は無く、例えば後述の実施例で詳細な構成を示した洗浄
機構を好適例として挙げることができる。また、洗浄機
構は、空気噴出ノズルを有するリング状或いグリッド状
に形成された空気供給管を濾過室下部に設け、その空気
噴出ノズルを中空糸膜モジュールの下部に配置したよう
な簡単な構成のものでも良い。
In still another preferred embodiment of the present invention, a hollow fiber has a cleaning mechanism in which gas is introduced to generate bubbles in water and the generated bubbles are dispersed near the outer surface of each hollow fiber membrane. It is provided in the filtration chamber below the membrane module, and is characterized in that water is agitated by the air bubbles dispersed in the vicinity of the outer surface of each hollow fiber membrane to remove contaminants adhering to the outer surface of the hollow fiber membrane. . As a result, so-called scrubbing cleaning for removing contaminants such as clad adhering to the outside of each hollow fiber membrane can be performed at the end of water passage. The cleaning mechanism used in the present invention is not particularly limited in its structure as long as the contaminants on the hollow fiber membrane surface can be peeled off by agitation of bubbles, and for example, the cleaning mechanism whose detailed structure is shown in Examples described later is used. It can be mentioned as a suitable example. Further, the cleaning mechanism has a simple structure in which a ring-shaped or grid-shaped air supply pipe having an air ejection nozzle is provided in the lower part of the filtration chamber, and the air ejection nozzle is arranged in the lower part of the hollow fiber membrane module. It can be one.

【0022】[0022]

【作用】本発明では、小さな圧力損失で大流量の濾過が
可能であって、しかもコンパクトな中空糸膜モジュール
を設置した濾過室と、高い脱塩性能と大きなイオン交換
容量を有し、しかも別に設けた再生装置で容易に再生で
きるイオン交換材を充填してなるイオン交換層を有する
脱塩室とを一つの容器内に上下に一体的に組み合わせる
ことにより、確実に、かつ効率良く濾過処理と脱塩処理
の双方を行う信頼性の高いコンパクトな水処理装置が実
現する。また、濾過装置と脱塩装置とを一つの容器内に
集約することにより、従来の装置に比べて、容器の数が
1/2になって所要設置面積が大幅に減少し、更に、濾
過装置と脱塩装置とを結ぶ関連配管の長さが短くなると
共に弁の数も減少するので、部品コスト及び据付工事量
が大幅に削減され、全体の設備コストが削減される。
According to the present invention, a large flow rate can be filtered with a small pressure loss, a compact filtration chamber in which a hollow fiber membrane module is installed, a high desalting performance and a large ion exchange capacity are provided. A desalting chamber having an ion-exchange layer filled with an ion-exchange material that can be easily regenerated by a provided regenerator is combined in one container up and down to ensure reliable and efficient filtration. A highly reliable and compact water treatment device that performs both desalination treatment is realized. Further, by consolidating the filtering device and the desalting device in one container, the number of containers is halved compared with the conventional device, and the required installation area is greatly reduced. Since the length of the associated pipe connecting the and desalination equipment is shortened and the number of valves is also reduced, the parts cost and the installation work amount are significantly reduced, and the total equipment cost is reduced.

【0023】[0023]

【実施例】以下、添付図面を参照し、実施例に基づいて
本発明をより詳細に説明する。実施例1 図1は本発明に係る複合型濾過脱塩装置の実施例1の構
成を示す模式的断面図である。図1に示す本実施例の複
合型濾過脱塩装置(以下、簡単に装置と略称する)10
は、濾過装置と脱塩装置とを一つの竪型容器内で上下に
立体的に組み合わせて一つの装置にした複合型の水処理
装置であって、例えば原子力発電所の復水処理装置とし
て好適に使用されるものである。装置10は、竪型円筒
形容器12の内部を鏡型隔壁14により上下に分割して
形成された上方の濾過室16と下方の脱塩室18とを備
えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the accompanying drawings. Example 1 FIG. 1 is a schematic cross-sectional view showing the configuration of Example 1 of the composite type filter desalination apparatus according to the present invention. A composite type filter desalting apparatus (hereinafter simply referred to as apparatus) 10 of the present embodiment shown in FIG.
Is a composite type water treatment device in which a filtration device and a desalting device are vertically combined in one vertical container into one device, and is suitable as, for example, a condensate treatment device for a nuclear power plant. Is used for. The apparatus 10 includes an upper filtration chamber 16 and a lower desalination chamber 18 which are formed by vertically dividing the interior of a vertical cylindrical container 12 by a mirror partition 14.

【0024】濾過室16は、容器壁に設けられた被処理
水の導入口19と、中空糸膜の内側で脱塩室18と連通
するように配設された所定本数の中空糸膜モジュール2
0とを備えている。中空糸膜モジュール20は、図2に
示すように、既知の透過膜で形成された多数の中空糸膜
22を束ねて管束としたモジュールである。中空糸膜2
2の管束は、中空糸膜相互を離隔させて上下端で接着剤
等で固着され(24A、24B)、その外側は、側部に
多数の貫通孔25を有する外筒26で保護されている。
中空糸膜22の管束の上端は、エンドプレート27で閉
止され、下端はモジュール集水室28を経て集水管30
に連通している。モジュール集水室28は、外筒26の
下端部と、下端部の周縁に接合された集水管30の上端
鍔板31とにより形成されている。
The filtration chamber 16 has a predetermined number of hollow fiber membrane modules 2 arranged so as to communicate with the inlet 19 of the water to be treated provided on the container wall and the desalination chamber 18 inside the hollow fiber membrane.
It has 0 and. As shown in FIG. 2, the hollow fiber membrane module 20 is a module in which a large number of hollow fiber membranes 22 formed of known permeable membranes are bundled into a tube bundle. Hollow fiber membrane 2
The tube bundle 2 is separated from the hollow fiber membranes and fixed at the upper and lower ends with an adhesive or the like (24A, 24B), and the outer side thereof is protected by an outer cylinder 26 having a large number of through holes 25 in its side portion. .
The upper end of the tube bundle of the hollow fiber membranes 22 is closed by the end plate 27, and the lower end passes through the module water collection chamber 28 and the water collection pipe 30.
Is in communication with. The module water collection chamber 28 is formed by the lower end portion of the outer cylinder 26 and the upper end collar plate 31 of the water collection pipe 30 joined to the peripheral edge of the lower end portion.

【0025】各集水管30は、隔壁14を貫通して脱塩
室18に連通すると共に常用の取り付け座(図示せず)
により隔壁14の貫通孔33の開口縁部に着脱自在に固
定されている。これにより、各中空糸膜モジュール20
は濾過室16内に直立することができ、また各中空糸膜
22を透過した水は、集水管30を経由して下方の脱塩
室18に流入する。
Each water collecting pipe 30 penetrates through the partition wall 14 and communicates with the desalting chamber 18, and a common mounting seat (not shown).
Is detachably fixed to the opening edge portion of the through hole 33 of the partition wall 14. Thereby, each hollow fiber membrane module 20
Can stand upright in the filtration chamber 16, and the water that has permeated each hollow fiber membrane 22 flows into the desalination chamber 18 below via the water collection pipe 30.

【0026】中空糸膜モジュール20の下部の濾過室1
6内には、気泡により水を攪拌して、中空糸膜に付着し
たクラッド等の汚染物を剥離するために、洗浄機構34
が設けてある。洗浄機構34は、図2に示すように、隔
壁14上に集水管30を貫通させて設けられた仕切り板
36と隔壁14とにより形成された空気室38と、集水
管30を貫通させる仕切り板36の開口縁部から集水管
30と同心状に垂下して設けられた円筒部40と、円筒
部40の周方向に多数設けられた細孔又はスリット42
と、空気室38の容器壁に設けられた空気供給口44
(図1参照)とからなる。このような構成により、空気
供給口44を経て空気室38に導入された空気は、円筒
部40により上昇が阻止されて空気室38の上部に滞留
し、細孔42から気泡となって円筒部40と集水管30
と間の環状間隙を上方に上昇する。尚、空気を導入しな
い時には、集水管30と円筒部40との間の環状間隙を
経由して被処理水が流入するので、空気室38は被処理
水で満たされている。
Filtration chamber 1 below the hollow fiber membrane module 20
In order to stir the water in the inside of 6 by the air bubbles and remove the contaminants such as the clad adhering to the hollow fiber membrane, the cleaning mechanism 34
Is provided. As shown in FIG. 2, the cleaning mechanism 34 includes a partition plate 36 provided on the partition wall 14 to penetrate the water collecting pipe 30 and an air chamber 38 formed by the partition wall 14, and a partition plate penetrating the water collecting pipe 30. Cylindrical portion 40 provided concentrically with water collecting pipe 30 from the opening edge portion of 36, and a large number of pores or slits 42 provided in the circumferential direction of cylindrical portion 40.
And an air supply port 44 provided on the container wall of the air chamber 38.
(See FIG. 1). With such a configuration, the air introduced into the air chamber 38 through the air supply port 44 is prevented from rising by the cylindrical portion 40 and stays in the upper portion of the air chamber 38, and becomes bubbles from the pores 42 to form the cylindrical portion. 40 and water collection pipe 30
Rises upward in the annular gap between and. When the air is not introduced, the water to be treated flows in through the annular gap between the water collecting pipe 30 and the cylindrical portion 40, so that the air chamber 38 is filled with the water to be treated.

【0027】一方、中空糸膜モジュール20は、外筒2
6の外側から垂下している円筒状のスカート32と集水
管30とで区画された集泡室46と、集泡室46からス
カート32と外筒26との間の間隙を経由し、外筒26
及び接着剤固着部24Bを貫通して中空糸膜の外側に出
る空気導入孔50とから構成される気泡導入機構を有し
ている。尚、空気を導入しない時には、集泡室46及び
空気導入孔50は、被処理水で満たされている。このよ
うな構成により、上述の細孔42から上昇した気泡は、
集泡室46及び空気導入孔50を経て中空糸膜22の間
に導入される。その後、気泡は、分散して各中空糸膜2
2の膜近傍に上昇し、その付近の水を攪拌することによ
り各中空糸膜22を振動させ、中空糸膜22に付着した
クラッド等の汚染物を払い落として中空糸膜22の機能
を回復させる。
On the other hand, the hollow fiber membrane module 20 includes the outer cylinder 2
6 through a cylindrical skirt 32 hanging from the outside and a water collecting pipe 30 and a gap between the foam collecting chamber 46 and the skirt 32 and the outer cylinder 26. 26
And an air introduction hole 50 that penetrates the adhesive fixing portion 24B and goes out to the outside of the hollow fiber membrane. When air is not introduced, the bubble collection chamber 46 and the air introduction hole 50 are filled with the water to be treated. With such a configuration, the bubbles rising from the above-described pores 42 are
It is introduced between the hollow fiber membranes 22 through the bubble collection chamber 46 and the air introduction hole 50. Thereafter, the air bubbles are dispersed and each hollow fiber membrane 2
2 rises near the membrane and vibrates each hollow fiber membrane 22 by agitating the water in the vicinity thereof to remove contaminants such as clad and the like adhering to the hollow fiber membrane 22 to restore the function of the hollow fiber membrane 22. Let

【0028】本実施例で使用できる中空糸膜モジュール
は、被処理水を濾過する中空糸膜の束を備え、直立式で
ある限り、上述の例に限ることなく、その構成に制約は
無い。例えば、中空糸膜モジュール20の別の例とし
て、中空糸膜モジュール20よりは複雑な構成を備えた
図5に示すような中空糸膜モジュール120を挙げるこ
とができる。尚、図5に示す部品、部位のうち図2と同
じ機能を有するものには同じ符号を付し、その説明を省
略する。中空糸膜モジュール120は、中空糸膜モジュ
ール20のエンドプレート27に変えて、その上端部に
キャップ122で形成された上部モジュール集水室12
4を備え、更に上部モジュール集水室124からモジュ
ールの中央を下降して下部モジュール集水室28に連通
する連通管126を備えている。このような構成によ
り、濾過水が上部及び下部から集水されるので、被処理
水が各中空糸膜22を透過する時の透過水量が膜の長さ
方向に対して均一化する。また、中空糸膜モジュール1
20は、上部モジュール集水室124を中継して上方に
次々と中空糸膜モジュール120(但し、この場合、下
部の気泡導入機構を除く)を直列に接続して長いモジュ
ールを形成することもできる。
The hollow fiber membrane module that can be used in this embodiment is provided with a bundle of hollow fiber membranes for filtering the water to be treated, and as long as it is an upright type, it is not limited to the above-mentioned example, and there is no restriction on its structure. For example, as another example of the hollow fiber membrane module 20, a hollow fiber membrane module 120 having a more complicated structure than the hollow fiber membrane module 20 as shown in FIG. 5 can be cited. It should be noted that, of the components and parts shown in FIG. 5, those having the same functions as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. The hollow fiber membrane module 120 is replaced with the end plate 27 of the hollow fiber membrane module 20, and the upper module water collection chamber 12 is formed with a cap 122 at the upper end thereof.
4, and further includes a communication pipe 126 that descends from the upper module water collecting chamber 124 at the center of the module and communicates with the lower module water collecting chamber 28. With such a configuration, the filtered water is collected from the upper part and the lower part, so that the amount of permeated water when the water to be treated permeates each hollow fiber membrane 22 becomes uniform in the length direction of the membrane. In addition, the hollow fiber membrane module 1
The unit 20 can be connected to the upper module water collecting chamber 124 to connect the hollow fiber membrane modules 120 one after another (however, in this case, except for the lower bubble introducing mechanism) in series to form a long module. .

【0029】脱塩室18は、中空糸膜モジュール20の
集水管30の下方に設けられた整流板54と、その下方
に形成されたイオン交換層56と、脱塩室18の底壁に
設けられた処理水の送出口58とから構成されている。
整流板54は、目板状の板部材であって、濾過室16か
ら集水管30を経由して流入した水を整流し、かつ均一
に分散させるために設けられている。イオン交換層56
は、従来の脱塩装置で使用されている、それぞれ再生済
の陽イオン交換樹脂と陰イオン交換樹脂との混合樹脂を
所定量充填することにより形成されている。イオン交換
層56は、多数の穴を穿った鏡板状の支持板59と、支
持板59の各穴に取り付けられたグリッド部材61とか
らなる支持部材60により支持されている。グリッド部
材61は、水を通過させるがイオン交換樹脂を通過させ
ないサイズのスリットを多数有し、処理水はグリッド部
材61のスリットを通って脱塩室18下部に流下する。
尚、支持部材60により支持する代わりに、イオン交換
層56を脱塩室18の底壁で支持し、イオン交換層56
内に既知のリング状の集水機構を設け、その集水機構と
送出口58とを接続するようにしても良い。
The desalination chamber 18 is provided on the bottom wall of the desalination chamber 18 and a rectifying plate 54 provided below the water collection pipe 30 of the hollow fiber membrane module 20, an ion exchange layer 56 formed below the rectification plate 54. And the treated water outlet 58.
The rectifying plate 54 is a plate member having an eye plate shape, and is provided to rectify and uniformly disperse the water that has flowed in from the filtration chamber 16 via the water collecting pipe 30. Ion exchange layer 56
Is formed by filling a predetermined amount of a regenerated cation exchange resin and anion exchange resin mixed resin used in a conventional desalting apparatus. The ion exchange layer 56 is supported by a support member 60 including a support plate 59 in the shape of a mirror plate having a large number of holes and a grid member 61 attached to each hole of the support plate 59. The grid member 61 has a large number of slits having a size that allows water to pass therethrough but does not allow the ion exchange resin to pass therethrough, and the treated water flows through the slits of the grid member 61 to the lower portion of the desalination chamber 18.
Instead of being supported by the support member 60, the ion exchange layer 56 is supported by the bottom wall of the desalting chamber 18,
A known ring-shaped water collecting mechanism may be provided inside and the water collecting mechanism and the outlet 58 may be connected.

【0030】図1中、62は濾過室16の上部に設けた
空気抜きノズル、63はスクラビング洗浄の際に導入し
た空気を排出する空気抜きノズル、64は濾過室16の
底部に設けたドレンノズル、66は脱塩室18の上部に
設けた空気抜きノズル、68はイオン交換樹脂の送入口
であって、整流板54の下方まで延在する内部パイプを
備え、70はイオン交換樹脂の取り出し口であって、イ
オン交換層56の下部に達する内部パイプを備え、及び
72は脱塩室18のドレンノズルである。尚、図1に示
すように、被処理水の導入口19、空気供給口44、空
気抜きノズル62、63、ドレンノズル64、空気抜き
ノズル66、イオン交換樹脂の送入口68、イオン交換
樹脂の取り出し口70及びドレンノズル72にはそれぞ
れ開閉弁が設けてある。また、74は被処理水を濾過室
16に流入する際に中空糸膜モジュール20に影響を与
えないようにする邪魔板である。尚、ドレンノズル72
を脱塩室18の底部に設ける代わりに送水口58からド
レンノズルを分岐しても良い。
In FIG. 1, 62 is an air vent nozzle provided in the upper portion of the filtration chamber 16, 63 is an air vent nozzle for exhausting the air introduced during scrubbing cleaning, 64 is a drain nozzle provided at the bottom of the filtration chamber 16, and 66 is An air vent nozzle provided at the upper portion of the desalting chamber 18, 68 is an inlet for the ion exchange resin, and is provided with an internal pipe extending below the flow regulating plate 54, and 70 is an outlet for the ion exchange resin, An internal pipe reaching the lower portion of the ion exchange layer 56 is provided, and 72 is a drain nozzle of the deionization chamber 18. As shown in FIG. 1, the water to be treated inlet 19, the air supply port 44, the air vent nozzles 62 and 63, the drain nozzle 64, the air vent nozzle 66, the ion exchange resin inlet port 68, and the ion exchange resin outlet port 70. The drain nozzle 72 is provided with an on-off valve. Further, 74 is a baffle plate which prevents the hollow fiber membrane module 20 from being affected when the water to be treated flows into the filtration chamber 16. The drain nozzle 72
The drain nozzle may be branched from the water supply port 58 instead of being provided at the bottom of the desalination chamber 18.

【0031】実施例1では、以上の構成により、被処理
水は、導入口19から濾過室16に流入し、中空糸膜モ
ジュール20の外筒26を経て各中空糸膜22の外側か
ら内側に透過しつつクラッド等の懸濁物質が中空糸膜面
で捕捉される。透過水は、各中空糸膜モジュール20の
集水管30を経由して脱塩室18に流入し、整流板54
により整流、分散された後、イオン交換層56を流下し
て陽イオン及び陰イオンが除去され、送出口58より流
出して処理水として目的の場所に送水される。
In the first embodiment, with the above configuration, the water to be treated flows into the filtration chamber 16 from the inlet 19, passes through the outer cylinder 26 of the hollow fiber membrane module 20 and goes from the outside to the inside of each hollow fiber membrane 22. Suspended substances such as clad are captured on the hollow fiber membrane surface while permeating. The permeated water flows into the desalination chamber 18 via the water collecting pipe 30 of each hollow fiber membrane module 20, and the rectifying plate 54
After being rectified and dispersed by, the cations and anions are removed by flowing down the ion-exchange layer 56, and the cations and anions are discharged from the outlet 58 to be delivered to the intended location as treated water.

【0032】以下に、簡単に装置10の運転方法を説明
する。装置10の運転開始の際には、先ず、所定量の再
生したイオン交換樹脂を水と混合して流動性を高めた上
で、イオン交換樹脂の送入口68から脱塩室18に送入
し、イオン交換層56を形成する。この時、空気抜きノ
ズル66を開放し、脱塩室18内の空気を抜き出しつつ
イオン交換樹脂の送入を行い、所定量のイオン交換樹脂
を送入した時点で上記ノズル66の開閉弁を閉止する。
次いで、空気抜きノズル62を開放して空気を抜き出し
つつ導入口19から濾過室16に被処理水を徐々に導入
する。空気抜きノズル62から被処理水が流出した時点
で、上記ノズル62の開閉弁を閉止し、処理水の送出口
58の開閉弁を開放して送水し始め、被処理水の濾過及
び脱塩処理を開始する。上述のような処理を継続するう
ちに、装置10内の中空糸膜22の外表面にクラッド等
の懸濁物質が捕捉され、圧力損失が大となった時点で、
先ず、処理水の送出口58および導入口19を閉止し、
次いで、濾過室16の空気抜きノズル63を開放すると
共に空気供給口44の開閉弁を開放して濾過室16内に
空気を導入し、洗浄機構34により中空糸膜22を洗浄
する。洗浄後、空気抜きノズル62を開放した後、ドレ
ンノズル64を開放してドレンを排出する。また、イオ
ン交換樹脂を再生又は交換する際には、イオン交換樹脂
の取り出し口70の開閉弁を開放してイオン交換樹脂を
塔外に流出させる。
The operation method of the apparatus 10 will be briefly described below. When the operation of the apparatus 10 is started, first, a predetermined amount of regenerated ion exchange resin is mixed with water to improve fluidity, and then the ion exchange resin is fed into the desalination chamber 18 from the inlet 68. , The ion exchange layer 56 is formed. At this time, the air vent nozzle 66 is opened, the ion exchange resin is fed while the air in the desalting chamber 18 is being vented, and the opening / closing valve of the nozzle 66 is closed when a predetermined amount of the ion exchange resin is fed. .
Then, the water to be treated is gradually introduced from the inlet 19 into the filtration chamber 16 while the air vent nozzle 62 is opened to take out air. At the time when the water to be treated flows out from the air vent nozzle 62, the on-off valve of the nozzle 62 is closed, the on-off valve of the treated water outlet 58 is opened, and water starts to be fed to perform filtration and desalination treatment of the treated water. Start. While continuing the treatment as described above, when a suspended substance such as a clad was captured on the outer surface of the hollow fiber membrane 22 in the apparatus 10 and the pressure loss became large,
First, the treated water outlet 58 and the inlet 19 are closed,
Next, the air vent nozzle 63 of the filtration chamber 16 is opened and the opening / closing valve of the air supply port 44 is opened to introduce air into the filtration chamber 16, and the hollow fiber membrane 22 is washed by the washing mechanism 34. After cleaning, the air vent nozzle 62 is opened, and then the drain nozzle 64 is opened to discharge the drain. When regenerating or exchanging the ion exchange resin, the on-off valve of the ion exchange resin outlet 70 is opened to allow the ion exchange resin to flow out of the tower.

【0033】実施例1は、脱塩室18上に濾過室16を
設けた複合型濾過脱塩装置として構成されているので、
所要設置面積は、従来の復水処理装置に比べて大幅に減
少できる。また、従来濾過塔と脱塩塔との2個必要であ
った竪型容器を一つの竪型容器に集約しているので、容
器自体のコスト、容器の基礎のコストを節減でき、また
濾過室と脱塩室とが近接しているので、それらを接続す
る配管等のコストも大幅に節減でき、更には、保守点検
も容易である。
Since the first embodiment is constructed as a composite type filter desalination apparatus in which the filtration chamber 16 is provided on the desalination chamber 18,
The required installation area can be significantly reduced compared to conventional condensate treatment equipment. In addition, since the vertical containers, which conventionally required two filters, a filtration tower and a desalting tower, are integrated into a single vertical container, the cost of the container itself and the cost of the foundation of the container can be reduced, and the filtration chamber Since the demineralization chamber and the demineralization chamber are close to each other, the cost of piping for connecting them can be significantly reduced, and maintenance and inspection are easy.

【0034】実施例2 図3は本発明に係る複合型濾過脱塩装置の実施例2の構
成を示す模式的断面図である。図3に示す本実施例の複
合型濾過脱塩装置(以下、簡単に装置と略称する)78
は、実施例1同様に、濾過装置と脱塩装置とを一つの竪
型容器内で上下に立体的に組み合わせて一つの装置にし
た複合型の水処理装置であって、例えば原子力発電所の
復水処理装置として好適に使用されるものである。図3
に示す部品のうち図1及び図2に示すものと同じものに
は同じ符号を付してその説明を省略する。装置78は、
以下に説明する構成以外は、竪型円筒形容器12の内部
を隔壁14により上下に分割してなる上方の濾過室16
と下方の脱塩室18とを備えている点で装置10と同様
であって、特に脱塩室18の構成は実施例1と実質的に
同じである。
Embodiment 2 FIG. 3 is a schematic sectional view showing the structure of Embodiment 2 of the composite type filter desalination apparatus according to the present invention. The composite type filter desalting apparatus (hereinafter simply referred to as apparatus) 78 of the present embodiment shown in FIG.
Is a composite type water treatment device in which a filtering device and a desalting device are three-dimensionally combined vertically in a single vertical container to form a single device, as in the case of a nuclear power plant, for example. It is preferably used as a condensate treatment device. FIG.
The same parts as those shown in FIG. 1 and FIG. 2 among the parts shown in FIG. The device 78 is
Except for the configuration described below, the upper filtration chamber 16 is formed by vertically dividing the interior of the vertical cylindrical container 12 by the partition wall 14.
And a lower desalting chamber 18 are provided, which is similar to the apparatus 10, and in particular, the configuration of the desalting chamber 18 is substantially the same as that of the first embodiment.

【0035】本実施例では、図2に示すように、濾過室
16の上部は、水平な板状の第2の隔壁80により仕切
られ、中空糸膜モジュール84を透過した透過水を集水
する透過水集水室82を構成している。第2の隔壁80
には中空糸膜モジュール84の上端が常用の取り付け座
(図示せず)により着脱自在に固定されて、それによっ
て吊り下げた形で中空糸膜モジュール84が支持されて
いる。中空糸膜モジュール84は、図2において、第1
には上端のエンドプレート27が取り外され、その代わ
りに下端の接着剤固着部24Bの下にエンドプレートが
取り付けてあり、それによって透過水は上端から流出す
ること、第2にはモジュール集水室28及び集水管30
が不要であることを除いて、図2に示す中空糸膜モジュ
ール20と同じ構成である。即ち、中空糸膜モジュール
84の下端は、スカート32と下端エンドプレートで区
画された集泡室46、及び空気導入孔50等からなる気
泡導入機構のみを備えている。尚、図5に示した中空糸
膜モジュール120を一部改変して中空糸膜モジュール
84と同様に使用することもできる。
In this embodiment, as shown in FIG. 2, the upper part of the filtration chamber 16 is partitioned by a horizontal plate-shaped second partition wall 80 to collect permeated water that has permeated the hollow fiber membrane module 84. The permeated water collection chamber 82 is configured. Second partition 80
An upper end of the hollow fiber membrane module 84 is detachably fixed to the hollow fiber membrane module 84 by a commonly used mounting seat (not shown), and the hollow fiber membrane module 84 is supported in a suspended form. The hollow fiber membrane module 84 is shown in FIG.
The end plate 27 at the upper end is detached from the upper end, and instead, the end plate is attached under the adhesive fixing portion 24B at the lower end, whereby permeated water flows out from the upper end, and secondly, the module water collecting chamber. 28 and water collecting pipe 30
The hollow fiber membrane module 20 has the same configuration as that of the hollow fiber membrane module 20 shown in FIG. That is, the lower end of the hollow fiber membrane module 84 is provided with only the bubble introducing mechanism including the bubble collecting chamber 46 defined by the skirt 32 and the lower end plate, the air introducing hole 50, and the like. The hollow fiber membrane module 120 shown in FIG. 5 can be partially modified and used in the same manner as the hollow fiber membrane module 84.

【0036】本実施例の洗浄機構34は、図3に示すよ
うに、隔壁14上に設けられた仕切り板36と隔壁14
とにより形成された空気室38と、仕切り板36の貫通
孔の開口縁部から垂下する円筒部40と、円筒部40の
周方向に多数設けられた細孔又はスリット42と、空気
室38の容器壁に設けられた空気供給口44とから構成
され、かつ円筒部40は中空糸膜モジュール84のスカ
ート32の内側に位置している。このような構成によ
り、空気供給口44を経て空気室38に導入された空気
は、円筒部40により上昇が阻止されて空気室38の上
部に滞留し、細孔42から気泡となって円筒部40内を
上昇する。上昇した気泡は、中空糸膜モジュール84の
集泡室46及び空気導入孔50を経て、中空糸膜22の
間に導入される。その後、気泡は、分散して各中空糸膜
22の膜近傍に上昇し、その付近の水を攪拌することに
より各中空糸膜22を振動させ、中空糸膜22に付着し
たクラッド等の汚染物を払い落として中空糸膜22の機
能を回復させる。
As shown in FIG. 3, the cleaning mechanism 34 of this embodiment includes a partition plate 36 provided on the partition wall 14 and the partition wall 14.
Of the air chamber 38, a cylindrical portion 40 hanging from the opening edge of the through hole of the partition plate 36, a large number of pores or slits 42 provided in the circumferential direction of the cylindrical portion 40, and The cylindrical portion 40 is located inside the skirt 32 of the hollow fiber membrane module 84. With such a configuration, the air introduced into the air chamber 38 through the air supply port 44 is prevented from rising by the cylindrical portion 40 and stays in the upper portion of the air chamber 38, and becomes bubbles from the pores 42 to form the cylindrical portion. Ascend within 40. The ascended bubbles are introduced between the hollow fiber membranes 22 through the bubble collection chamber 46 of the hollow fiber membrane module 84 and the air introduction hole 50. Thereafter, the bubbles disperse and rise near the membrane of each hollow fiber membrane 22 and vibrate each hollow fiber membrane 22 by agitating the water in the vicinity, and contaminants such as clad and the like attached to the hollow fiber membrane 22. Is removed to restore the function of the hollow fiber membrane 22.

【0037】各中空糸膜モジュール84の上端が固定さ
れる第2の隔壁80の部分にはそれぞれ貫通孔88が設
けてあり、各中空糸膜モジュール84は、貫通孔88を
介して中空糸膜22の内側で透過水集水室82と連通し
ている。また、透過水集水室82と脱塩室18とを連通
させるように、少なくとも1本の連通管90が第2の隔
壁80から濾過室16を貫通して隔壁14まで設けてあ
る。尚、連通管90は、濾過室16を貫通させる代わり
に、竪型容器12の外側を容器壁に沿って降下するよう
に配設することもできる。また、濾過室16の空気抜き
ノズル62が第2の隔壁80の直下に設けられ、透過水
集水室82の頂部壁にはそれぞれ空気抜きノズル92及
び透過水の送出口94が設けてある。尚、集水室82の
空気抜きノズル92は集水室82の頂部壁に設ける代わ
りに透過水の送出口94から分岐しても良い。
Through holes 88 are provided in the portions of the second partition wall 80 to which the upper ends of the hollow fiber membrane modules 84 are fixed, and each hollow fiber membrane module 84 has a hollow fiber membrane through the through holes 88. The inside of 22 communicates with the permeate collection chamber 82. Further, at least one communication pipe 90 is provided from the second partition wall 80 through the filtration chamber 16 to the partition wall 14 so that the permeated water collection chamber 82 and the desalination chamber 18 communicate with each other. Incidentally, the communication pipe 90 may be arranged so as to fall outside the vertical container 12 along the container wall, instead of penetrating the filtration chamber 16. An air vent nozzle 62 of the filtration chamber 16 is provided directly below the second partition wall 80, and an air vent nozzle 92 and a permeate outlet 94 are provided on the top wall of the permeate water collection chamber 82. The air vent nozzle 92 of the water collection chamber 82 may be branched from the permeate outlet 94 instead of being provided on the top wall of the water collection chamber 82.

【0038】実施例2では、以上の構成により、被処理
水は、導入口19から濾過室16に流入し、中空糸膜モ
ジュール84の外筒26を経て各中空糸膜22の外側か
ら内側に透過しつつクラッド等の懸濁物質が中空糸膜面
で捕捉される。透過水は、各中空糸膜モジュール20の
上端部から貫通孔88を経由して透過水集水室82に入
り、更に、連通管90を経由して脱塩室18に流入す
る。脱塩室18では、整流板54により整流、分散され
た後、イオン交換層56を流下して陽イオン及び陰イオ
ンが除去され、送出口58より流出して処理水として目
的の場所に送水される。
In the second embodiment, with the above structure, the water to be treated flows into the filtration chamber 16 from the inlet 19, passes through the outer cylinder 26 of the hollow fiber membrane module 84, and goes from the outside to the inside of each hollow fiber membrane 22. Suspended substances such as clad are captured on the hollow fiber membrane surface while permeating. The permeated water enters the permeated water collection chamber 82 from the upper end of each hollow fiber membrane module 20 through the through hole 88, and further flows into the desalination chamber 18 through the communication pipe 90. In the desalination chamber 18, after being rectified and dispersed by the rectifying plate 54, cations and anions are removed by flowing down the ion exchange layer 56, and the cations and anions are discharged from the delivery port 58 and fed to the intended location as treated water. It

【0039】実施例2の装置78の運転は、実施例1の
装置10の運転方法に準じて行われるが、本実施例では
脱塩室18の処理水の送出口58を閉止することにより
脱塩室18をバイパスして、濾過室16で得た透過水を
直接透過水の送出口94から外部に送水することができ
る。このような脱塩室18のバイパス運転は、発電所の
運転起動時、水等でフラッシング(洗浄操作)して本実
施例の装置78を含む復水システムを清浄にする準備運
転を行う際に特に必要となる。それは、発電所起動当
初、復水器の真空度が上昇しないケースがあり、そのた
め、空気中の二酸化炭素等のイオン性不純物が大量に復
水中に混入し、脱塩室18内のイオン交換樹脂のイオン
交換容量を消費してしまうからである。従って、復水器
の真空度が上昇するまでは脱塩室18をバイパスし、真
空度が充分に上昇した後にバイパス運転を中止して脱塩
室18に送水する運転を行う事により、イオン交換樹脂
の能力を無駄なく利用することができるからである。実
施例2は、前述した実施例1と同様の効果を奏し、また
中空糸膜モジュール84の構成が実施例1の中空糸膜モ
ジュール20に比べて比較的簡易である。
The operation of the device 78 of the second embodiment is carried out in accordance with the operating method of the device 10 of the first embodiment. In this embodiment, the dewatering process is performed by closing the treated water outlet 58 of the desalting chamber 18. By passing the salt chamber 18, the permeated water obtained in the filtration chamber 16 can be directly sent to the outside from the permeated water outlet 94. Such a bypass operation of the desalination chamber 18 is performed at the time of starting the operation of the power plant, when performing a preparatory operation for cleaning the condensate system including the device 78 of the present embodiment by flushing (washing operation) with water or the like. Especially required. In some cases, the vacuum degree of the condenser does not rise at the beginning of the power plant startup. Therefore, a large amount of ionic impurities such as carbon dioxide in the air are mixed in the condensate, and the ion exchange resin in the desalination chamber 18 is mixed. This is because the ion exchange capacity of is consumed. Therefore, the deionization chamber 18 is bypassed until the degree of vacuum of the condenser rises, and after the degree of vacuum has risen sufficiently, the bypass operation is stopped and water is fed to the deionization chamber 18, thereby performing ion exchange. This is because the ability of the resin can be utilized without waste. The second embodiment has the same effects as those of the first embodiment described above, and the hollow fiber membrane module 84 has a relatively simple structure as compared with the hollow fiber membrane module 20 of the first embodiment.

【0040】実施例3 図4は本発明に係る複合型濾過脱塩装置の実施例3の構
成を示す模式的断面図である。図4に示す本実施例の複
合型濾過脱塩装置(以下、簡単に装置と略称する)10
0は、実施例1と実施例2とを組み合わせたような複合
型濾過脱塩装置であって、例えば原子力発電所の復水処
理装置として好適に使用されるものである。図4に示す
部品のうち図1から図3に示すものと同じものには同じ
符号を付してその説明を省略する。装置100で使用す
る中空糸膜モジュール102は、図2において、上端の
エンドプレート27が取り外され、各中空糸膜22の中
空部が上端で開放されていることを除いて、中空糸膜モ
ジュール20と同じ構成である。このような構成の中空
糸膜モジュール102を使用することにより、濾過室1
6の上部は、透過水集水室82を含めて実施例2と同じ
構成になっており、濾過室16の下部は実施例1と同じ
構成になっている。また、脱塩室18の構成は、実施例
1及び実施例2と実質的に同じである。
Embodiment 3 FIG. 4 is a schematic sectional view showing the construction of Embodiment 3 of the composite type filter desalting apparatus according to the present invention. A composite type filter desalting apparatus (hereinafter simply referred to as an apparatus) 10 of this embodiment shown in FIG.
Reference numeral 0 is a composite type filter desalination apparatus that is a combination of the first and second embodiments, and is preferably used, for example, as a condensate treatment apparatus for a nuclear power plant. Of the parts shown in FIG. 4, the same parts as those shown in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted. The hollow fiber membrane module 102 used in the apparatus 100 is different from the hollow fiber membrane module 20 shown in FIG. 2 except that the upper end plate 27 is removed and the hollow portion of each hollow fiber membrane 22 is opened at the upper end. It has the same structure as. By using the hollow fiber membrane module 102 having such a configuration, the filtration chamber 1
The upper part of 6 has the same configuration as that of the second embodiment including the permeated water collection chamber 82, and the lower part of the filtration chamber 16 has the same configuration as that of the first embodiment. Moreover, the structure of the desalination chamber 18 is substantially the same as that of the first and second embodiments.

【0041】実施例3では、以上の構成により、被処理
水は、導入口19から濾過室16に流入し、中空糸膜モ
ジュール102の外筒26を経て各中空糸膜22の外側
から内側に透過しつつクラッド等の懸濁物質が中空糸膜
面で捕捉される。透過水の一部は、各中空糸膜モジュー
ル20の上端部から貫通孔88を経由して透過水集水室
82に入り、更に連通管90を経由して脱塩室18に流
入し、透過水の残りは、集水管30を経由して各中空糸
膜モジュール20の下端部から脱塩室18に流入する。
脱塩室18では、整流板54により整流、分散された
後、イオン交換層56を流下して陽イオン及び陰イオン
が除去され、送出口58より流出して処理水として目的
の場所に送水される。
In the third embodiment, with the above structure, the water to be treated flows into the filtration chamber 16 through the inlet 19, passes through the outer cylinder 26 of the hollow fiber membrane module 102, and goes from the outside to the inside of each hollow fiber membrane 22. Suspended substances such as clad are captured on the hollow fiber membrane surface while permeating. A part of the permeated water enters the permeated water collection chamber 82 from the upper end of each hollow fiber membrane module 20 through the through hole 88, and further flows into the desalination chamber 18 through the communication pipe 90 to be permeated. The rest of the water flows into the desalination chamber 18 from the lower end of each hollow fiber membrane module 20 via the water collection pipe 30.
In the desalination chamber 18, after being rectified and dispersed by the rectifying plate 54, cations and anions are removed by flowing down the ion exchange layer 56, and the cations and anions are discharged from the delivery port 58 and fed to the intended location as treated water. It

【0042】実施例3では、以上のように、透過水が中
空糸膜モジュール102の上端部及び下端部より流出す
るので、被処理水が中空糸膜モジュール102の各中空
糸膜22を透過する時の透過水量が膜の長さ方向に対し
て均一化する。従って、中空糸膜モジュール102の1
本当たりの透過水の透過流量が大きくなるので、実施例
3は、実施例1及び2に比べて、同じ本数の中空糸膜モ
ジュールであれば濾過流量が大きくなり、被処理水が同
じ流量であれば中空糸膜モジュールの本数を減少でき
る。尚、装置100の運転は、実施例1及び2に準じて
行われる。
In the third embodiment, as described above, since the permeated water flows out from the upper end portion and the lower end portion of the hollow fiber membrane module 102, the water to be treated permeates each hollow fiber membrane 22 of the hollow fiber membrane module 102. The amount of permeated water at that time becomes uniform in the length direction of the membrane. Therefore, one of the hollow fiber membrane modules 102
Since the permeated flow rate of permeated water is large, in Example 3, the filtration flow rate is large in the case of the same number of hollow fiber membrane modules as in Examples 1 and 2, and the treated water has the same flow rate. If so, the number of hollow fiber membrane modules can be reduced. The operation of the apparatus 100 is performed according to the first and second embodiments.

【0043】[0043]

【発明の効果】本発明によれば、竪型容器の内部を隔壁
により上下に分割して形成された上方の濾過室と下方の
脱塩室とで水処理装置を構成し、濾過室には中空糸膜の
内側で脱塩室と連通するように中空糸膜モジュールを配
設し、脱塩室にはイオン交換材を充填してなるイオン交
換層を形成することにより、濾過装置と脱塩装置とが一
つの容器に一体的に集約されたコンパクトな水処理装置
を実現している。また、従来の装置に比べて容器の数が
大幅に削減され、しかも濾過装置と脱塩装置とが近接し
ているので、保守点検が容易であり、従来の水処理装置
に比べて所要設置面積を大幅に削減でき、また容器自体
のコスト及び容器基礎、配管、弁等の設備に関連するコ
ストを低減できる。以上のように、本発明に係る複合型
濾過脱塩装置は、復水の処理、特に原子力発電所等の復
水の処理に好適な水処理装置である。
According to the present invention, a water treatment device is constituted by an upper filtration chamber and a lower desalination chamber which are formed by vertically dividing the inside of a vertical container by partition walls, and the filtration chamber has The hollow fiber membrane module is arranged inside the hollow fiber membrane so as to communicate with the desalting chamber, and the desalting chamber is provided with an ion exchange layer to form an ion exchange layer, thereby forming a desalting device and a desalting chamber. We have realized a compact water treatment system in which the system and the system are integrated into one container. In addition, the number of containers is greatly reduced compared to the conventional equipment, and since the filtration equipment and the desalination equipment are close to each other, maintenance and inspection is easy, and the required installation area compared to the conventional water treatment equipment. The cost of the container itself and the cost associated with the equipment such as the container foundation, piping and valves can be reduced. As described above, the combined filtration desalination apparatus according to the present invention is a water treatment apparatus suitable for condensate treatment, particularly for condensate treatment at nuclear power plants and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複合型濾過脱塩装置の実施例1の
構成を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing the configuration of Example 1 of a composite filtration desalination apparatus according to the present invention.

【図2】図1の実施例で使用する中空糸膜モジュールの
概略断面図である。
FIG. 2 is a schematic sectional view of a hollow fiber membrane module used in the embodiment of FIG.

【図3】本発明に係る複合型濾過脱塩装置の実施例2の
構成を示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing the configuration of Example 2 of the composite filtration desalination apparatus according to the present invention.

【図4】本発明に係る複合型濾過脱塩装置の実施例3の
構成を示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing the configuration of Example 3 of the composite filtration desalination apparatus according to the present invention.

【図5】中空糸膜モジュールの別の例の概略断面図であ
る。
FIG. 5 is a schematic cross-sectional view of another example of a hollow fiber membrane module.

【符号の説明】[Explanation of symbols]

10 本発明に係る複合型濾過脱塩装置の実施例1 12 竪型円筒形容器 14 隔壁 16 濾過室 18 脱塩室 19 導入口 20 中空糸膜モジュール 22 中空糸膜 24 接着剤固着部 25 外筒の貫通孔 26 外筒 27 エンドプレート 28 モジュール集水室 30 集水管 31 集水管の上端鍔板 32 スカート 33 貫通孔 34 洗浄機構 36 仕切り板 38 空気室 40 円筒部 42 細孔又はノズル 44 空気供給口 46 集泡室 50 空気導入孔 54 整流板 56 イオン交換層 58 送出口 60 支持部材 62、63、66、92 空気抜きノズル 64、72 ドレンノズル 68 イオン交換樹脂の送入口 70 イオン交換樹脂の取り出し口 74 邪魔板 78 本発明に係る複合型濾過脱塩装置の実施例2 80 第2の隔壁 82 透過水集水室 84 実施例2で使用する中空糸膜モジュール 86 仕切り板 88 貫通孔 90 連通管 94 送出口 100 本発明に係る複合型濾過脱塩装置の実施例3 102 実施例3で使用する中空糸膜モジュール 120 中空糸膜モジュールの別の例 122 キャップ 124 上部モジュール集水室 126 連通管 10 Example 1 of combined filtration desalination apparatus according to the present invention 12 Vertical cylindrical container 14 Partition wall 16 Filtration chamber 18 Desalination chamber 19 Inlet port 20 Hollow fiber membrane module 22 Hollow fiber membrane 24 Adhesive fixing part 25 Outer cylinder Through hole 26 Outer cylinder 27 End plate 28 Module water collection chamber 30 Water collection pipe 31 Upper end collar plate of water collection pipe 32 Skirt 33 Through hole 34 Cleaning mechanism 36 Partition plate 38 Air chamber 40 Cylindrical part 42 Pore or nozzle 44 Air supply port 46 Bubble collection chamber 50 Air introduction hole 54 Straightening plate 56 Ion exchange layer 58 Outlet 60 Support member 62, 63, 66, 92 Air bleeding nozzle 64, 72 Drain nozzle 68 Ion exchange resin inlet 70 Ion exchange resin outlet 74 Obstruction Plate 78 Example 2 of combined filtration desalination apparatus according to the present invention 80 Second partition wall 82 Permeate water collection chamber 84 Actual Hollow fiber membrane module used in Example 2 86 Partition plate 88 Through hole 90 Communication pipe 94 Outlet port 100 Example 3 of composite filtration desalination apparatus according to the present invention 102 Hollow fiber membrane module used in Example 3 120 Hollow fiber Another example of membrane module 122 Cap 124 Upper module water collection chamber 126 Communication pipe

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21F 9/06 ZAB 511 F Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location G21F 9/06 ZAB 511 F

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 竪型容器の内部を隔壁により上下に分割
して形成された上方の濾過室と下方の脱塩室とを備え、 濾過室には中空糸膜モジュールが中空糸膜の内側で脱塩
室と連通するように配設され、脱塩室にはイオン交換材
を充填してなるイオン交換層が形成され、被処理水の導
入口が濾過室の容器壁に、濾過及び脱塩処理された処理
水の送出口が脱塩室の容器壁にそれぞれ設けられ、 濾過室に導入した被処理水を各中空糸膜の外側から内側
に透過させ、更に透過水を脱塩室に導いてイオン交換層
を上方から下方に流下させ、処理水を送出口から外部に
流出させるようにしたことを特徴とする複合型濾過脱塩
装置。
1. A vertical container is provided with an upper filtration chamber and a lower desalination chamber which are formed by dividing the interior of the vertical container by partition walls, and the hollow fiber membrane module is provided inside the hollow fiber membrane in the filtration chamber. It is arranged so as to communicate with the desalination chamber, and an ion exchange layer filled with an ion exchange material is formed in the desalination chamber, and the inlet for the water to be treated is filtered and desalinated on the container wall of the filtration chamber. An outlet for treated water is provided on the vessel wall of the desalination chamber, and the water to be treated introduced into the filtration chamber is permeated from the outside to the inside of each hollow fiber membrane, and the permeated water is guided to the desalination chamber. The combined filtration desalination apparatus is characterized in that the ion exchange layer is caused to flow downward from above to allow the treated water to flow out from the outlet.
【請求項2】 濾過室に配設された中空糸膜モジュール
は、閉止された上端部と開放された下端部とを備え、か
つ隔壁に設けられた貫通孔を介して中空糸膜の内側で脱
塩室に連通するように下端部で隔壁に着脱自在に固定さ
れて、直立していることを特徴とする請求項1に記載の
複合型濾過脱塩装置。
2. A hollow fiber membrane module disposed in a filtration chamber has a closed upper end portion and an open lower end portion, and inside the hollow fiber membrane through a through hole provided in a partition wall. The composite filtration desalination apparatus according to claim 1, wherein the composite filtration desalination apparatus is upright, being detachably fixed to a partition wall at a lower end portion thereof so as to communicate with the desalination chamber.
【請求項3】 濾過室の上部が、竪型容器の横断方向に
延びる第2の隔壁により透過水の集水室として区画さ
れ、かつ連通管により脱塩室と連通し、濾過室に配設さ
れた中空糸膜モジュールは、開放された上端部と閉止さ
れた下端部とを備え、かつ第2の隔壁に設けられた貫通
孔を介して中空糸膜の内側で集水室に連通するように上
端部で第2の隔壁に着脱自在に固定され、吊り下げられ
ていることを特徴とする請求項1に記載の複合型濾過脱
塩装置。
3. An upper part of the filtration chamber is defined as a permeate collection chamber by a second partition extending in the transverse direction of the vertical container, and is connected to the desalination chamber by a communication pipe to be disposed in the filtration chamber. The hollow fiber membrane module has an open upper end portion and a closed lower end portion, and communicates with the water collection chamber inside the hollow fiber membrane through a through hole provided in the second partition wall. The combined filtration desalination apparatus according to claim 1, wherein the upper end portion is detachably fixed to the second partition wall and is suspended.
【請求項4】 濾過室の上部が、竪型容器の横断方向に
延びる第2の隔壁により透過水の集水室として区画さ
れ、かつ連通管により脱塩室と連通し、濾過室に配設さ
れた中空糸膜モジュールは、開放された両端部を備え、
かつ隔壁及び第2の隔壁にそれぞれ設けられた貫通孔を
介して中空糸膜の内側で脱塩室及び集水室に連通するよ
うに上端部及び下端部で隔壁及び第2の隔壁にそれぞれ
着脱自在に固定されていることを特徴とする請求項1に
記載の複合型濾過脱塩装置。
4. An upper part of the filtration chamber is defined as a permeate collection chamber by a second partition extending in the transverse direction of the vertical container, and is connected to the desalination chamber by a communication pipe to be disposed in the filtration chamber. The hollow fiber membrane module is provided with open both ends,
In addition, the upper and lower end portions are attached to and detached from the partition wall and the second partition wall so as to communicate with the desalination chamber and the water collection chamber inside the hollow fiber membrane through through holes provided in the partition wall and the second partition wall, respectively. The combined filtration desalination apparatus according to claim 1, wherein the combined filtration desalination apparatus is fixed freely.
【請求項5】 集水室と脱塩室とは、隔壁と第2隔壁と
で区画された室を貫通して配設された連通管を介して連
通していることを特徴とする請求項3又は4に記載の複
合型濾過脱塩装置。
5. The water collection chamber and the desalination chamber are in communication with each other through a communication pipe that is provided so as to penetrate a chamber partitioned by a partition wall and a second partition wall. The composite type filter desalination apparatus according to 3 or 4.
【請求項6】 集水室に第2の送出口を、かつ脱塩室の
送出口に閉止弁を設け、脱塩室の送出口を閉止すること
により透過水を第2の送出口から送出するようにしたこ
とを特徴とする請求項3から5のうちのいずれか1項に
記載の複合型濾過脱塩装置。
6. A permeate is delivered from the second outlet by providing a second outlet in the water collecting chamber and a shutoff valve in the outlet of the desalting chamber to close the outlet of the desalting chamber. The composite filtration desalination apparatus according to any one of claims 3 to 5, wherein
【請求項7】 気体を導入して水中に気泡を発生させ、
発生した気泡を各中空糸膜の外表面近傍に分散させるよ
うにした洗浄機構を中空糸膜モジュールの下方の濾過室
内に備え、各中空糸膜の外表面近傍に分散された気泡に
より水を攪拌して中空糸膜外表面に付着した汚染物を剥
離するようにしたことを特徴とする請求項1から6のう
ちのいずれか1項に記載の複合型濾過脱塩装置。
7. A gas is introduced to generate bubbles in water,
A cleaning mechanism that disperses generated air bubbles near the outer surface of each hollow fiber membrane is provided in the filtration chamber below the hollow fiber membrane module, and water is agitated by the air bubbles dispersed near the outer surface of each hollow fiber membrane. The composite filtration desalination apparatus according to any one of claims 1 to 6, wherein contaminants attached to the outer surface of the hollow fiber membrane are peeled off.
JP28445294A 1994-10-24 1994-10-24 Combined filtration and desalination equipment Expired - Lifetime JP3212816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28445294A JP3212816B2 (en) 1994-10-24 1994-10-24 Combined filtration and desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28445294A JP3212816B2 (en) 1994-10-24 1994-10-24 Combined filtration and desalination equipment

Publications (2)

Publication Number Publication Date
JPH08117746A true JPH08117746A (en) 1996-05-14
JP3212816B2 JP3212816B2 (en) 2001-09-25

Family

ID=17678728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28445294A Expired - Lifetime JP3212816B2 (en) 1994-10-24 1994-10-24 Combined filtration and desalination equipment

Country Status (1)

Country Link
JP (1) JP3212816B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016410A1 (en) 2008-08-08 2010-02-11 オルガノ株式会社 Composite filtration and desalination equipment
JP2011161336A (en) * 2010-02-05 2011-08-25 Japan Organo Co Ltd Filtration desalting device
JP2011161335A (en) * 2010-02-05 2011-08-25 Japan Organo Co Ltd Filtration desalting device
JP2011161334A (en) * 2010-02-05 2011-08-25 Japan Organo Co Ltd Filtration desalting device
CN103611352A (en) * 2013-12-16 2014-03-05 江苏耐尔冶电集团有限公司 Iron removing filter
KR20180121920A (en) * 2016-03-18 2018-11-09 쿠리타 고교 가부시키가이샤 Ion exchange apparatus and method of use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102450058B1 (en) * 2020-07-09 2022-10-05 주식회사 지앤제이스 Birds eliminating device
KR102465056B1 (en) * 2021-01-06 2022-11-09 주식회사 한화 Apparatus for observing lower part of object

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016410A1 (en) 2008-08-08 2010-02-11 オルガノ株式会社 Composite filtration and desalination equipment
US8658036B2 (en) 2008-08-08 2014-02-25 Organo Corporation Composite filtration and demineralization apparatus
JP2011161336A (en) * 2010-02-05 2011-08-25 Japan Organo Co Ltd Filtration desalting device
JP2011161335A (en) * 2010-02-05 2011-08-25 Japan Organo Co Ltd Filtration desalting device
JP2011161334A (en) * 2010-02-05 2011-08-25 Japan Organo Co Ltd Filtration desalting device
CN103611352A (en) * 2013-12-16 2014-03-05 江苏耐尔冶电集团有限公司 Iron removing filter
KR20180121920A (en) * 2016-03-18 2018-11-09 쿠리타 고교 가부시키가이샤 Ion exchange apparatus and method of use thereof

Also Published As

Publication number Publication date
JP3212816B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
EP2338840B1 (en) Condensate treatment system
US8268176B2 (en) Backwash
US7938966B2 (en) Backwash method
JPS624408A (en) Filtration device using hollow yarn membrane
JPS62163708A (en) Method for backwashing hollow yarn filter
JP3212816B2 (en) Combined filtration and desalination equipment
JPH1028847A (en) Composite type filtering and desalting apparatus
JPH0957261A (en) Two-stage type reverse osmosis membrane treatment
JPS62149304A (en) Filter
JP3364301B2 (en) Filtration and desalination equipment
JPS60206405A (en) Hollow yarn membrane filter apparatus
JPS62197106A (en) Filter tower using hollow yarn module
JPH01266809A (en) Method for backwashing hollow yarn membrane filter
JPH06134490A (en) Production equipment of make-up water for power station
JP2018192442A (en) Condensate demineralizer
CN107308697B (en) Reverse osmosis test liquid purifier
JPH048988Y2 (en)
JPH0347520A (en) Liquid-gas separator
JP2677380B2 (en) Method for collecting backwash wastewater from condensate demineralizer
JPH0456655B2 (en)
JP2016083641A (en) Reverse osmosis treatment device and method of washing reverse osmosis membrane
JP2794303B2 (en) Cleaning method for hollow fiber membrane module
JPS6365910A (en) Cleaning device using hollow yarn membrane module
JPS589095A (en) Filting and desalting device for atomic power plant
JPH06170363A (en) Filtration desalting device, filtration desalting method and manufacture of filtration desalting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term