JPH08110389A - Fuel assembly and core for pressurized water reactor - Google Patents

Fuel assembly and core for pressurized water reactor

Info

Publication number
JPH08110389A
JPH08110389A JP6270144A JP27014494A JPH08110389A JP H08110389 A JPH08110389 A JP H08110389A JP 6270144 A JP6270144 A JP 6270144A JP 27014494 A JP27014494 A JP 27014494A JP H08110389 A JPH08110389 A JP H08110389A
Authority
JP
Japan
Prior art keywords
pressure loss
core
fuel
fuel assembly
control rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6270144A
Other languages
Japanese (ja)
Inventor
Katsumi Koga
勝美 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP6270144A priority Critical patent/JPH08110389A/en
Publication of JPH08110389A publication Critical patent/JPH08110389A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE: To mitigate the departure from nucleate boiling point (DNB) penalty without changing the basic design of fuel assembly with high pressure loss grids by providing path holes for connecting to core space in the middle of control rod guide tubes. CONSTITUTION: A fuel assembly is constituted by bundling fuel rods 11 and control rod guide tubes 14 with grids 15. The flow velocity in path A passing in the fuel rods 11, the guide tubes 14 and the high pressure loss grids 15a is smaller than the flow velocity in path B passing in the fuel rods 11, guide tubes 14 and low pressure loss grids 15b. In the fuel assembly (a), bypass paths C are formed. This bypass path C is formed with a path hole 10 connecting to the core space in the middle of the guide tube 14. By providing bypass paths C in this manner, average pressure loss in the high pressure loss grid assembly is reduced and the difference in coolant flow rate from the low pressure loss grid assembly can be reduced. By this with small design change of assembly, the DNB penalty can be mitigated in mixed core.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば冷却材の圧力損失
の相違する加圧水型原子炉用燃料集合体において、高い
圧力損失を緩和する燃料集合体及びこの燃料集合体を装
荷した炉心に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel assembly for a pressurized water nuclear reactor having different pressure losses of a coolant, which alleviates high pressure loss, and a core loaded with the fuel assembly. is there.

【0002】[0002]

【従来の技術】図3は沸騰伝熱曲線を示す線図であり、
図において、縦軸は熱流束q”の対数,横軸は伝熱面過
熱温度(伝熱面温度と飽和液温度との差)ΔTSAT の対
数を示す。軽水炉(加圧水型及び沸騰水型)では、冷却
材による燃料の円滑な冷却を維持し、燃料の健全性を確
保するために燃料棒表面にて膜沸騰状態にならないよう
に設計し管理している。これは、図3に示すように膜沸
騰状態では、燃料棒表面からの熱流束が著しく低下し、
燃料棒表面温度が急激に上昇するためである。
2. Description of the Related Art FIG. 3 is a diagram showing a boiling heat transfer curve,
In the figure, the vertical axis represents the logarithm of the heat flux q ″, and the horizontal axis represents the logarithm of the heat transfer surface overheating temperature (difference between the heat transfer surface temperature and the saturated liquid temperature) ΔT SAT . Light water reactor (pressurized water type and boiling water type) In order to maintain the smooth cooling of the fuel by the coolant and to ensure the integrity of the fuel, the design and management are performed so that the film boiling state does not occur on the surface of the fuel rods, as shown in FIG. In the film boiling state, the heat flux from the fuel rod surface is significantly reduced,
This is because the fuel rod surface temperature rises sharply.

【0003】加圧水型原子炉では、このような膜沸騰領
域への移行を図3中の核沸騰離脱点(DNB(Departure
from Nucleate Boiling) )を指標に運転及びその監視
を行っている。具体的には核沸騰離脱点(以下、DNB
と記す)に到る燃料棒表面の熱流束(所謂「限界熱流束
q"DNB」)を次のような相関式により予測評価し、各燃
料棒表面熱流束がq"DNBを越えないようにしている。
In a pressurized water reactor, such a transition to the film boiling region is performed by the nucleate boiling departure point (DNB (Departure) in FIG.
From Nucleate Boiling)) is used as an index for operation and monitoring. Specifically, the nucleate boiling departure point (hereinafter referred to as DNB
The heat flux on the surface of the fuel rod (so-called “critical heat flux q” DNB ”) is reached by predicting and evaluating it by the following correlation equation so that each fuel rod surface heat flux does not exceed q” DNB. ing.

【0004】 q"DNB=f(P,G,D,X・・・) …(1) P:圧力,G:質量速度,D:燃料棒直径,X:局所ク
オリティ
Q " DNB = f (P, G, D, X ...) (1) P: pressure, G: mass velocity, D: fuel rod diameter, X: local quality

【0005】尚、DNBとは、核沸騰の状態から熱負荷
をしだいに上げていき、あるところまでくると、気泡の
合体が顕著になって発泡の挙動も核沸騰における独立発
泡核からの発泡とは様子がかけ離れてくる。そのような
核沸騰からのずれの始まる点をいう。
Incidentally, DNB means that the heat load is gradually increased from the state of nucleate boiling, and when it reaches a certain point, the coalescence of bubbles becomes remarkable and the behavior of foaming is also the foaming from the independent foaming nuclei in nucleate boiling. The situation is far from. The point at which the deviation from such nucleate boiling begins.

【0006】また、「限界熱流束q"DNB」とは、沸騰状
態における伝熱の熱流束と伝熱面過熱度(伝熱面温度と
飽和液温度との差)との関係は図のような沸騰伝熱曲線
に従うが、核沸騰から膜沸騰に移る境目のところで熱流
束は極限値をとり、この点の熱流束のことを限界熱流束
という。熱負荷が限界熱流束に達するとバーンアウトを
生じる可能性があるので、この点が熱設計上の限界とな
っている。
The "critical heat flux q" DNB "is the relationship between the heat flux of heat transfer in the boiling state and the heat transfer surface superheat degree (difference between heat transfer surface temperature and saturated liquid temperature) as shown in the figure. Although it follows a simple boiling heat transfer curve, the heat flux has a limit value at the boundary between nucleate boiling and film boiling, and the heat flux at this point is called the critical heat flux. This is the limit in thermal design because burnout may occur when the heat load reaches the critical heat flux.

【0007】[0007]

【発明が解決しようとする課題】図4は加圧水型原子炉
用燃料集合体の構成を示す説明図である。図4に示す通
り、加圧水型原子炉用燃料集合体は、複数本の燃料棒(4
1)と、上部ノズル(42)から下部ノズル(43)に差し渡され
た制御棒案内管(44)とを7つの支持格子(グリッド)(4
5)によって、バンドル状に束ねて構成されている。
FIG. 4 is an explanatory diagram showing the structure of a fuel assembly for a pressurized water reactor. As shown in FIG. 4, the fuel assembly for a pressurized water reactor has a plurality of fuel rods (4
1) and the control rod guide pipe (44) which is passed from the upper nozzle (42) to the lower nozzle (43), are provided with seven support grids (4).
According to 5), it is configured by bundling in a bundle.

【0008】図に示す、14×14の燃料集合体では、
16本の制御棒案内管(44)が中央部1本の炉内計装用案
内管と共に配されている。この燃料集合体では、燃料棒
(41)(燃料被覆管),上部ノズル(42),下部ノズル(4
3),及び制御棒案内管(44)が同一のものでも、グリッド
(45)の設計の相違から、得られる燃料集合体の圧力損失
が相違することがある。
In the 14 × 14 fuel assembly shown in the figure,
Sixteen control rod guide tubes (44) are arranged together with one in-core instrumentation guide tube in the central portion. In this fuel assembly,
(41) (Fuel cladding tube), Upper nozzle (42), Lower nozzle (4
3) and control rod guide tube (44) are the same, grid
Due to the difference in the design of (45), the pressure loss of the obtained fuel assembly may be different.

【0009】図5はグリッド設計から圧損特性の異なる
2種類の燃料集合体を隣接させた場合の流路を示す説明
図である。図に示すように、2種類の燃料集合体のう
ち、燃料集合体aは高い圧力損失となる高圧損グリッド
(45a) を有する燃料集合体aであり、燃料集合体bは燃
料集合体aに比べて低い圧力損失となる低圧損グリッド
(45b) を有する燃料集合体bである。燃料集合体aを通
る流路Aの流速は低圧損グリッドの流路Bの流速よりも
小さい。
FIG. 5 is an explanatory view showing a flow path when two types of fuel assemblies having different pressure loss characteristics are adjacent to each other from the grid design. As shown in the figure, of the two types of fuel assemblies, the fuel assembly a is a high pressure loss grid with a high pressure loss.
(45a), the fuel assembly b is a low pressure loss grid with a lower pressure loss than the fuel assembly a.
It is a fuel assembly b having (45b). The flow velocity of the flow passage A passing through the fuel assembly a is smaller than the flow velocity of the flow passage B of the low pressure loss grid.

【0010】ところで、図5に示すように、グリッド設
計から圧力損失(以下、「圧損」と記す)特性の相違す
る例えば2種の燃料集合体を混在させた場合には、高圧
損グリッドの集合体では低圧損グリッドに比べ冷却材は
流れにくい。このため(1) 式により、冷却材の質量速度
Gが小さくなる高圧損グリッドの集合体ではq"DNBも小
さくなりよりDNBが発生し易くなる。これは取替炉心
の燃料装荷位置を決定する取替炉心設計の条件を狭め、
その設計フレキシビリティを低減させるものである。
By the way, as shown in FIG. 5, when, for example, two types of fuel assemblies having different pressure loss (hereinafter referred to as "pressure loss") characteristics from the grid design are mixed, a set of high pressure loss grids is mixed. Coolant is less likely to flow in the body than in low pressure loss grids. Therefore, according to Eq. (1), in the high pressure loss grid assembly where the mass velocity G of the coolant is small, q " DNB is also small and DNB is more likely to occur. This determines the fuel loading position of the replacement core. Narrowing the conditions for replacement core design,
The design flexibility is reduced.

【0011】従って、加圧水型原子炉において、グリッ
ド(支持格子)設計から圧損特性の異なる2種の燃料を
混在させる場合に、高圧損グリッドの燃料集合体におい
ては、相対的に流量低下が生じ、「DNBR」がより厳
しくなる(所謂、DNBペナルティ)。尚、「DNB
R」とは、燃料棒表面に蒸気の膜が形成されて急激な伝
熱劣化の始まるDNB熱負荷と呼ばれる燃料棒表面の限
界熱負荷の値を、運転熱負荷の値で割った指標である。
Therefore, in the pressurized water reactor, when two kinds of fuels having different pressure loss characteristics are mixed from the grid (supporting grid) design, the fuel assembly of the high pressure loss grid has a relatively low flow rate, "DNBR" becomes more severe (so-called DNB penalty). In addition, "DNB
“R” is an index obtained by dividing the value of the limit heat load on the surface of the fuel rod, which is called DNB heat load, where a film of vapor is formed on the surface of the fuel rod and rapid heat transfer deterioration starts, by the value of the operating heat load. .

【0012】本発明は、このような高圧損グリッドの燃
料集合体の基本設計(グリッド、上下部ノズル等)を変
更することなく、このDNBペナルティを緩和する加圧
水型原子炉用燃料集合体及び炉心を得ることを目的とす
る。
According to the present invention, there is no need to change the basic design (grid, upper and lower nozzles, etc.) of the fuel assembly for such a high-pressure loss grid, and the fuel assembly and core for a pressurized water reactor that alleviates this DNB penalty. Aim to get.

【0013】[0013]

【課題を解決するための手段】本請求項1に記載された
発明に係る加圧水型原子炉用燃料集合体では、燃料棒
と、上部ノズルから下部ノズルに差し渡された制御棒案
内管とをバンドル状に束ねた加圧水型原子炉用燃料集合
体において、下端部に前記下部ノズルを貫いて該ノズル
下方空間と連通する連通孔を有した制御棒案内管の軸方
向中部領域に、炉心部空間と連通する炉心連通孔を備
え、前記ノズル下方空間から炉心空間に到るバイパス流
路を形成したものである。
In the fuel assembly for a pressurized water reactor according to the invention described in claim 1, a fuel rod and a control rod guide pipe extending from the upper nozzle to the lower nozzle are provided. In a fuel assembly for a pressurized water nuclear reactor bundled in a bundle, a core space is formed in an axially central region of a control rod guide tube having a communication hole that penetrates the lower nozzle and communicates with the space below the nozzle in a lower end. A core communication hole communicating with the core is provided, and a bypass flow path from the space below the nozzle to the core space is formed.

【0014】本請求項2に記載された発明に係る加圧水
型原子炉の炉心では、内部に下方から上方に向けて循環
される冷却水による圧力損失が同程度の幾つかの燃料集
合体を装荷した加圧水型原子炉の炉心において、前記幾
つかの燃料集合体が、下方空間から、制御棒案内管の下
端部の下部ノズルを貫いて前記下方空間と連通する連通
孔と、前記制御棒案内管の軸方向中部領域に形成された
炉心部空間と連通する炉心連通孔とを経て炉心空間に到
るバイパス流路によって、他の燃料集合体と同程度の圧
力損失にされた燃料集合体を含むものである。
In the core of the pressurized water reactor according to the invention described in claim 2, several fuel assemblies having the same pressure loss due to the cooling water circulated from inside to above are loaded. In the core of the pressurized water reactor described above, some of the fuel assemblies are communicated from the lower space through the lower nozzle at the lower end of the control rod guide pipe to the lower space, and the control rod guide pipe. By virtue of the bypass passage that reaches the core space through the core communication hole that communicates with the core space formed in the axially central region of the fuel assembly, the fuel assembly is made to have the same pressure loss as other fuel assemblies. It is a waste.

【0015】[0015]

【作用】本発明においては、下端部に下部ノズルを貫い
てこのノズル下方空間と連通する連通孔を有した制御棒
案内管の軸方向中部領域に、炉心部空間と連通する炉心
連通孔を備え、前記ノズル下方空間から炉心空間に到る
バイパス流路を形成したものであるため、燃料集合体の
圧力損失を低下させることができる。また、冷却材の流
量の低下によって生じるDNBペナルティを緩和するこ
とができる。
According to the present invention, the core communicating hole communicating with the core space is provided in the axially central region of the control rod guide tube having the communicating hole communicating with the lower space of the nozzle at the lower end thereof. Since the bypass passage extending from the nozzle lower space to the core space is formed, the pressure loss of the fuel assembly can be reduced. Further, the DNB penalty caused by the decrease in the flow rate of the coolant can be mitigated.

【0016】即ち、加圧水型原子炉用燃料集合体の制御
棒案内管の全部又は一部に、大きな局所圧損を生じるグ
リッド部を通過しない前記バイパス流路を形成すること
により、そのバイパス流路の大きさ,数に応じて燃料集
合体の圧力損失を低下させることができる。
That is, by forming the bypass flow passage which does not pass through the grid portion which causes a large local pressure loss in all or a part of the control rod guide tube of the fuel assembly for a pressurized water reactor, the bypass flow passage is formed. The pressure loss of the fuel assembly can be reduced according to the size and number.

【0017】従って、例えばバイパス流路の大きさ,数
を選択することにより、高い圧力損失を生じるグリッド
を有する燃料集合体の平均的圧損を減少させ、低い圧力
損失を生じるグリッドを有する燃料集合体との冷却材流
量の差を減少もしくは同等なものにすることができる。
Therefore, for example, by selecting the size and number of the bypass passages, the average pressure drop of the fuel assembly having the grid having the high pressure loss is reduced, and the fuel assembly having the grid having the low pressure loss is reduced. The difference in the coolant flow rate between and can be reduced or made equivalent.

【0018】ところで、このようなバイパス流路を通る
冷却材は全く燃料棒の冷却には寄与しない。このため、
単にグリッド部を通過しない別の流路を形成して、燃料
集合体としての冷却材の流量を確保しても、前述のDN
Bペナルティを緩和することにはつながらない。そこ
で、通常DNBがより厳しくなる集合体上部領域では制
御棒案内管の外へ冷却材が流出していくように工夫する
必要がある。
By the way, the coolant passing through such a bypass passage does not contribute to the cooling of the fuel rods at all. For this reason,
Even if another flow path that does not pass through the grid portion is simply formed to secure the flow rate of the coolant as the fuel assembly,
It does not help to mitigate the B penalty. Therefore, it is necessary to devise so that the coolant flows out of the control rod guide pipe in the upper region of the assembly where the DNB is usually more severe.

【0019】従って、本発明では炉心連通孔を制御棒案
内管の軸方向中部領域に設けたために、通常DNBがよ
り厳しくなる集合体上部領域では制御棒案内管の外へ冷
却材が流出するため、冷却材の流量の低下によって生じ
るDNBペナルティを緩和することができる。このた
め、炉心連通孔を設ける軸方向中部領域は、炉心全長の
下から40〜70%が好ましい。
Therefore, in the present invention, since the core communicating hole is provided in the axially central region of the control rod guide pipe, the coolant flows out of the control rod guide pipe in the upper region of the assembly where the DNB is usually more severe. The DNB penalty caused by the decrease in the flow rate of the coolant can be mitigated. For this reason, it is preferable that the axially central region where the core communication hole is provided is 40 to 70% from the bottom of the overall core length.

【0020】尚、炉心連通孔での制御棒案内管の内外圧
力差を考慮した場合、冷却材が高い圧力損失を生じるグ
リッド部を介さない内部の方が高圧力であり、従って冷
却材はこの炉心連通孔よりスムーズに制御棒案内管の外
部へ流出し、燃料集合体上部領域でのDNBを改善す
る。
Considering the pressure difference between the inside and the outside of the control rod guide tube in the core communication hole, the inside of the coolant, which does not have a high pressure loss, has a higher pressure. Smoothly flows out of the control rod guide pipe through the core communication hole, and improves DNB in the upper region of the fuel assembly.

【0021】また、本発明においては、加圧水型原子炉
の炉心に装荷した幾つかの燃料集合体が、下方空間か
ら、制御棒案内管の下端部の下部ノズルを貫いて前記下
方空間と連通する連通孔と、前記制御棒案内管の軸方向
中部領域に形成された炉心部空間と連通する炉心連通孔
とを経て炉心空間に到るバイパス流路によって、他の燃
料集合体と同程度の圧力損失にされた燃料集合体を含む
ものであるため、圧損特性の異なる2種の燃料集合体を
炉心に混在させた場合でも、高圧損グリッドの燃料集合
体の基本設計(グリッド、上下部ノズル等)を変更する
ことなく、DNBペナルティを緩和することができる。
Further, in the present invention, some fuel assemblies loaded in the core of the pressurized water reactor communicate with the lower space from the lower space through the lower nozzle at the lower end of the control rod guide tube. By the bypass passage that reaches the core space through the communication hole and the core communication hole that communicates with the core space formed in the axially central region of the control rod guide tube, the pressure of the same degree as other fuel assemblies is obtained. Since it includes the lost fuel assemblies, the basic design of the fuel assembly of the high pressure loss grid (grid, upper and lower nozzles, etc.) can be performed even when two types of fuel assemblies with different pressure loss characteristics are mixed in the core. The DNB penalty can be mitigated without modification.

【0022】尚、本発明において、バイパス流路は、制
御棒案内管の下端部の下部ノズルを貫いて前記下方空間
と連通する連通孔と、前記制御棒案内管の軸方向中部領
域に形成された炉心部空間と連通する炉心連通孔とを経
て炉心空間に到る流路である。これは、加圧水型の燃料
集合体には、他のバイパス流路を形成する余裕がないた
め、γ発熱などの冷却のために水が透される制御棒案内
管を利用するものであり、他の集合体の中心に設けられ
ている計装管は対象外である。
In the present invention, the bypass flow passage is formed in a communication hole that penetrates the lower nozzle at the lower end of the control rod guide pipe and communicates with the lower space, and an axially central region of the control rod guide pipe. It is a flow path that reaches the core space through a core communication hole that communicates with the core space. This is because the pressurized water type fuel assembly has no room to form another bypass flow path, and therefore uses a control rod guide tube through which water is transmitted for cooling such as γ heat generation. The instrumentation tube provided at the center of the assembly of is not included.

【0023】[0023]

【実施例】図1は本発明の一実施例の構成を示す燃料集
合体の制御棒案内管の構成を示す説明図である。図2は
図1に示した制御棒案内管を装荷した高圧損グリッドを
有する燃料集合体と低圧損グリッドを有する燃料集合体
とを隣接させた場合の流路を示す説明図である。
1 is an explanatory view showing the structure of a control rod guide tube of a fuel assembly showing the structure of an embodiment of the present invention. FIG. 2 is an explanatory diagram showing a flow path when the fuel assembly having the high pressure loss grid loaded with the control rod guide tube shown in FIG. 1 and the fuel assembly having the low pressure loss grid are adjacent to each other.

【0024】図1及び図2に示すように、本実施例で
は、案内管下部端栓(16)を介して下部ノズル(13)に連結
される全長約4000mmの制御棒案内管(14)の軸方向中部
(下端から約2000mmの)に周上に3列に並んで設けら
れた炉心連通孔(10)を備えた制御棒案内管(14)を高圧損
グリッド(15a) を有する燃料集合体aに用いている。
As shown in FIGS. 1 and 2, in this embodiment, a control rod guide tube (14) having a total length of about 4000 mm is connected to the lower nozzle (13) through the lower end plug (16) of the guide tube. A fuel assembly having a high pressure loss grid (15a) with a control rod guide tube (14) having core communication holes (10) arranged in three rows on the circumference in the axial center (about 2000 mm from the lower end). It is used for a.

【0025】図2に示すように、グリッド(15)で燃料棒
(11)と、上部ノズル(図示せず)から下部ノズル(13)に
差し渡された制御棒案内管(14)とを束ねた燃料集合体に
おいて、燃料棒(11),制御棒案内管(14),高圧損グリッ
ド(15a) の間を通る流路Aの流速は、同じく燃料棒(1
1),制御棒案内管(14),低圧損グリッド(15b) の間を通
る流路Bの流速よりも小さい。
As shown in FIG. 2, fuel rods are attached to the grid (15).
(11) and a control rod guide pipe (14) extending from an upper nozzle (not shown) to a lower nozzle (13) are bundled in a fuel assembly, the fuel rod (11) and the control rod guide pipe ( 14), the flow velocity of the flow path A passing between the high pressure loss grid (15a) is the same as the fuel rod (1
1) It is smaller than the flow velocity of the flow path B passing between the control rod guide pipe (14) and the low pressure loss grid (15b).

【0026】しかしながら、燃料集合体aには、バイパ
ス流路Cが形成されている。このバイパス流路Cは、下
端部に下部ノズル(13)を貫いてこのノズル下方空間と連
通する連通孔(17)を有した制御棒案内管(14)の軸方向中
部領域に、炉心部空間と連通する炉心連通孔(10)を備え
たものである。
However, the bypass channel C is formed in the fuel assembly a. This bypass flow path C has a lower end portion which penetrates the lower nozzle (13) and has a communication hole (17) which communicates with the space below the nozzle, in the axially central region of the control rod guide pipe (14). It is provided with a core communication hole (10) communicating with.

【0027】このように大きな局所圧損を生じるグリッ
ド部を介さない新たなバイパス流路Cを設けてやること
により、高圧損グリッド集合体の平均的圧損を減少さ
せ、低圧損グリッド集合体との冷却材流量の差を減少も
しくは同等なものにすることができる。
By providing a new bypass flow path C which does not pass through the grid portion which causes such a large local pressure loss, the average pressure loss of the high pressure loss grid assembly is reduced and cooling with the low pressure loss grid assembly is achieved. The difference in material flow rate can be reduced or made equivalent.

【0028】ところで、単に流路Cを通る冷却材は全く
燃料棒(11)の冷却には寄与しないため集合体としての流
量を確保しても、前述のDNBペナルティを緩和するこ
とにはつながらない。そこで通常DNBがより厳しくな
る集合体上部領域では制御棒案内管の外へ冷却材が流出
していくように工夫する必要がある。炉心連通孔(10)を
制御棒案内管の中部領域に設けたのはそのためである。
By the way, since the coolant simply passing through the flow path C does not contribute to the cooling of the fuel rods (11) at all, securing the flow rate as an assembly does not lead to alleviating the above-mentioned DNB penalty. Therefore, it is necessary to devise so that the coolant flows out of the control rod guide tube in the upper region of the assembly where the DNB is usually more severe. That is why the core communicating hole (10) is provided in the central region of the control rod guide tube.

【0029】尚、炉心連通孔での制御棒案内管の内外圧
力差を見た場合、冷却材が高圧損グリッド部を介さない
内部の方が高圧力であり、従って冷却材はこの炉心連通
孔よりスムーズに案内管外部へ流出していく。
Looking at the pressure difference between the inside and the outside of the control rod guide pipe in the core communication hole, the pressure inside the coolant is higher than that through the high pressure loss grid portion. Therefore, the coolant is the core communication hole. It will flow out of the guide tube more smoothly.

【0030】以上のように本発明では、集合体の僅かな
設計変更により混在炉心における異種燃料間の流量差を
低減もしくは無くしDNBペナルティ緩和もしくはなく
すことができる。
As described above, in the present invention, the DNB penalty can be reduced or eliminated by reducing or eliminating the flow rate difference between different kinds of fuel in the mixed core by slightly changing the design of the assembly.

【0031】ところで、本発明では、DNB特性を向上
させる別の効果もある。それは図2において高圧損集合
体上部で流路Aに加わる流路Cの冷却材は集合体下部ノ
ズル入口から発熱部(燃料棒)を介していないために比
較的低温のままなので、(1)式における局所クオリティ
Xを下げることによりq"DNBは上昇し、その結果DNB
がより発生しにくくなることである。
By the way, the present invention has another effect of improving the DNB characteristic. In FIG. 2, the coolant in the flow path C added to the flow path A in the upper part of the high pressure loss assembly remains at a relatively low temperature because it does not go through the heat generating part (fuel rod) from the inlet of the lower nozzle of the assembly. By decreasing the local quality X in the equation, q " DNB increases, and as a result, DNB
Is less likely to occur.

【0032】尚、以上のような効果が高圧損グリッド集
合体側に生じても低圧損グリッド集合体の冷却材の流量
は従来より特に少なくなるわけではなくDNBの点では
何ら影響はない。また、制御棒案内管の上部には、その
γ発熱の冷却等のため、炉心連通孔が設けられている
が、中部領域に設ける本願炉心連通孔とは目的,作用,
効果上別のものである。
Even if the above-mentioned effects occur on the high pressure loss grid assembly side, the flow rate of the coolant in the low pressure loss grid assembly does not become particularly smaller than in the conventional case, and there is no influence in terms of DNB. Further, a core communication hole is provided in the upper part of the control rod guide tube for cooling the γ heat generation and the like.
Another effect.

【0033】以上のように、バイパス流路Cを形成した
制御棒案内管を備えた燃料集合体では、グリッド設計の
違いから圧損が異なる2種の燃料集合体が混在する炉心
において、 (1) 異種燃料間の流量差を緩和もしくは無くし、従来高
圧損グリッド燃料集合体側に生じていたDNBペナルテ
ィを緩和もしくはなくす。 (2) (1) の効果に加え、高圧損グリッド集合体のDNB
特性を更に向上させる。等の効果を有する。
As described above, in the fuel assembly provided with the control rod guide tube in which the bypass flow passage C is formed, in the core where two kinds of fuel assemblies having different pressure losses are mixed due to the difference in grid design, (1) The flow rate difference between different kinds of fuels is mitigated or eliminated, and the DNB penalty conventionally generated on the high pressure loss grid fuel assembly side is mitigated or eliminated. (2) In addition to the effect of (1), DNB of high pressure loss grid aggregate
Further improve the characteristics. And so on.

【0034】[0034]

【発明の効果】本発明は以上説明したとおり、下端部に
下部ノズルを貫いてこのノズル下方空間と連通する連通
孔を有した制御棒案内管の軸方向中部領域に、炉心部空
間と連通する炉心連通孔を備え、前記ノズル下方空間か
ら炉心空間に到るバイパス流路を形成したものであるた
め、燃料集合体の圧力損失を低下させることができる。
また、冷却材の流量の低下によって生じるDNBペナル
ティを緩和することができる。
As described above, the present invention communicates with the core space in the axially central region of the control rod guide tube having the communication hole which penetrates the lower nozzle at the lower end and communicates with this nozzle lower space. Since the core communication hole is provided and the bypass flow path from the space below the nozzle to the core space is formed, the pressure loss of the fuel assembly can be reduced.
Further, the DNB penalty caused by the decrease in the flow rate of the coolant can be mitigated.

【0035】また、本発明においては、加圧水型原子炉
の炉心に装荷した幾つかの燃料集合体が、下方空間か
ら、制御棒案内管の下端部の下部ノズルを貫いて前記下
方空間と連通する連通孔と、前記制御棒案内管の軸方向
中部領域に形成された炉心部空間と連通する炉心連通孔
とを経て炉心空間に到るバイパス流路によって、他の燃
料集合体との圧力損失の差を低減された燃料集合体を含
むものであるため、圧損特性の異なる2種の燃料集合体
を炉心に混在させた場合でも、高圧損グリッドの燃料集
合体の基本設計(グリッド、上下部ノズル等)を変更す
ることなく、DNBペナルティを緩和することができる
という効果がある。
Further, in the present invention, some fuel assemblies loaded in the core of the pressurized water reactor communicate with the lower space through the lower nozzle at the lower end of the control rod guide tube from the lower space. By the bypass passage that reaches the core space through the communication hole and the core communication hole that communicates with the core space formed in the axially central region of the control rod guide tube, the pressure loss of other fuel assemblies Since the fuel assembly has a reduced difference, the basic design of the fuel assembly of the high-pressure loss grid (grid, upper and lower nozzles, etc.) even when two types of fuel assemblies with different pressure loss characteristics are mixed in the core There is an effect that the DNB penalty can be alleviated without changing the.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す燃料集合体の制
御棒案内管の構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of a control rod guide tube of a fuel assembly showing a configuration of an embodiment of the present invention.

【図2】図1に示した制御棒案内管を装荷した高圧損グ
リッドを有する燃料集合体と低圧損グリッドを有する燃
料集合体とを隣接させた場合の流路を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a flow path when a fuel assembly having a high pressure loss grid loaded with the control rod guide tube shown in FIG. 1 and a fuel assembly having a low pressure loss grid are adjacent to each other.

【図3】沸騰伝熱曲線を示す線図であり、図において、
縦軸は熱流束q”の対数,横軸は伝熱面過熱温度(伝熱
面温度と飽和液温度との差)ΔTSAT の対数を示す。
FIG. 3 is a diagram showing a boiling heat transfer curve.
The vertical axis represents the logarithm of the heat flux q ″, and the horizontal axis represents the logarithm of the heat transfer surface overheating temperature (difference between the heat transfer surface temperature and the saturated liquid temperature) ΔT SAT .

【図4】加圧水型原子炉用燃料集合体の構成を示す説明
図である。
FIG. 4 is an explanatory view showing the structure of a pressurized water reactor fuel assembly.

【図5】グリッド設計から圧損特性の異なる2種類の燃
料集合体を隣接させた場合の流路を示す説明図である。
FIG. 5 is an explanatory diagram showing a flow path when two types of fuel assemblies having different pressure loss characteristics are adjacent to each other from a grid design.

【符号の説明】[Explanation of symbols]

(10)…炉心連通孔、 (11)…燃料棒、 (13)…下部ノズル、 (14)…制御棒案内管、 (15)…グリッド、 (15a) …高圧損グリッド、 (15b) …低圧損グリッド、 (16)…案内管下部端栓、 (17)…連通孔、 C…バイパス流路 (10) ... Core communication hole, (11) ... fuel rod, (13) ... lower nozzle, (14) ... control rod guide tube, (15) ... grid, (15a) ... high pressure loss grid, (15b) ... low pressure Loss grid, (16)… lower end plug of guide tube, (17)… communication hole, C… bypass flow path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料棒と、上部ノズルから下部ノズルに
差し渡された制御棒案内管とをバンドル状に束ねた加圧
水型原子炉用燃料集合体において、 下端部に前記下部ノズルを貫いて該ノズル下方空間と連
通する連通孔を有した制御棒案内管の軸方向中部領域
に、炉心部空間と連通する炉心連通孔を備え、前記ノズ
ル下方空間から炉心空間に到るバイパス流路を形成した
ことを特徴とする加圧水型原子炉用燃料集合体。
1. A fuel assembly for a pressurized water reactor, comprising a bundle of fuel rods and a control rod guide pipe extending from an upper nozzle to a lower nozzle, wherein a lower end of the fuel assembly penetrates the lower nozzle. A core communication hole that communicates with the core space is provided in an axially central region of the control rod guide tube that has a communication hole that communicates with the space below the nozzle, and a bypass flow path from the space below the nozzle to the core space is formed. A fuel assembly for a pressurized water reactor characterized by the above.
【請求項2】 内部に下方から上方に向けて循環される
冷却水による圧力損失が同程度の幾つかの燃料集合体を
装荷した加圧水型原子炉の炉心において、 前記幾つかの燃料集合体が、下方空間から、制御棒案内
管の下端部の下部ノズルを貫いて前記下方空間と連通す
る連通孔と、前記制御棒案内管の軸方向中部領域に形成
された炉心部空間と連通する炉心連通孔とを経て炉心空
間に到るバイパス流路によって、他の燃料集合体と同程
度の圧力損失にされた燃料集合体を含むことを特徴とす
る加圧水型原子炉の炉心。
2. In a core of a pressurized water reactor equipped with several fuel assemblies having the same pressure loss due to cooling water circulated from inside to below, the several fuel assemblies are A communication hole that communicates with the lower space from the lower space through the lower nozzle at the lower end of the control rod guide pipe, and a core communication that communicates with the core space formed in the axially central region of the control rod guide pipe. A core of a pressurized water reactor, comprising a fuel assembly that has a pressure loss comparable to that of other fuel assemblies due to a bypass flow path reaching the core space through the holes.
JP6270144A 1994-10-11 1994-10-11 Fuel assembly and core for pressurized water reactor Withdrawn JPH08110389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6270144A JPH08110389A (en) 1994-10-11 1994-10-11 Fuel assembly and core for pressurized water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6270144A JPH08110389A (en) 1994-10-11 1994-10-11 Fuel assembly and core for pressurized water reactor

Publications (1)

Publication Number Publication Date
JPH08110389A true JPH08110389A (en) 1996-04-30

Family

ID=17482163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6270144A Withdrawn JPH08110389A (en) 1994-10-11 1994-10-11 Fuel assembly and core for pressurized water reactor

Country Status (1)

Country Link
JP (1) JPH08110389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529894A (en) * 2016-09-06 2019-10-17 ウェスティングハウス エレクトリック スウェーデン アーベー Fuel assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529894A (en) * 2016-09-06 2019-10-17 ウェスティングハウス エレクトリック スウェーデン アーベー Fuel assembly

Similar Documents

Publication Publication Date Title
JP2642761B2 (en) Fuel bundles for boiling water reactors
EP0234566B1 (en) Emergency nuclearreactor core cooling structure
EP2850617B1 (en) Fuel bundle for a liquid metal cooled nuclear reactor
US5371768A (en) Swirl type spacer for boiling water reactor fuel
JP4197696B2 (en) Natural circulation boiling water reactor
JPH08110389A (en) Fuel assembly and core for pressurized water reactor
US5493590A (en) Critical power enhancement system for a pressurized fuel channel type nuclear reactor using CHF enhancement appendages
JPS61284696A (en) Fuel support metal and nuclear reactor
US4678631A (en) Boiling water nuclear reactor fuel assembly
US6600800B2 (en) Fuel element for a boiling water nuclear reactor
JPS62185188A (en) Nuclear fuel aggregate
JP3079877B2 (en) Fuel assembly
JP3126451B2 (en) Fuel assembly
JP2001133577A (en) Reactor
JPH05323073A (en) Fuel assembly and spacer for fuel assembly
JP2010002246A (en) Boiling water reactor of natural circulation system
JP2928516B2 (en) Fuel assembly
JP2960381B2 (en) Compartment-type irradiated fuel assembly
JPH07159570A (en) Fuel assembly
JP2005049256A (en) Fuel assembly for boiling water reactor
JPH0363714B2 (en)
JPH05134075A (en) Control rod assembly
JPH04318493A (en) Fuel assembly
JPH0743486A (en) Fuel spacer
JPH03215787A (en) Fuel assembly

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115