JPH08116082A - Solar cell module and application method of solar cell array - Google Patents

Solar cell module and application method of solar cell array

Info

Publication number
JPH08116082A
JPH08116082A JP6252124A JP25212494A JPH08116082A JP H08116082 A JPH08116082 A JP H08116082A JP 6252124 A JP6252124 A JP 6252124A JP 25212494 A JP25212494 A JP 25212494A JP H08116082 A JPH08116082 A JP H08116082A
Authority
JP
Japan
Prior art keywords
solar cell
cell panel
light receiving
synthetic resin
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6252124A
Other languages
Japanese (ja)
Other versions
JP3475516B2 (en
Inventor
Masaru Onishi
優 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP25212494A priority Critical patent/JP3475516B2/en
Publication of JPH08116082A publication Critical patent/JPH08116082A/en
Application granted granted Critical
Publication of JP3475516B2 publication Critical patent/JP3475516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To maintain a solar cell element part at a high temperature, and restrain the decrease of the output which is caused by light irradiation, by covering the surface opposite to the light receiving surface of a solar cell panel with a rear side lid member, and by filling a space between the solar cell panel and the lid member with an expandable synthetic resin. CONSTITUTION: In a solar cell panel 9, at least a solar cell element 5 and an output terminal 7 are formed on the surface opposite to the light receiving surface of a transparent plate 3. A rear side lid member 13 is fixed to the solar cell panel 9, covers the surface opposite to the light receiving surface of the solar cell panel 9, and forms a space between the solar cell panel 9 and the lid member 13. Output leads 15 are connected with the output terminal 7, and stretch outside the lid member 13. The space between the solar cell panel 9 and the lid member 13 is filled with expandable synthetic resin. Thereby the temperature of the solar cell panel 9 can be kept high, so that optical deterioration can be remarkably restrained, and the output is stabilized for a long term.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽電池素子部を高温に
保持することで、光照射による出力の低下を抑制するこ
とのできる非晶質シリコン系太陽電池モジュールと、太
陽電池アレイの施工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous silicon solar cell module capable of suppressing a decrease in output due to light irradiation by keeping the solar cell element portion at a high temperature, and a method for constructing a solar cell array. It is about.

【0002】[0002]

【従来の技術】非晶質半導体太陽電池は薄膜化が容易で
あることから、安価な太陽電池として実用化が期待され
ている。その中でも代表的な非晶質シリコン系太陽電池
は、低温で形成することが可能で、且つ基板の選択自由
度が高いことから、次世代の太陽電池として注目されて
いる。このような非晶質シリコン太陽電池は、透光性基
板上に透明導電膜/p−i−n非晶質シリコン層/金属
電極層を順次堆積した積層体からなる太陽電池素子の裏
面側を、充填材やバックシートで封入してアルミウム等
のフレームを取り付けて太陽電池モジュールを構成し、
これを屋外に設置して使用されている。この太陽電池モ
ジュール50は、図9に示すように、透光性基板52上
に透明導電膜/p−i−n非晶質シリコン層/金属電極
層を順次堆積した積層体からなる太陽電池素子54を設
け、さらにエチレンビニルアセテート(EVA)やポリ
ビニルブチラール(PVB)の充填材56で封入すると
ともに、テドラー等のバックシート58によって裏面を
保護し、端部にアルミニウム製のフレーム60を、ブチ
ルゴム等の接着剤62を用いて嵌入固定している。そし
て、バックシート58上の適所に設けた出力端子64か
ら出力線66を取り出している。
2. Description of the Related Art Since amorphous semiconductor solar cells can be easily thinned, they are expected to be put to practical use as inexpensive solar cells. Among them, a typical amorphous silicon solar cell is attracting attention as a next-generation solar cell because it can be formed at a low temperature and has a high degree of freedom in selecting a substrate. Such an amorphous silicon solar cell has a back surface side of a solar cell element composed of a laminated body in which a transparent conductive film / pin amorphous silicon layer / metal electrode layer are sequentially deposited on a transparent substrate. , A solar cell module is constructed by enclosing it with a filler or back sheet and attaching a frame such as aluminum.
It is installed outdoors and used. As shown in FIG. 9, the solar cell module 50 is a solar cell element including a laminated body in which a transparent conductive film / a pin amorphous silicon layer / a metal electrode layer are sequentially deposited on a transparent substrate 52. 54 is provided and further enclosed by a filling material 56 of ethylene vinyl acetate (EVA) or polyvinyl butyral (PVB), the back surface is protected by a back sheet 58 such as Tedlar, an aluminum frame 60 is provided at the end portion, and a butyl rubber or the like. It is fitted and fixed using the adhesive 62. Then, the output line 66 is taken out from the output terminal 64 provided at an appropriate position on the back sheet 58.

【0003】[0003]

【発明が解決しようとする課題】非晶質シリコン太陽電
池は、上述のように多くの利点を有してはいるが、一方
でステブラーロンスキー効果(以下これを光劣化と称
す)という重大な問題点をも有している。これは太陽光
に暴露することによって、光電変換効率が約25%程度
低下(常温下)してしまう現象であり、光電変換層内で
発生した電子と正孔が再結合するときに発生するエネル
ギーによって、準安定状態にある結合手が切断されて不
結合手となり、電子や正孔の捕獲割合が増大することに
よるものと考えられている。この光劣化を解決するため
に、従来から種々の方法が提案されてきた。例えば太陽
電池素子を多層に設け、上層と下層とで電流バランスを
取りながら膜厚を薄くし、光電変換層内の電界強度を高
めて前記捕獲割合を低減しようとする方法などがその代
表的なものである。しかしながら、このような方法を用
いても依然として光劣化は存在しており、根本的解決を
見ていないのが現状である。そしてこのような光劣化現
象が、非晶質シリコン太陽電池の屋外用途における実用
化を遅らせる一因となっている。
Amorphous silicon solar cells have many advantages as described above, but on the other hand, they have a serious problem of the Stebler-Lonski effect (hereinafter referred to as photodegradation). It also has various problems. This is a phenomenon in which the photoelectric conversion efficiency decreases by about 25% (at room temperature) when exposed to sunlight, and the energy generated when electrons and holes generated in the photoelectric conversion layer recombine. It is considered that this is because the bond in the metastable state is broken and becomes a dangling bond, and the trap ratio of electrons and holes increases. In order to solve this photodegradation, various methods have been conventionally proposed. For example, a typical method is to provide a solar cell element in multiple layers, reduce the film thickness while keeping current balance between the upper layer and the lower layer, and increase the electric field strength in the photoelectric conversion layer to reduce the trapping ratio. It is a thing. However, even if such a method is used, photodegradation still exists, and the current situation is that no fundamental solution has been found. And such a photodegradation phenomenon is one of the factors that delay the practical application of the amorphous silicon solar cell in outdoor applications.

【0004】また一方で、光劣化によって低下した光電
変換効率は、80℃〜90℃以上の温度における熱処理
によって改善されることが知られているが、従来の太陽
電池モジュールでは、太陽電池の温度は60℃〜70℃
までしか上昇しなかった。そして、30℃の温度上昇に
よって約8%光劣化率は小さくなると見積もられてい
る。従って、太陽電池の温度を上記温度に上昇させるこ
とができれば、光劣化率は10%以下まで改善すること
ができる。さらに、非晶質シリコン太陽電池の開放電圧
の温度依存性は結晶系シリコン太陽電池の約半分であ
り、結晶系シリコン太陽電池に比べると、温度上昇によ
る出力低下の影響が少ない。例えば、結晶系シリコン太
陽電池では、1℃温度が上昇するとその最大出力電力は
0.5〜0.7%減少するが、非晶質シリコン太陽電池
では、0.2〜0.3%である。従って、非晶質シリコ
ン太陽電池では、太陽電池温度を高温に保つことで、光
劣化の改善効果を十分に得ることができる。しかしなが
ら、従来の太陽電池モジュールにおいては、使用中の素
子温度を上記温度以上に上昇させることは不可能であっ
た。
On the other hand, it is known that the photoelectric conversion efficiency lowered due to photodegradation is improved by heat treatment at a temperature of 80 ° C. to 90 ° C. or higher. 60 ℃ ~ 70 ℃
It only rose to. Then, it is estimated that the temperature increase of 30 ° C. reduces the photodegradation rate by about 8%. Therefore, if the temperature of the solar cell can be raised to the above temperature, the photodegradation rate can be improved to 10% or less. Further, the temperature dependence of the open circuit voltage of the amorphous silicon solar cell is about half that of the crystalline silicon solar cell, and the influence of the output decrease due to the temperature rise is less than that of the crystalline silicon solar cell. For example, in crystalline silicon solar cells, the maximum output power decreases by 0.5 to 0.7% when the temperature rises by 1 ° C., but in amorphous silicon solar cells, the maximum output power is 0.2 to 0.3%. . Therefore, in the amorphous silicon solar cell, the effect of improving the photodegradation can be sufficiently obtained by keeping the solar cell temperature at a high temperature. However, in the conventional solar cell module, it was impossible to raise the element temperature during use to the above temperature or higher.

【0005】[0005]

【課題を解決するための手段】本発明は太陽電池素子部
を高温に保持することで、光照射による出力の低下を抑
制することのできる非晶質シリコン系の太陽電池モジュ
ールおよび太陽電池アレイの施工方法を提供し、太陽電
池モジュールとしては、透光板の受光面とは反対側の面
側に少なくとも太陽電池素子と出力端子を設けた太陽電
池パネルと、太陽電池パネルに取り付けられ、太陽電池
パネルの受光面とは反対側の面を覆うとともに、太陽電
池パネルとの間に空間を形成する裏面側蓋材と、出力端
子に接続するとともに裏面側蓋材の外部にまで延設した
出力線と、太陽電池パネルと裏面側蓋材との間の空間に
充填した発泡性合成樹脂とを備えたことが特徴的構成で
ある。さらに太陽電池アレイの施工方法としては、透光
板の受光面とは反対側の面側に太陽電池素子と出力端子
を設けて出力線を取り出した太陽電池パネルを屋外の設
置対象領域に設置する工程と、太陽電池パネルの受光面
とは反対側の面に発泡性合成樹脂を被着する工程とを用
いることが特徴的構成であり、発泡性合成樹脂の被着面
に、当該被着面を覆う裏面側蓋材を設けてもよい。
SUMMARY OF THE INVENTION The present invention provides an amorphous silicon-based solar cell module and a solar cell array capable of suppressing a decrease in output due to light irradiation by keeping the solar cell element portion at a high temperature. A construction method is provided, and as a solar cell module, a solar cell panel provided with at least a solar cell element and an output terminal on a surface side opposite to a light receiving surface of a translucent plate, and the solar cell is attached to the solar cell panel. A cover material that covers the surface on the side opposite to the light receiving surface of the panel and forms a space with the solar cell panel, and an output line that connects to the output terminal and extends to the outside of the cover material And a foamable synthetic resin filled in the space between the solar cell panel and the backside cover material. Further, as a construction method of the solar cell array, a solar cell element and an output terminal are provided on the surface side opposite to the light receiving surface of the translucent plate, and a solar cell panel from which an output line is taken out is installed in an outdoor installation target area. The characteristic feature is that a step and a step of applying a foamable synthetic resin to a surface opposite to the light receiving surface of the solar cell panel are used. You may provide the back side cover material which covers.

【0006】このような本発明の太陽電池モジュール
は、以下の3つの方法によって製造することができる。 出力線を取り出した太陽電池パネルに、太陽電池パネ
ルの受光面とは反対側の面を覆い、かつ太陽電池パネル
の受光面とは反対側の面との間に空間を形成する裏面側
蓋材を取り付け、出力線を裏面側蓋部材の外部にまで延
設した後に、太陽電池パネルと裏面側蓋材との間の空間
に未硬化の発泡性合成樹脂を注入して硬化させることに
より、本発明の太陽電池モジュールを得る。 出力線を取り出した太陽電池パネルの受光面とは反対
側の面上に、当該面を覆うように未硬化の発泡性合成樹
脂を塗布等の方法で被着する。その後、太陽電池パネル
の受光面とは反対側の面を覆い、かつ太陽電池パネルの
受光面とは反対側の面との間に、既に被着した発泡性合
成樹脂の収容空間を形成しうる裏面側蓋材を取り付け
て、本発明の太陽電池モジュールを得る。この時、出力
線は裏面側蓋部材の外部にまで延設しておく。 太陽電池パネルの受光面とは反対側の面を覆い、かつ
太陽電池パネルの受光面とは反対側の面との間に発泡性
合成樹脂を収容できる空間を形成しうる裏面側蓋材の太
陽電池パネル側の面に、未硬化の発泡性合成樹脂を塗布
等の方法で被着する。その後、この裏面側蓋材に蓋をす
る形で太陽電池パネルを取り付けて、本発明の太陽電池
モジュールを得る。この時、出力線は裏面側蓋部材の外
部にまで延設しておく。いずれの方法でも、太陽電池パ
ネルと裏面側蓋材との境界部をシール材等で封止しても
よい。
Such a solar cell module of the present invention can be manufactured by the following three methods. The back surface side cover material that covers the surface of the solar cell panel from which the output lines are taken out, opposite the light receiving surface of the solar cell panel, and forms a space between the solar cell panel and the surface opposite to the light receiving surface. After installing the output line and extending it to the outside of the back side cover member, the uncured foamable synthetic resin is injected into the space between the solar cell panel and the back side cover material to cure it. A solar cell module of the invention is obtained. An uncured expandable synthetic resin is applied to the surface of the solar cell panel from which the output line is taken out, opposite to the light receiving surface, by a method such as coating so as to cover the surface. Then, a space for covering the surface opposite to the light receiving surface of the solar cell panel and forming a space for accommodating the expandable synthetic resin already adhered between the surface of the solar cell panel and the surface opposite to the light receiving surface can be formed. The back surface side cover material is attached to obtain the solar cell module of the present invention. At this time, the output line is extended to the outside of the back cover member. The solar of the back side cover that covers the surface opposite to the light receiving surface of the solar cell panel and can form a space between the surface opposite to the light receiving surface of the solar cell panel to accommodate the foamable synthetic resin. An uncured foamable synthetic resin is applied to the surface of the battery panel side by a method such as coating. After that, a solar cell panel is attached to the back surface side cover material so as to cover the back surface side cover material to obtain the solar cell module of the present invention. At this time, the output line is extended to the outside of the back cover member. In any of the methods, the boundary between the solar cell panel and the backside cover material may be sealed with a sealing material or the like.

【0007】また上記のように、本発明の太陽電池アレ
イの施工方法は、透光板の受光面とは反対側の面側に太
陽電池素子と出力端子を設けて出力線を取り出した太陽
電池パネルを屋外の設置対象領域に設置する工程(工程
A)と、太陽電池パネルの受光面とは反対側の面に発泡
性合成樹脂を被着する工程(工程B)とを用い、適宜発
泡性合成樹脂の被着面に当該被着面を覆う裏面側蓋材が
設けられるが、この場合には以下の5つの施工方法が可
能である。 (1) 予め屋外の設置場所に設けられたアレイ架台におい
て、一つの太陽電池モジュールの設置対象部位のそれぞ
れに太陽電池パネルを取り付ける(以上が上記工程Aに
相当)。この太陽電池パネルのアレイ架台への固定は、
従来の太陽電池モジュールにも使用されているフレーム
を予め太陽電池パネルに取り付けておき、このフレーム
とアレイ架台とをネジ等によって固定する方法等によっ
て行えばよい。次に、こうして取り付けた太陽電池パネ
ルの受光面とは反対側の面に未硬化の発泡性合成樹脂を
塗布等の方法で被着し(上記工程Bに相当)、太陽電池
アレイを得る。 (2) 上記(1) の後に、太陽電池パネルの受光面とは反対
側の面を覆い、かつ太陽電池パネルの受光面とは反対側
の面との間に、既に被着した発泡性合成樹脂の収容空間
を形成しうる裏面側蓋材を取り付けて太陽電池アレイを
得る。この時、出力線は裏面側蓋部材の外部にまで延設
しておく。 (3) 予め屋外の設置場所に設けられたアレイ架台におい
て、一つの太陽電池モジュールの設置対象部位のそれぞ
れに、太陽電池パネルの受光面とは反対側の面を覆い、
かつ太陽電池パネルの受光面とは反対側の面との間に発
泡性合成樹脂の収容空間を形成しうる裏面側蓋材を、ネ
ジ止め等の方法によって取り付ける。次にこの裏面側蓋
材の太陽電池パネル側の面に、未硬化の発泡性合成樹脂
を塗布等の方法で被着する。そして、この裏面側蓋材に
蓋をする形で太陽電池パネルを取り付け太陽電池アレイ
を得る。この太陽電池パネルを取り付ける時に、太陽電
池パネルの受光面とは反対側の面に発泡性合成樹脂が被
着される。従って、この方法では、上記工程Aと工程B
とが同時に行われることになる。この時、出力線は裏面
側蓋部材の外部にまで延設しておく。 (4) 予め屋外の設置場所に設けられたアレイ架台におい
て、一つの太陽電池モジュールの設置対象部位のそれぞ
れに太陽電池パネルを取り付ける(上記工程Aに相
当)。この太陽電池パネルのアレイ架台への固定は、従
来の太陽電池モジュールにも使用されているフレームを
予め太陽電池パネルに取り付けておき、このフレームと
アレイ架台とをネジ等によって固定する方法等によって
行えばよい。次に、太陽電池パネルの受光面とは反対側
の面を覆い、かつ太陽電池パネルの受光面とは反対側の
面との間に発泡性合成樹脂の収容空間を形成しうる裏面
側蓋材を、ネジ止め等の方法によって取り付ける。この
時、出力線は裏面側蓋部材の外部にまで延設しておく。
続いて、太陽電池パネルと裏面側蓋材との間に形成され
た空間内に、未硬化の発泡性合成樹脂を注入して太陽電
池アレイを得る。この時に、太陽電池パネルの受光面と
は反対側の面が発泡性合成樹脂によって被着される(上
記工程Bに相当)。 (5) 予め屋外の設置場所に設けられたアレイ架台におい
て、一つの太陽電池モジュールの設置対象部位のそれぞ
れに、太陽電池パネルの受光面とは反対側の面を覆い、
かつ太陽電池パネルの受光面とは反対側の面との間に発
泡性合成樹脂の収容空間を形成しうる裏面側蓋材を、ネ
ジ止め等の方法によって取り付ける。次にこの裏面側蓋
材に蓋をする形で太陽電池パネルを取り付ける(上記工
程Aに相当)。この時、出力線は裏面側蓋部材の外部に
まで延設しておく。続いて、太陽電池パネルと裏面側蓋
材との間に形成された空間内に、未硬化の発泡性合成樹
脂を注入して太陽電池アレイを得る。この時に、太陽電
池パネルの受光面とは反対側の面が発泡性合成樹脂によ
って被着される(上記工程Bに相当)。
As described above, according to the method of constructing a solar cell array of the present invention, a solar cell in which a solar cell element and an output terminal are provided on the surface of the translucent plate opposite to the light receiving surface and an output line is taken out is provided. Using the step of installing the panel outdoors in the installation target area (step A) and the step of applying the expandable synthetic resin to the surface opposite to the light receiving surface of the solar cell panel (step B), the foaming property is appropriately adjusted. The back surface side cover material that covers the adhered surface is provided on the adhered surface of the synthetic resin. In this case, the following five construction methods are possible. (1) A solar cell panel is attached to each of the installation target portions of one solar cell module in an array pedestal provided in advance in an outdoor installation location (the above corresponds to the above step A). Fixing this solar cell panel to the array frame is
A frame that is also used in the conventional solar cell module may be attached to the solar cell panel in advance, and the frame and the array frame may be fixed with screws or the like. Next, an uncured foamable synthetic resin is applied to the surface of the solar cell panel thus mounted opposite to the light receiving surface by a method such as coating (corresponding to the above step B) to obtain a solar cell array. (2) After (1) above, the foamable synthetic material that has already been applied between the surface of the solar cell panel opposite the light receiving surface and the surface of the solar cell panel opposite the light receiving surface. A solar cell array is obtained by attaching a backside cover material that can form a resin accommodation space. At this time, the output line is extended to the outside of the back cover member. (3) In an array frame installed in an outdoor installation location in advance, each of the installation target parts of one solar cell module covers the surface opposite to the light receiving surface of the solar cell panel,
Further, a back surface side lid member capable of forming a storage space for the foamable synthetic resin between the solar cell panel and the surface opposite to the light receiving surface is attached by a method such as screwing. Next, the uncured foamable synthetic resin is applied to the surface of the back cover material on the solar cell panel side by a method such as coating. Then, a solar cell panel is attached to the back cover material to cover it to obtain a solar cell array. When this solar cell panel is attached, a foamable synthetic resin is applied to the surface of the solar cell panel opposite to the light receiving surface. Therefore, in this method, the above steps A and B are performed.
And will be done at the same time. At this time, the output line is extended to the outside of the back cover member. (4) A solar cell panel is attached to each of the installation target parts of one solar cell module in an array pedestal provided in advance at an outdoor installation location (corresponding to step A above). This solar cell panel is fixed to the array frame by attaching the frame, which is also used in conventional solar cell modules, to the solar cell panel in advance and fixing the frame and the array frame with screws or the like. I'll do it. Next, a back surface side cover material that covers the surface opposite to the light receiving surface of the solar cell panel and can form a storage space for the foamable synthetic resin between the surface opposite to the light receiving surface of the solar cell panel Is attached by a method such as screwing. At this time, the output line is extended to the outside of the back cover member.
Then, the uncured foamable synthetic resin is injected into the space formed between the solar cell panel and the back cover material to obtain a solar cell array. At this time, the surface of the solar cell panel opposite to the light receiving surface is coated with the foamable synthetic resin (corresponding to the above step B). (5) In an array frame installed in an outdoor installation location in advance, each of the installation target parts of one solar cell module covers the surface opposite to the light receiving surface of the solar cell panel,
Further, a back surface side lid member capable of forming a storage space for the foamable synthetic resin between the solar cell panel and the surface opposite to the light receiving surface is attached by a method such as screwing. Next, a solar cell panel is attached in a form of covering the back surface side cover material (corresponding to the above step A). At this time, the output line is extended to the outside of the back cover member. Then, the uncured foamable synthetic resin is injected into the space formed between the solar cell panel and the back cover material to obtain a solar cell array. At this time, the surface of the solar cell panel opposite to the light receiving surface is coated with the foamable synthetic resin (corresponding to the above step B).

【0008】ここで発泡性合成樹脂としては、本発明の
目的から断熱性、保温性、蓄熱性に優れたものがよく、
ポリスチレンフォーム、ポリエチレンフォーム、硬質ポ
リウレタンフォーム、軟質ポリウレタンフォーム、硬質
塩化ビニルフォーム、ユリアフォーム、フェノールフォ
ーム、ラバーフォーム、シリコーン樹脂の発泡体等が例
示できる。そして発泡体を得る方法としては、一般的に
公知な方法(例えば株式会社プラスチックス・エージよ
り、1985年改定第14版として発刊されているプラ
スチック読本に記載のもの等)が適用される。このう
ち、ポリウレタンフォームについては、ポリオール、過
剰のジイソシアネート、架橋剤、発泡剤、触媒、気泡サ
イズ調整剤等の原料によって得られる。発泡剤には水と
イソシアネートとの反応による二酸化炭素、フレオン、
メチレンジクロライド、ペンタン、機械混合時に入れる
空気等、その他分解型の有機系発泡剤がある。架橋剤お
よび発泡剤に水を用いると、樹脂中におけるユリア結合
の割合が多くなるので、良質の発泡体を得るにはフレオ
ン等の併用が好ましい。気泡サイズ調整剤にはシリコー
ン樹脂や乳化剤が、触媒にはアミン類や有機スズ化合物
等が使用できる。ユリアフォームについては、粘度が1
000cp程度の粘稠なユリア−ホルムアルデヒド水溶
液(樹脂分50〜90%)100部に、プロパン、ブタ
ン、ブテン、ヘキサン、塩化メチル、フレオンのような
発泡剤を2〜30部低温または密閉容器中で分散させ、
乳化剤の存在下で酸触媒を加えた後、15〜115℃に
温度を上げて得られる。また乳化剤を含んだユリア樹脂
初期縮合物を、現場発泡機によって塩酸液を混合しなが
ら機械的に起泡しながら吐出させてもよい。フェノール
フォームについては、レゾール型初期縮合物に泡立機で
空気を吹き込みながらクリーム状としつつ、攪拌下で硬
化剤を混合して対象部分に被着すればよい。さらに、ク
リーム状とする時に重炭酸ソーダを1%程度加えて発泡
を助けることもある。硬化剤の添加後速やかに硬化し、
密度0.016〜0.401g/cm3 程度の発泡体が得
られる。酸化触媒にはベンゼンスルフォン酸、トルエン
スルフォン酸、硫酸、リン酸等が用いられる。フレオン
11のような揮発性発泡剤を配合しておくと反応熱で起
泡するので、初めの泡立ては必要ない。またBakel
ite社のBVR−18763等、発泡用に適したフェ
ノール樹脂も市販されているが、レゾール85部にアジ
ピン酸とヘキサメチレンジアミンから得られたポリアミ
ド5部を共重合させて強靱な発泡体を作製することもで
き、ポリビニルアルコール、塩化ビニル樹脂を5〜20
部程度配合して強靱性、弾性などを補うこともできる。
一般に熱硬化性樹脂を高倍率に発泡させると脆くなる
為、10倍以下の低倍率に発泡させることが行われてい
るが、本発明の場合は硬化後の発泡性合成樹脂のみをハ
ンドリングすることがないので、脆さを考慮する必要は
無く、高倍率の発泡による高い断熱性を得ることができ
る。
For the purpose of the present invention, it is preferable that the foamable synthetic resin is excellent in heat insulation, heat retention and heat storage.
Examples thereof include polystyrene foam, polyethylene foam, rigid polyurethane foam, soft polyurethane foam, rigid vinyl chloride foam, urea foam, phenol foam, rubber foam, and silicone resin foam. As a method for obtaining the foam, a generally known method (for example, the one described in a plastic reader published by Plastics Age Co., Ltd. as the 14th edition revised in 1985) is applied. Among them, polyurethane foam can be obtained by raw materials such as polyol, excess diisocyanate, cross-linking agent, foaming agent, catalyst and cell size adjusting agent. For the blowing agent, carbon dioxide from the reaction of water and isocyanate, Freon,
There are other decomposable organic foaming agents such as methylene dichloride, pentane, air to be added during mechanical mixing. When water is used as the cross-linking agent and the foaming agent, the proportion of urea bonds in the resin increases, so that it is preferable to use Freon or the like together in order to obtain a good quality foam. Silicone resins and emulsifiers can be used as the cell size adjusting agent, and amines and organic tin compounds can be used as the catalyst. For urea foam, the viscosity is 1
A viscous urea-formaldehyde aqueous solution (resin content 50 to 90%) of about 000 cp is added with a blowing agent such as propane, butane, butene, hexane, methyl chloride, and Freon in an amount of 2 to 30 parts at low temperature or in a closed container. Disperse,
It is obtained by adding an acid catalyst in the presence of an emulsifier and then raising the temperature to 15 to 115 ° C. Further, the urea resin initial condensate containing the emulsifier may be discharged while mechanically foaming while mixing the hydrochloric acid solution with an in-situ foaming machine. With respect to the phenol foam, the resol type initial condensate may be made into a cream form by blowing air with a foaming machine, and a curing agent may be mixed under stirring to be applied to a target portion. Furthermore, when making it creamy, about 1% of sodium bicarbonate may be added to help foaming. It cures quickly after adding the curing agent,
A foam having a density of 0.016 to 0.401 g / cm 3 is obtained. Benzenesulfonic acid, toluenesulfonic acid, sulfuric acid, phosphoric acid, etc. are used as the oxidation catalyst. If a volatile foaming agent such as Freon 11 is blended, foaming occurs due to reaction heat, and thus initial foaming is not necessary. See also Baker
A phenolic resin suitable for foaming such as ITE BVR-18763 is also commercially available, but a tough foam is prepared by copolymerizing 85 parts of resole with 5 parts of polyamide obtained from adipic acid and hexamethylenediamine. It is also possible to add polyvinyl alcohol or vinyl chloride resin to 5 to 20.
It is also possible to supplement the toughness, elasticity, etc. by blending about a part.
Generally, when a thermosetting resin is foamed at a high magnification, it becomes brittle, so that it is foamed at a low magnification of 10 times or less. However, in the case of the present invention, only the foamable synthetic resin after curing should be handled. Therefore, it is not necessary to take brittleness into consideration, and high heat insulation due to high-magnification foaming can be obtained.

【0009】またシリコーンフォームについては、特開
平5−31814号記載のもの等が例示できる。この方
法は、常温で液状のシラノール基含有オルガノポリシロ
キサン(成分A)と、常温で液状のオルガノハイドロジ
ェンポリシロキサン(成分B)とを、脱水素縮合反応触
媒(成分C)の存在下に反応させて水素ガスを発生させ
ながら硬化させる方法であって、上記A、B、Cの3成
分の合流時、または後に不活性ガスを圧入した後機械的
に混合し、この混合物を外気中に吐出して発泡硬化させ
るものである。
Examples of silicone foams include those described in JP-A-5-31814. This method comprises reacting a silanol group-containing organopolysiloxane (component A) which is liquid at room temperature with an organohydrogenpolysiloxane (component B) which is liquid at room temperature in the presence of a dehydrogenative condensation reaction catalyst (component C). And a method of curing while generating hydrogen gas, and at the time of joining the above-mentioned three components A, B, and C, or after injecting an inert gas, mechanically mix the mixture, and discharge the mixture into the outside air. Then, it is foamed and cured.

【0010】[0010]

【作用】本発明は上述のような構成を有しており、以下
の作用が得られる。先ず太陽電池モジュールとしては、
太陽電池パネルの受光面とは反対側の面を太陽電池パネ
ルとの間に空間を形成する事ができる裏面側蓋材で覆
い、そして太陽電池パネルと裏面側蓋材との間の空間に
発泡性合成樹脂を充填した構成であり、合成樹脂に発泡
性のものを用いることから、裏面側蓋材の取り付け前後
に係わらず、未硬化の状態で合成樹脂の充填が可能とな
る。これは、発泡性でない合成樹脂の場合では、硬化時
の収縮等で太陽電池パネルの裏面への応力等の影響が有
るので未硬化の状態では使用できないが、本発明では発
泡性であるために前述の応力の影響が殆ど無いためであ
る。そして充填された発泡性合成樹脂により、太陽電池
パネルによって吸収された熱がパネルの裏面側からすぐ
に放熱されることがなくなり、太陽電池パネルの温度
を、光劣化を回復させるに足りる温度範囲に維持できる
ことになる。さらに発泡性合成樹脂は、その内部に無数
の気泡が存在しているため、太陽電池パネルからの熱伝
導を一層抑制する。
The present invention has the above-mentioned structure and has the following effects. First of all, as a solar cell module,
The surface of the solar panel opposite to the light receiving surface is covered with a back cover that can form a space between the solar panel and the foam between the solar panel and the back cover. Since the synthetic resin is foamed, the synthetic resin can be filled in an uncured state regardless of before and after attaching the back side cover member. This is because in the case of a synthetic resin that is not foamable, it cannot be used in an uncured state because it has an influence of stress or the like on the back surface of the solar cell panel due to shrinkage during curing, but since it is foamable in the present invention, This is because there is almost no influence of the above-mentioned stress. The filled foamable synthetic resin prevents the heat absorbed by the solar cell panel from being immediately dissipated from the back side of the panel, making the temperature of the solar cell panel within a temperature range sufficient to recover photodegradation. Will be able to maintain. Further, since the foamable synthetic resin has innumerable bubbles inside, it further suppresses heat conduction from the solar cell panel.

【0011】次に本発明の太陽電池アレイの施工方法で
も、上記と同様に未硬化の合成樹脂が使用できるととも
に、その被着方法についても塗布、吹きつけ、注入等を
始めとする多くの方法が採用できる。従って、太陽電池
アレイの設置場所、設置状況に問わず、現場発泡が可能
となる。
Also in the method of constructing the solar cell array of the present invention, the uncured synthetic resin can be used in the same manner as described above, and the method of depositing the same includes many methods such as coating, spraying and pouring. Can be adopted. Therefore, on-site foaming is possible regardless of the installation location and installation status of the solar cell array.

【0012】[0012]

【実施例】以上のような本発明の実施例について以下に
説明する。図1、2には、本発明の太陽電池モジュール
1の構造例を断面図として示している。図1は透光板3
の受光面とは反対側の面側に、少なくとも非晶質シリコ
ン系半導体層を形成した太陽電池素子5を設け、EVA
の充填材6で封入するとともに、テドラー等のバックシ
ート8によって裏面を保護し、さらにバックシート8上
に出力端子7を設けた太陽電池パネル9と、太陽電池パ
ネル9に取り付けられ、太陽電池パネル9の受光面とは
反対側の面を覆い、端部にアレイ架台への取り付け用の
折り返し片11を形成するとともに、太陽電池パネル9
との間に空間を形成する裏面側蓋材13と、出力端子7
に接続するとともに裏面側蓋材13の外部にまで延設し
た出力線15と、太陽電池パネル9と裏面側蓋材13と
の間の空間に充填した発泡性合成樹脂17とを備えた太
陽電池モジュール1である。本例では、太陽電池パネル
9は裏面側蓋材13の内側立ち上がり片19に設けた段
部21に載置され、両者の境界部にシール材23を充填
することで固定されている。太陽電池パネル9からの出
力線15は、裏面側蓋材13に開設した取り出し孔25
に挿通することで外部に取り出される。また図2のもの
は、透光板3の受光面とは反対側の面側に少なくとも非
晶質シリコン系半導体層を形成した太陽電池素子5を設
け、EVAの充填材6で封入するとともに、テドラー等
のバックシート8によって裏面を保護し、さらにバック
シート8上に出力端子7を設けるとともに、透光板3の
端部にアレイ架台への設置用アルミニウムフレーム27
を、ブチルゴムの接着剤29を用いて嵌入接着した太陽
電池パネル9と、太陽電池パネル9のフレーム27に取
り付けられ、太陽電池パネル9の受光面とは反対側の面
を覆って太陽電池パネル9との間に空間を形成する裏面
側蓋材13と、出力端子7に接続するとともに裏面側蓋
材13の外部にまで延設した出力線15と、太陽電池パ
ネル9と裏面側蓋材13との間の空間に充填した発泡性
合成樹脂17とを備えた太陽電池モジュール1である。
本例では上記図1の例とは異なり、裏面側蓋材13はア
レイ架台への設置用フレーム27に取り付けられてい
る。また、太陽電池パネル9からの出力線15は、裏面
側蓋材13に開設した取り出し孔25に挿通することで
外部に取り出される。このような図1、2の太陽電池モ
ジュール1は、上記の課題を解決するための手段の項で
説明したような方法によって製造可能である。そして
の製造方法で作製する場合には、出力線15の挿通用の
開設した取り出し孔25にノズル等を差し込み、そのノ
ズルから未硬化の発泡性合成樹脂17を注入するとよい
し、図1の構造にあっては、例えば太陽電池パネル9が
裏面側蓋材13に載置されている部分、すなわち段部2
1の一部にノズル差し込み用の切り欠き部等を設けてお
いてもよい。さらに図2の構造にあっては、フレーム2
7と裏面側蓋材13の取り付け部の一部に、上記同様ノ
ズル差し込み用の切り欠き部等を設けておくこともでき
る。
EXAMPLES Examples of the present invention as described above will be described below. 1 and 2 show cross-sectional views of structural examples of the solar cell module 1 of the present invention. FIG. 1 shows a transparent plate 3
The solar cell element 5 on which at least an amorphous silicon semiconductor layer is formed is provided on the surface side opposite to the light receiving surface of
And a solar cell panel 9 provided with an output terminal 7 on the back sheet 8, and the solar cell panel 9 attached to the solar cell panel 9. The surface of the solar cell panel 9 that covers the surface opposite to the light-receiving surface of the solar cell panel 9 is formed at its end with a folded-back piece 11 for attachment to the array frame.
A back side cover member 13 that forms a space between the output terminal 7 and
Solar cell provided with an output line 15 connected to the outside and extending to the outside of the back surface side cover material 13, and a foamable synthetic resin 17 filling the space between the solar cell panel 9 and the back surface side cover material 13. Module 1. In this example, the solar cell panel 9 is placed on the step portion 21 provided on the inner rising piece 19 of the back surface side lid member 13 and fixed by filling the seal material 23 at the boundary portion between the two. The output line 15 from the solar cell panel 9 is a take-out hole 25 formed in the back side lid member 13.
It is taken out by inserting into. Further, in the structure shown in FIG. 2, a solar cell element 5 having at least an amorphous silicon based semiconductor layer formed is provided on the surface side opposite to the light receiving surface of the translucent plate 3, and the solar cell element 5 is enclosed with an EVA filling material 6 and The back sheet 8 such as a Tedler protects the back surface, the output terminals 7 are further provided on the back sheet 8, and an aluminum frame 27 for installation on the array frame is provided at the end of the transparent plate 3.
Is attached to the frame 27 of the solar cell panel 9 with the solar cell panel 9 fitted and bonded using an adhesive 29 of butyl rubber, and the surface of the solar cell panel 9 opposite to the light receiving surface is covered to cover the solar cell panel 9 A back surface side cover material 13 forming a space between the output terminal 7 and the output line 15 extending to the outside of the back surface side cover material 13, the solar cell panel 9 and the back surface side cover material 13. It is the solar cell module 1 provided with the foamable synthetic resin 17 with which the space between was filled.
In this example, unlike the example of FIG. 1 described above, the back surface side lid member 13 is attached to the installation frame 27 on the array frame. Further, the output line 15 from the solar cell panel 9 is taken out to the outside by inserting it into the taking-out hole 25 formed in the back surface side cover material 13. Such a solar cell module 1 of FIGS. 1 and 2 can be manufactured by the method as described in the section of the means for solving the above problems. In the case of manufacturing by the manufacturing method described above, a nozzle or the like may be inserted into the take-out hole 25 opened for inserting the output wire 15, and the uncured expandable synthetic resin 17 may be injected from the nozzle. In this case, for example, the portion where the solar cell panel 9 is placed on the back surface side cover material 13, that is, the step portion 2
You may provide the notch part for nozzle insertion, etc. in 1 part. Further, in the structure of FIG. 2, the frame 2
It is also possible to provide a notch or the like for inserting the nozzle in a part of the mounting portion of the back cover member 7 and the rear surface side cover member 13 similarly to the above.

【0013】また上記図1、図2以外の実施例として、
図3に示すように太陽電池パネル9からの出力線15
を、裏面側蓋材13と太陽電池パネル9との間の間隙
部、図ではシール材23の充填部から外部に取り出すこ
ともできる。このような構造にすると、太陽電池モジュ
ール1間の結線を受光面側から行うことができる。さら
に図4のように、内側立ち上がり片19に開設した取り
出し孔25から出力線15を取り出すこともできる。こ
のような構造では、折り返し片11と内側立ち上がり片
19との間の空間に配線を収納することができ、さらに
この部分を適当な合成樹脂等で封入しておけば、配線が
外部に露出することが完全に無くなるので、信頼性が一
層向上する。
As an embodiment other than those shown in FIGS. 1 and 2,
As shown in FIG. 3, the output line 15 from the solar cell panel 9
Can also be taken out to the outside from a gap between the back surface side cover material 13 and the solar cell panel 9, that is, a filling portion of the sealing material 23 in the figure. With such a structure, the connection between the solar cell modules 1 can be performed from the light receiving surface side. Further, as shown in FIG. 4, the output line 15 can be taken out from the take-out hole 25 formed in the inner rising piece 19. With such a structure, the wiring can be housed in the space between the folded piece 11 and the inner rising piece 19, and if this portion is sealed with a suitable synthetic resin or the like, the wiring is exposed to the outside. Since it is completely eliminated, the reliability is further improved.

【0014】このような太陽電池パネル9において、透
光板3としては強化ガラスや貼り合わせガラス、または
その他一般的な透光基板が用いられ、ガラス成分が溶出
しないよう、必要に応じて酸化ケイ素などを被着したも
のを用いても良い。太陽電池素子5としては図7に示し
たものと同様に、例えば透光板3上に透明導電膜/p−
i−nまたはn−i−pの非晶質シリコン層/金属電極
層を順次堆積した積層体からなる光電変換領域を形成し
たものが用いられる。そして、その裏面側をEVA、P
VB、ポリイソブチレン系樹脂等の充填材によって封入
したり、さらに必要に応じてアルミニウム箔をサンドイ
ッチしたテドラー等のバックシートで裏面を保護する構
造としておく。
In the solar cell panel 9 as described above, tempered glass, laminated glass, or other general light-transmitting substrate is used as the light-transmitting plate 3, and silicon oxide is used as necessary so that the glass component is not eluted. You may use what adhered etc. As the solar cell element 5, similar to that shown in FIG. 7, for example, a transparent conductive film / p− is formed on the transparent plate 3.
An i-n or n-i-p amorphous silicon layer / metal electrode layer is sequentially deposited to form a photoelectric conversion region formed of a laminated body. And the back side is EVA, P
The structure is such that the back surface is protected by a back sheet such as a Tedler in which an aluminum foil is sandwiched and filled with a filler such as VB or polyisobutylene resin.

【0015】ここで透明導電膜としては、従来の太陽電
池素子5と同様に酸化錫や酸化インジウム錫が用いら
れ、非晶質シリコン層としては、アモルファスシリコン
カーバイトとアモルファスシリコンによるヘテロ接合構
造が採用され、必要に応じて透明導電膜側や金属電極層
側のp層やn層を、微結晶化させることも直列抵抗低減
において効果的である。また、金属電極層としては、ク
ロム、アルミニウム、銀などの一般的な金属材料を、単
層や積層構造として用いる。そして特に素子温度が高温
になることから、非晶質シリコン層との間での金属成分
の拡散を防止するため、非晶質シリコン層と金属電極層
との間に、前述の透明導電膜やシリサイド層などによる
金属拡散防止層を介在させたり、この金属拡散防止層を
介在させずに、金属電極層としてクロムやモリブデンな
どのシリサイド形成金属を用いたり、これらシリサイド
形成金属と他の金属との積層構造とすることが効果的で
ある。また、入射光の閉じ込め効果の点からは、反射率
の点から銀を用いると特に効果が高い。さらに、充填材
としてEVA、PVBなどを用いる場合は、真空ラミネ
ート法によって封入し、ポリイソブチレン系樹脂の場合
は、これを加熱流動化して塗布すれば良い。また太陽電
池パネル9の構造としては、イ)ガラス等の透光板の受
光面側と反対側の面上に、直接非晶質シリコン系半導体
層による太陽電池素子を形成し、その上に熱硬化性樹脂
等の保護塗膜を形成したもの、ロ)上記イ)の太陽電池
パネルの受光面側に、EVA等の透明の合成樹脂でカバ
ーガラスを接着したもの、ハ)小型の透光板上に非晶質
シリコン系半導体層による太陽電池素子を形成した単位
セルを、大型ガラス等の透光板の受光面側と反対側の面
上にEVA等の透明合成樹脂を用いてラミネートしたも
の等が例示できるが、本発明において太陽電池パネルの
構造は、何ら限定されるものではない。
Here, as the transparent conductive film, tin oxide or indium tin oxide is used as in the conventional solar cell element 5, and the amorphous silicon layer has a heterojunction structure of amorphous silicon carbide and amorphous silicon. It is also effective to reduce the series resistance by adopting microcrystallization of the p layer or the n layer on the transparent conductive film side or the metal electrode layer side, if necessary. As the metal electrode layer, a general metal material such as chromium, aluminum or silver is used as a single layer or a laminated structure. And since the element temperature becomes high in particular, in order to prevent the diffusion of the metal component between the amorphous silicon layer and the amorphous silicon layer, between the amorphous silicon layer and the metal electrode layer, the above-mentioned transparent conductive film or A metal diffusion preventing layer such as a silicide layer is interposed, or a silicide forming metal such as chromium or molybdenum is used as the metal electrode layer without interposing the metal diffusion preventing layer. A laminated structure is effective. Further, in terms of the effect of confining incident light, silver is particularly effective in terms of reflectance. Further, when EVA, PVB or the like is used as the filler, it may be sealed by a vacuum laminating method, and in the case of a polyisobutylene resin, it may be heated and fluidized and applied. As the structure of the solar cell panel 9, (a) a solar cell element formed of an amorphous silicon semiconductor layer is directly formed on a surface of a translucent plate such as glass opposite to the light receiving surface side, and heat is applied thereon. A protective coating such as a curable resin is formed, b) A cover glass is attached to the light receiving surface side of the solar cell panel of a) above with a transparent synthetic resin such as EVA, and c) A small transparent plate. A unit cell in which a solar cell element having an amorphous silicon semiconductor layer is formed on the surface of a translucent plate such as a large glass, which is opposite to the light receiving surface side, is laminated with a transparent synthetic resin such as EVA. Etc., the structure of the solar cell panel in the present invention is not limited at all.

【0016】このような本発明の太陽電池モジュール1
を屋外に設置し、その温度と光電変換効率の変化を調べ
たところ、従来であれば太陽電池パネル9の温度は、夏
期においては最高でも気温より約30℃の上昇に止まっ
ていたものが、本発明では気温に対して40℃〜50℃
の上昇となり、夏期において80℃〜100℃となっ
た。これにより、従来は約15〜25%の光劣化であっ
たものが、本発明では約9%となり、大きな改善効果が
確認された。
The solar cell module 1 of the present invention as described above
When the temperature of the solar cell panel 9 was conventionally set to about 30 ° C. higher than the ambient temperature in the summer, the temperature of the solar cell panel 9 was increased by about 30 ° C. In the present invention, the temperature is 40 ° C to 50 ° C.
, Which was 80 ° C to 100 ° C in the summer. As a result, the conventional photo-deterioration was about 15 to 25%, but in the present invention, it was about 9%, and a large improvement effect was confirmed.

【0017】次に、上記課題を解決するための手段の項
で説明した、(1) 〜(5) の太陽電池アレイの施工方法に
よって得られる太陽電池アレイ構造を以下に例示する。
図5は(1) の施工方法によって得られる太陽電池アレイ
構造31の部分断面図を表している。図例のものは、予
め屋外の設置場所に設けたアレイ架台33の、一つの太
陽電池モジュール1の設置対象部位のそれぞれに図2で
示した太陽電池パネル9をネジを用いて取り付け、太陽
電池パネル9の受光面とは反対側の面を未硬化の発泡性
合成樹脂17で、塗布によって被着したものである。こ
の構造では、太陽電池アレイ31の受光面と反対側の面
は発泡性合成樹脂17が露出している。そして本構造
は、既設の太陽電池アレイ31にも適用できることは言
うまでもない。さらに、こうして施工された太陽電池ア
レイ31における太陽電池モジュール1の部分、すなわ
ち太陽電池アレイ31内において、太陽電池パネル9の
受光面とは反対側の面に発泡性合成樹脂17が被着され
た単位領域が太陽電池モジュール1となる。
Next, the solar cell array structure obtained by the solar cell array construction methods (1) to (5) described in the section of the means for solving the above problems will be illustrated below.
FIG. 5 shows a partial cross-sectional view of the solar cell array structure 31 obtained by the construction method (1). In the example shown in the figure, the solar cell panel 9 shown in FIG. 2 is attached with screws to each of the installation target parts of one solar cell module 1 of the array frame 33 provided in the outdoor installation place in advance, and the solar cell is installed. The surface of the panel 9 opposite to the light receiving surface is coated with an uncured expandable synthetic resin 17 by coating. In this structure, the foamable synthetic resin 17 is exposed on the surface opposite to the light receiving surface of the solar cell array 31. Needless to say, this structure can also be applied to the existing solar cell array 31. Further, the foamable synthetic resin 17 was applied to the portion of the solar cell module 1 in the solar cell array 31 thus constructed, that is, in the solar cell array 31, on the surface opposite to the light receiving surface of the solar cell panel 9. The unit area is the solar cell module 1.

【0018】図6は(2) の施工方法によって得られる太
陽電池アレイ構造31の部分断面図を表している。図例
のものは、上記図5の構造を施工した後、太陽電池パネ
ル9の受光面とは反対側の面を覆い、かつ太陽電池パネ
ル9の受光面とは反対側の面との間に、既に被着した発
泡性合成樹脂17を収容できる空間を形成しうる裏面側
蓋材13を取り付けたものであり、図はこの裏面側蓋材
13をフレーム27に取り付けたものである。しかしな
がらこの裏面側蓋材13は、図7のようにアレイ架台3
3に取り付けてもよい。そして太陽電池パネル9からの
出力線15は、裏面側蓋材13に開設した取り出し孔2
5や図示しない切り欠き部等に挿通することで外部に取
り出さる。またこれら図6、図7の構造において、裏面
側蓋材13を先に取り付けておき、最後に裏面側蓋材1
3に開設した出力線15の取り出し孔25や図示しない
切り欠き部等から未硬化の発泡性合成樹脂17を注入す
ることもできる。そしてこの施工方法は、上記(4) の施
工方法となる。さらに、こうして施工された太陽電池ア
レイ31における太陽電池モジュール1の部分、すなわ
ち太陽電池アレイ31内において太陽電池パネル9と裏
面側蓋材13とアレイ架台33とによって構成される単
位領域が、図2に基づく本発明の太陽電池モジュール1
となる。
FIG. 6 is a partial sectional view of the solar cell array structure 31 obtained by the construction method (2). In the example shown in the figure, after the structure shown in FIG. 5 is constructed, the surface opposite to the light receiving surface of the solar cell panel 9 is covered, and between the surface opposite to the light receiving surface of the solar cell panel 9. The back side cover member 13 capable of forming a space for accommodating the foamable synthetic resin 17 already attached is attached, and the figure shows the back side cover member 13 attached to the frame 27. However, this back side cover material 13 is used for the array mount 3 as shown in FIG.
You may attach to 3. The output line 15 from the solar cell panel 9 is the extraction hole 2 formed in the back side lid member 13.
5 and a notch (not shown) or the like to be taken out. Further, in the structures shown in FIGS. 6 and 7, the back surface side cover material 13 is attached first, and finally the back surface side cover material 1 is attached.
It is also possible to inject the uncured expandable synthetic resin 17 from the take-out hole 25 of the output wire 15 opened in FIG. This construction method is the construction method of (4) above. Further, the unit area formed by the solar cell panel 9, the back side cover member 13, and the array mount 33 in the solar cell module 1 portion of the solar cell array 31 thus constructed, that is, in FIG. Based on the present invention solar cell module 1
Becomes

【0019】図8は(3) の施工方法によって得られる太
陽電池アレイ構造31の部分断面図を表している。図例
のものは、予め屋外の設置場所に設けられたアレイ31
用架台33の、一つの太陽電池モジュール1の設置対象
部位のそれぞれに、太陽電池パネル9の受光面とは反対
側の面を覆い、端部にアレイ架台33への取り付け用の
折り返し片11を形成するとともに、太陽電池パネル9
の受光面とは反対側の面との間に発泡性合成樹脂17を
収容できる空間を形成しうる裏面側蓋材13を、ネジ止
め等の方法によってアレイ架台33に取り付け、この裏
面側蓋材13の太陽電池パネル9側の面に、未硬化の発
泡性合成樹脂17を塗布等の方法で被着した後、この裏
面側蓋材13に蓋をする形で太陽電池パネル9を取り付
けて得た太陽電池アレイ31である。この時にも、出力
線15は裏面側蓋材13に開設した取り出し孔25や、
図示しない切り欠き部等に挿通することで外部に取り出
さる。また本図の構造は、太陽電池パネル9を先に取り
付けておき、最後に裏面側蓋材13に開設した出力線1
5の取り出し孔25や図示しない切り欠き部等から未硬
化の発泡性合成樹脂17を注入することもできる。そし
てこの施工方法は、上記(5) の施工方法になる。さら
に、こうして施工された太陽電池アレイ31における太
陽電池モジュール1の部分、すなわち太陽電池アレイ3
1内において太陽電池パネル9と裏面側蓋材13によっ
て構成される単位領域が、図1で示した本発明の太陽電
池モジュール1となる。
FIG. 8 is a partial sectional view of the solar cell array structure 31 obtained by the construction method (3). In the example shown in the figure, the array 31 that is previously installed at the outdoor installation location is used.
Each of the installation target portions of one solar cell module 1 of the mounting base 33 covers the surface opposite to the light receiving surface of the solar cell panel 9, and the folded-back pieces 11 for mounting to the array mounting base 33 are provided at the ends. Forming the solar cell panel 9
The back surface side cover material 13 capable of forming a space for accommodating the foamable synthetic resin 17 with the surface opposite to the light receiving surface is attached to the array frame 33 by a method such as screwing. After the uncured foamable synthetic resin 17 is applied to the surface of the solar cell panel 9 side of 13 by a method such as coating, the solar cell panel 9 is attached by covering the back surface side cover material 13 to obtain It is the solar cell array 31. Also at this time, the output line 15 has a take-out hole 25 formed in the back side cover member 13,
It is taken out by inserting it into a notch or the like (not shown). Further, in the structure of this figure, the solar cell panel 9 is attached first, and finally the output line 1 opened on the back side lid member 13 is used.
It is also possible to inject the uncured expandable synthetic resin 17 from the take-out hole 25 of FIG. This construction method is the construction method of (5) above. Furthermore, the portion of the solar cell module 1 in the solar cell array 31 thus constructed, that is, the solar cell array 3
A unit region formed by the solar cell panel 9 and the back surface side cover material 13 in 1 corresponds to the solar cell module 1 of the present invention shown in FIG.

【0020】また、本発明にかかる太陽電池アレイの施
工方法のうち、上記(1) 、(2) 、(4) の施工方法につい
ては工程Bのみを用いることで、既設の太陽電池モジュ
ールに対しても適用することが可能である。
Further, among the construction methods of the solar cell array according to the present invention, the construction methods of (1), (2) and (4) described above are performed by using only the step B. However, it can be applied.

【0021】[0021]

【発明の効果】本発明は作用の項でも説明したところに
より、以下の優れた効果が得られる。先ず太陽電池モジ
ュールとしては、太陽電池パネルの受光面とは反対側の
面を、太陽電池パネルとの間に空間を形成することがで
きる裏面側蓋材で覆うとともに、太陽電池パネルと裏面
側蓋材との間の空間に発泡性合成樹脂を充填した構成で
あり、硬化時の応力の影響が無いことから裏面側蓋材の
取り付け前後に係わらず未硬化の状態で合成樹脂の充填
が可能となり、硬化後の発泡性合成樹脂のみをハンドリ
ングすることもないので、合成樹脂の脆さを考慮する必
要も無くなり、高倍率の発泡による高い断熱性を得るこ
とができるとともに、合成樹脂の選択自由度が高くな
る。そして充填された発泡性合成樹脂により、太陽電池
パネルによって吸収された熱がパネルの裏面側からすぐ
に放熱されることがなくなり、太陽電池パネルの温度
を、光劣化を回復させるに足りる温度範囲に維持できる
ことになり、太陽電池パネルの温度を80℃以上の高温
に維持できることから、光劣化現象を大幅に抑制するこ
とができ、低コストでかつ出力の長期安定性に優れたも
のとなる。そして高倍率の発泡が、より高温度での維持
を可能とする。
According to the present invention described in the section of the action, the following excellent effects can be obtained. First, as the solar cell module, the surface opposite to the light receiving surface of the solar cell panel is covered with a back surface side lid member capable of forming a space between the solar cell panel and the solar cell panel and the back surface side lid. Since the space between the material and the material is filled with expandable synthetic resin, there is no effect of stress during curing, so it is possible to fill the synthetic resin in an uncured state before and after mounting the back side lid material. Since there is no need to handle only the foamable synthetic resin after curing, there is no need to consider the brittleness of the synthetic resin, and it is possible to obtain high heat insulation due to high-magnification foaming, and the degree of freedom in selecting synthetic resins. Becomes higher. The filled foamable synthetic resin prevents the heat absorbed by the solar cell panel from being immediately dissipated from the back side of the panel, making the temperature of the solar cell panel within a temperature range sufficient to recover photodegradation. Since it can be maintained, and the temperature of the solar cell panel can be maintained at a high temperature of 80 ° C. or higher, the photodegradation phenomenon can be significantly suppressed, the cost is low, and the long-term output stability is excellent. And the high-magnification foaming makes it possible to maintain at a higher temperature.

【0022】次に本発明の太陽電池アレイの施工方法で
も、上記と同様に未硬化の合成樹脂が使用できるととも
に、その被着方法についても塗布、吹きつけ、注入等を
始めとする多くの方法が採用でき、太陽電池アレイの設
置場所や設置状況を問わずに現場発泡が可能となるの
で、上記同様硬化後の発泡性合成樹脂のみをハンドリン
グすることが無くなって脆さを考慮する必要が無くな
り、高倍率の発泡による高い断熱性を得ることができる
とともに、合成樹脂の選択自由度が高くなる。このこと
は、太陽電池パネルの温度を、光劣化を回復させるに足
りる高い温度範囲に維持できることを可能とし、低コス
トでかつ光劣化現象を大幅に抑制して出力の長期安定性
に優れた太陽電池アレイの実現を可能とする。また本発
明の考え方によれば、既設のアモルファスシリコン太陽
電池アレイの裏面側にも断熱処理を施すことが可能であ
り、新規製造/設置分のみならず既設置分にも適用で
き、その用途は汎大である。
Also in the method for constructing the solar cell array of the present invention, the uncured synthetic resin can be used in the same manner as described above, and as the method of applying the same, there are many methods such as coating, spraying and pouring. Since it enables the on-site foaming regardless of the installation location or installation situation of the solar cell array, there is no need to handle only the foamable synthetic resin after curing as described above, and it is not necessary to consider brittleness. In addition, it is possible to obtain high heat insulation due to high-magnification foaming, and the degree of freedom in selecting synthetic resin is increased. This makes it possible to maintain the temperature of the solar cell panel in a high temperature range that is sufficient to recover photodegradation, and at a low cost, greatly suppress the photodegradation phenomenon and to provide a solar output with excellent long-term stability of output. Enables realization of a battery array. Further, according to the concept of the present invention, it is possible to perform heat insulation treatment on the back surface side of an existing amorphous silicon solar cell array, and it can be applied not only to new manufacturing / installation but also to existing installation. It is vast.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の太陽電池モジュールの構造例を表す断
面説明図
FIG. 1 is a cross-sectional explanatory view showing a structural example of a solar cell module of the present invention.

【図2】本発明の太陽電池モジュールの構造例を表す断
面説明図
FIG. 2 is an explanatory sectional view showing a structural example of a solar cell module of the present invention.

【図3】本発明の太陽電池モジュールの構造例を表す断
面説明図
FIG. 3 is an explanatory sectional view showing a structural example of a solar cell module of the present invention.

【図4】本発明の太陽電池モジュールの構造例を表す断
面説明図
FIG. 4 is an explanatory sectional view showing a structural example of the solar cell module of the present invention.

【図5】本発明の施工方法による太陽電池アレイの構造
例を表す断面説明図
FIG. 5 is an explanatory sectional view showing a structural example of a solar cell array according to the construction method of the present invention.

【図6】本発明の施工方法による太陽電池アレイの構造
例を表す断面説明図
FIG. 6 is an explanatory sectional view showing a structural example of a solar cell array according to the construction method of the present invention.

【図7】本発明の施工方法による太陽電池アレイの構造
例を表す断面説明図
FIG. 7 is an explanatory sectional view showing a structural example of a solar cell array according to the construction method of the present invention.

【図8】本発明の施工方法による太陽電池アレイの構造
例を表す断面説明図
FIG. 8 is an explanatory sectional view showing a structural example of a solar cell array according to the construction method of the present invention.

【図9】従来の太陽電池モジュールの構造例を表す断面
説明図
FIG. 9 is a cross-sectional explanatory view showing a structural example of a conventional solar cell module.

【符号の説明】[Explanation of symbols]

1 太陽電池モジュール 3 透光板 5 太陽電池素子 6 充填材 7 出力端子 8 バックシート 9 太陽電池パネル 11 折り返し片 13 裏面側蓋材 15 出力線 17 発泡性合成樹脂 19 立ち上がり片 21 段部 23 シール材 25 取り出し孔 27 フレーム 29 接着剤 31 太陽電池アレイ 33 アレイ架台 1 Solar Cell Module 3 Transparent Plate 5 Solar Cell Element 6 Filling Material 7 Output Terminal 8 Back Sheet 9 Solar Cell Panel 11 Folding Piece 13 Back Side Cover Material 15 Output Line 17 Foaming Synthetic Resin 19 Rising Piece 21 Step Section 23 Sealing Material 25 take-out hole 27 frame 29 adhesive 31 solar cell array 33 array mount

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】透光板の受光面とは反対側の面側に少なく
とも太陽電池素子と出力端子を設けた太陽電池パネル
と、 太陽電池パネルに取り付けられ、太陽電池パネルの受光
面とは反対側の面を覆うとともに、太陽電池パネルとの
間に空間を形成する裏面側蓋材と、 出力端子に接続するとともに裏面側蓋材の外部にまで延
設した出力線と、 太陽電池パネルと裏面側蓋材との間の空間に充填した発
泡性合成樹脂と、を備えた太陽電池モジュール。
1. A solar cell panel provided with at least a solar cell element and an output terminal on a surface side opposite to a light receiving surface of a translucent plate, and a solar cell panel attached to the solar cell panel and opposite to the light receiving surface of the solar cell panel. Side cover material that covers the side surface and forms a space between the solar cell panel and the output line that extends to the outside of the back surface side cover material that is connected to the output terminals and the solar cell panel and the back surface. A solar cell module, comprising: a foamable synthetic resin filled in a space between the side cover material.
【請求項2】透光板の受光面とは反対側の面側に太陽電
池素子と出力端子を設けて出力線を取り出した太陽電池
パネルを屋外の設置対象領域に設置する工程と、 太陽電池パネルの受光面とは反対側の面に未硬化の発泡
性合成樹脂を被着する工程と、 を用いる太陽電池アレイの施工方法。
2. A step of installing a solar cell panel in which a solar cell element and an output terminal are provided on a surface side opposite to a light receiving surface of a translucent plate and an output line is taken out to an outdoor installation target area, and a solar cell. A method of applying a solar cell array using a step of applying an uncured foamable synthetic resin to the surface of the panel opposite to the light receiving surface.
【請求項3】発泡性合成樹脂の被着面に、当該被着面を
覆う裏面側蓋材が設けられる請求項2記載の太陽電池ア
レイの施工方法。
3. The method of constructing a solar cell array according to claim 2, wherein a backside cover material that covers the adhered surface is provided on the adhered surface of the foamable synthetic resin.
JP25212494A 1994-10-18 1994-10-18 Installation method of solar cell array Expired - Fee Related JP3475516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25212494A JP3475516B2 (en) 1994-10-18 1994-10-18 Installation method of solar cell array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25212494A JP3475516B2 (en) 1994-10-18 1994-10-18 Installation method of solar cell array

Publications (2)

Publication Number Publication Date
JPH08116082A true JPH08116082A (en) 1996-05-07
JP3475516B2 JP3475516B2 (en) 2003-12-08

Family

ID=17232812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25212494A Expired - Fee Related JP3475516B2 (en) 1994-10-18 1994-10-18 Installation method of solar cell array

Country Status (1)

Country Link
JP (1) JP3475516B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113718A (en) * 1997-01-06 2000-09-05 Canon Kabushiki Kaisha Method for manufacturing a solar cell module having photovoltaic cell sandwiched between covering materials
JP2004006625A (en) * 2002-03-27 2004-01-08 Kyocera Corp Solar cell module and solar cell array
JP2007123380A (en) * 2005-10-26 2007-05-17 Takiron Co Ltd Solar cell with float
JP2012009907A (en) * 2011-10-12 2012-01-12 Sanyo Electric Co Ltd Solar cell module
WO2013180823A1 (en) * 2012-06-01 2013-12-05 NuvoSun, Inc. Photovoltaic modules with functionally integrated metal back sheets

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113718A (en) * 1997-01-06 2000-09-05 Canon Kabushiki Kaisha Method for manufacturing a solar cell module having photovoltaic cell sandwiched between covering materials
JP2004006625A (en) * 2002-03-27 2004-01-08 Kyocera Corp Solar cell module and solar cell array
JP2007123380A (en) * 2005-10-26 2007-05-17 Takiron Co Ltd Solar cell with float
JP2012009907A (en) * 2011-10-12 2012-01-12 Sanyo Electric Co Ltd Solar cell module
WO2013180823A1 (en) * 2012-06-01 2013-12-05 NuvoSun, Inc. Photovoltaic modules with functionally integrated metal back sheets

Also Published As

Publication number Publication date
JP3475516B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
ES2391842T3 (en) Coating material of the rear face of a solar cell module and its use
KR101275651B1 (en) CIS-type thin-film solar battery module and process for producing the same
EP1182710B1 (en) Solar cell back cover material, sealing film and solar cell
US6762508B1 (en) Semiconductor encapsulant resin having an additive with a gradient concentration
US6127622A (en) Solar cell module
EP1009037B1 (en) Solar cell module
US20100132766A1 (en) Structural attachment of solar modules to frames by glazing
EP2003701A1 (en) Sealing film for solar cell and solar cell using such sealing film
US20130220419A1 (en) Systems and methods for improved photovoltaic module structure and encapsulation
US20110000524A1 (en) Solar module
CA2673018A1 (en) Backing sheet for photovoltaic modules and method for repairing same
WO2008079436A2 (en) Photovoltaic module for roofs
JPH10200141A (en) Manufacture of solar battery module
US20150333207A1 (en) Systems and methods for improved photovoltaic module structure
US20120305080A1 (en) Solar cell module and method of manufacturing solar cell module
US20110073163A1 (en) Photovoltaic lamination and roof mounting systems
JP3978912B2 (en) Solar cell cover material, sealing film, and solar cell
JP2015029077A (en) Method for manufacturing solar cell module
JP3475516B2 (en) Installation method of solar cell array
KR20180025381A (en) Non-encapsulation of BIPV module and it's manufactoring process
JP4887551B2 (en) Solar cell back cover material sealing film and solar cell
CN210403775U (en) BIPV assembly
JPH11298025A (en) Solar battery panel and waterproof material thereof
JP2003209273A (en) Solar battery module and its manufacturing method
KR101756888B1 (en) Building integrated photo voltaic module

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees