JPH08110372A - Squid flux meter - Google Patents

Squid flux meter

Info

Publication number
JPH08110372A
JPH08110372A JP6245187A JP24518794A JPH08110372A JP H08110372 A JPH08110372 A JP H08110372A JP 6245187 A JP6245187 A JP 6245187A JP 24518794 A JP24518794 A JP 24518794A JP H08110372 A JPH08110372 A JP H08110372A
Authority
JP
Japan
Prior art keywords
coil
pickup coil
pick
core member
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6245187A
Other languages
Japanese (ja)
Inventor
Shigeharu Oyu
重治 大湯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6245187A priority Critical patent/JPH08110372A/en
Publication of JPH08110372A publication Critical patent/JPH08110372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE: To obtain a superconducting quantum interference device(SQUID) flux meter having a pick-up coil which is highly accurate and steady in a mechanical structure by a constitution wherein the pick-up coil is formed on a surface of a core member by a pattern-forming method. CONSTITUTION: A core member 1 is made of a material that is a paramagnetism material and an electric insulator in an ultralow temperature condition and has the durability in the temperature cycle of a normal temperature and cryogenic temperature, e.g. a glass, an epoxy resin, a ceramic material or the like. A super-condition this film is formed on the core member 1 by a sputtering method or a vacuum evaporation method. After that, a pick-up coil 5 is formed by a photolithography technology. Thereby, it is possible to make a differentiation type pick-up coil 5 with high accuracy compared to a manually wound pick-up coil. Because of its steady structure, it is not deformed by an normal impulsive force and it can maintain the high accuracy in a mechanical structure after the production. The shape of the core member 1 is not limited to a rectangular solid in the case where a first loop face 3 and a second loop face 2 are in parallel to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体磁気の計測等に用
いられるSQUID磁束計に係り、特に、ピックアップ
コイルの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an SQUID magnetometer used for measuring biomagnetism, and more particularly to the structure of a pickup coil.

【0002】[0002]

【従来の技術】SQUID磁束計においてはSQUID
リングにより、より多くの磁束を導く目的で磁束トラン
スが使用される。磁束トランスのピックアップコイル部
には、環境雑音磁場をキャンセルする目的で微分型ピッ
クアップコイルが良く知られている。微分型ピックアッ
プコイルには、軸型ピックアップコイルと平面型ピック
アップコイルがある。図8に軸型ピックアップコイルを
示す。
2. Description of the Related Art In SQUID magnetometers, SQUID
The ring allows a flux transformer to be used to guide more flux. A differential pickup coil is well known as a pickup coil portion of a magnetic flux transformer for the purpose of canceling an environmental noise magnetic field. The differential pickup coil includes an axial pickup coil and a flat pickup coil. FIG. 8 shows a shaft type pickup coil.

【0003】このような軸型ピックアップコイルを構成
するために、従来は、 (1)円筒またはその他の形状のコア材に超伝導線を巻
く方法。 (2)フレキシブル基板上にピックアップコイルのパタ
ーンを形成したあと、所望の形状に固定する方法。 が用いられていた。
In order to construct such an axial pickup coil, conventionally, (1) a method of winding a superconducting wire around a core material having a cylindrical shape or another shape. (2) A method of forming a pickup coil pattern on a flexible substrate and then fixing it to a desired shape. Was used.

【0004】1次微分型ピックアップコイルは、2つの
ループをお互いに反対向きに巻くことにより一様磁場を
打ち消す。環境磁場は観測しようとする信号源が発生す
る磁場よりも一般的に一様性が高いので、このようなピ
ックアップコイルは、環境磁場を選択的に除去する。し
かし、ピックアップコイルの機械的精度の問題により、
一様磁場は完全には除去できない。その原因は、それぞ
れのループが完全にフラットでないこと、2つのループ
の面積が同一でないこと、2つのループが平行でないこ
とが挙げられる。たとえば一様磁場を10-7[T/√H
z] ,SQUIDの感度を10-14 [T/√Hz]程
度、シールドルームの遮蔽率を10-3とすると、除去で
きずに残留する一様磁場はシールド後の一様磁場のおお
よそ10-4倍以下であることが必要となる。これを実現
するためには各ループの面積の差をループ面積のa倍、
2つのループ間の角度をαとしたとき、a+1−cos
(α)が10-4を下回ることが必要である。a=5×1
-5,α=5×10-5,α=0.57[deg]はこれ
を満足する値の一例である。
The primary differential type pickup coil cancels a uniform magnetic field by winding two loops in opposite directions. Since the ambient magnetic field is generally more uniform than the magnetic field generated by the signal source to be observed, such pickup coils selectively remove the ambient magnetic field. However, due to the mechanical accuracy of the pickup coil,
The uniform magnetic field cannot be completely removed. The cause is that each loop is not completely flat, the areas of the two loops are not the same, and the two loops are not parallel. For example, a uniform magnetic field of 10 -7 [T / √H
z], the sensitivity of SQUID is about 10 −14 [T / √Hz], and the shielding ratio of the shield room is 10 −3 , the uniform magnetic field that cannot be removed and remains is about 10 of the uniform magnetic field after shielding. It must be 4 times or less. To achieve this, the difference in the area of each loop is a times the loop area,
When the angle between the two loops is α, a + 1-cos
It is necessary that (α) be less than 10 −4 . a = 5 × 1
0 −5 , α = 5 × 10 −5 , α = 0.57 [deg] is an example of a value satisfying this.

【0005】また、上記の機械精度を恒常的に維持する
為に、ピックアップコイルは通常予想される振動や衝撃
によって変形を受けない堅固性が必要である。また通
常、地磁気は時間的変動が少ないためSQUIDには観
測されないが、ピックアップコイルが振動すると、ピッ
クアップコイルを鎖交する磁場が変化するため、そこに
ないはずの振動磁場が観測されるようになる。このよう
な理由からも、ピックアップコイルは振動を起こさない
ように機械的に堅固な構造にする必要がある。以上、1
次微分型ピックアップコイルに要求される機械的精度と
堅固性について説明したが、0次微分型、またはより高
次の部分型のピックアップコイルについても同様のこと
がいえる。
Further, in order to constantly maintain the above-mentioned mechanical accuracy, the pickup coil is required to be robust so as not to be deformed by vibration or shock which is usually expected. Normally, geomagnetism is not observed in SQUID because it has little temporal variation, but when the pickup coil oscillates, the magnetic field interlinking the pickup coil changes, so an oscillating magnetic field that should not be there is observed. . For this reason also, the pickup coil needs to have a mechanically strong structure so as not to cause vibration. Above 1
Although the mechanical accuracy and robustness required for the second-order differential type pickup coil have been described, the same can be said for the zero-order differential type or higher-order partial type pickup coil.

【0006】[0006]

【発明が解決しようとする課題】このように、従来にお
ける上記(1)の方法では生体磁気計測に望まれる高い
機械精度が得られないという欠点がある。また、上記
(2)の方法では機械的に堅固でないという欠点があ
る。
As described above, the conventional method (1) has a drawback in that the high mechanical precision desired for biomagnetic measurement cannot be obtained. Further, the method (2) has a drawback that it is not mechanically robust.

【0007】この発明はこのような従来の課題を解決す
るためになされたもので、その目的とするところは、機
械的に高精度でかつ機械的に堅固なピックアップコイル
を有するSQUID磁束計を提供することにある。
The present invention has been made in order to solve such a conventional problem, and an object thereof is to provide an SQUID magnetometer having a mechanically highly accurate and mechanically robust pickup coil. To do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、被検体内で発生した磁束を測定するピッ
クアップコイルを有し、該ピックアップコイルにて測定
された磁束に基づいて磁場分布を測定するSQUID磁
束計において、前記ピックアップコイルは、立体的なコ
ア材の表面にパターン作成法により作成されることが特
徴である。
In order to achieve the above object, the present invention has a pickup coil for measuring a magnetic flux generated in a subject, and a magnetic field distribution based on the magnetic flux measured by the pickup coil. In the SQUID magnetometer, the pickup coil is characterized in that it is formed on the surface of a three-dimensional core material by a pattern forming method.

【0009】[0009]

【作用】上述の如く構成された本発明によれば、フォト
リソグラフィー技術等のパターン作成法を用いて、堅固
なコア材にピックアップコイルが形成されるので、高精
度でかつ堅固なピックアップコイルを形成することがで
きるようになる。
According to the present invention configured as described above, since the pickup coil is formed on the solid core material by using the pattern forming method such as the photolithography technique, the pickup coil can be formed with high accuracy and solidity. You will be able to.

【0010】[0010]

【実施例】図1に本発明の第1実施例を示す。同図に示
すコア材1は極低温状態において常磁性でかつ、極低温
状態で電気的に絶縁体であり、かつ、常温と極低温の温
度サイクルに耐え得るような材料、例えば、ガラス、エ
ポキシ樹脂、フッソ樹脂系プラスチック、またはそれら
を用いたFRP、セラミックで作られる。このコア材に
スパッタや真空蒸着で超伝導薄膜を形成する。その後、
フォトリソグラフィ技術によりピックアップコイル5を
形成する。本実施例によれば、ピックアップコイル5を
手巻きするのに比べ、微分型ピックアップコイルを高精
度で作成できる。また、構造が堅固であるため、作成後
も通常の衝撃では変形することがなく、高い機械精度を
維持できる。
FIG. 1 shows the first embodiment of the present invention. The core material 1 shown in the figure is a material that is paramagnetic in a cryogenic state, is an electrical insulator in a cryogenic state, and can withstand a temperature cycle between room temperature and cryogenic temperature, such as glass or epoxy. It is made of resin, fluorine resin-based plastic, or FRP and ceramics using them. A superconducting thin film is formed on this core material by sputtering or vacuum evaporation. afterwards,
The pickup coil 5 is formed by the photolithography technique. According to the present embodiment, the differential type pickup coil can be produced with higher accuracy than the case where the pickup coil 5 is wound manually. Further, since the structure is solid, it is not deformed by a normal impact even after being manufactured, and high mechanical accuracy can be maintained.

【0011】コア材1は図1では直方体で示してある
が、第1ループ面3、第2ループ面2が平行であれば他
の形状でもかまわない。特に、ピックアップコイル5を
支持体に取り付ける機構を付加してもかまわない。この
ようにすると、ピックアップコイル5の位置が精度良く
取り付けられる、ピックアップコイル5の取り付け、交
換が容易になる等の利点がある。コア材と支持体に取り
付け機構を付加した構成例を図2に示す。この例はコア
1に皿もみ付きの穴1aを設け、支持体6に円錐状の突
起6aを設け、両者を合わせてネジ8で固定する。この
ときピックアップコイル5が決められた向きを向くよう
に、皿もみ部1a、円錐部6aに凹凸をつけ、決められ
た向き以外には取り付けられないようにする。本実施例
によるピックアップコイル5は取り付け時に位置ズレを
起こすこと無く、高精度に取り付けることができる。ま
た、取り付け後も位置ズレ、変形、脱落する事がなく、
システムの信頼性が向上する。
Although the core material 1 is shown as a rectangular parallelepiped in FIG. 1, other shapes may be used as long as the first loop surface 3 and the second loop surface 2 are parallel to each other. In particular, a mechanism for attaching the pickup coil 5 to the support may be added. This has the advantages that the pickup coil 5 can be mounted in a precise position, and the pickup coil 5 can be easily mounted and replaced. FIG. 2 shows a configuration example in which an attachment mechanism is added to the core material and the support body. In this example, the core 1 is provided with a hole 1a having a countersink, the support 6 is provided with a conical projection 6a, and both are fixed and fixed with a screw 8. At this time, the dish fir portion 1a and the conical portion 6a are provided with projections and depressions so that the pickup coil 5 faces the determined direction so that the pickup coil 5 cannot be mounted in a direction other than the determined direction. The pickup coil 5 according to the present embodiment can be mounted with high accuracy without causing a positional deviation during mounting. In addition, there is no misalignment, deformation, or loss even after installation,
System reliability is improved.

【0012】図3に曲面状の板を支持体とする場合の構
成例を示す。コア材1と支持体7にはネジが通り穴があ
いており、これにリング21を挟んでネジ8で固定す
る。リング21の材質は、非磁性体であり絶縁体である
ことが必要であり、コア材と同様の材質が使用できる。
リング21を間に挟むことによりピックアップコイル5
の振動を防止と取付精度を確保している。
FIG. 3 shows a structural example in which a curved plate is used as the support. The core material 1 and the support body 7 have holes through which screws are inserted, and the ring 21 is sandwiched between these holes to fix them with the screws 8. The material of the ring 21 needs to be a non-magnetic material and an insulator, and the same material as the core material can be used.
By sandwiching the ring 21 between the pickup coil 5
Vibration is prevented and installation accuracy is secured.

【0013】図4に他の固定方法の例を示す。この例で
はコア材1を貫通する穴を作り穴中にくぼみ1bを設け
る。一方、支持体10には爪22を設け、爪22とくぼ
み1bを合わせる形で支持体10にコア材1を固定す
る。この方法によれば、ビスを使用せず、単にはめ込む
だけでピックアップコイル5を固定できるので、取り付
けの手間を低減できる。
FIG. 4 shows an example of another fixing method. In this example, a hole is formed through the core material 1 and a recess 1b is provided in the hole. On the other hand, the support body 10 is provided with the claws 22, and the core material 1 is fixed to the support body 10 so that the claws 22 and the recesses 1b are aligned with each other. According to this method, since the pickup coil 5 can be fixed by simply fitting it without using a screw, the labor of mounting can be reduced.

【0014】ピックアップコイル5と外部の配線との接
続は、例えばハンダづけ、ボンディング、ネジやバネな
どの押圧手段による圧接等の方法がある。また、SQU
IDチップをコア材1に取り付け、ピックアップコイル
5とSUQIDチップを前記した接続方法で直接接続し
てもよい。図5に例としてボンディングによりピックア
ップコイルとSQUIDチップ14を接続した例を示
す。この例によればピックアップコイル5とインプット
コイルとはボンディングワイヤ13を用いて、接続部1
1,12間を接続するけで良く、配線を短くできるの
で、配線中のインダクタンス小さく抑えることができ、
ピックアップコイル8を鎖交する磁束を効率的にインプ
ットコイルに導くことができる。また、部品点数を少な
く抑えられるので故障率が減少しシステムの信頼性を向
上できる。
The pickup coil 5 and external wiring can be connected by, for example, soldering, bonding, pressure contact with a pressing means such as a screw or a spring. Also, SQU
The ID chip may be attached to the core material 1, and the pickup coil 5 and the SUQ ID chip may be directly connected by the above-described connecting method. FIG. 5 shows an example in which the pickup coil and the SQUID chip 14 are connected by bonding. According to this example, the pickup coil 5 and the input coil are connected to each other by using the bonding wire 13.
It is sufficient to connect between 1 and 12, and the wiring can be shortened, so the inductance in the wiring can be suppressed to a small value,
The magnetic flux interlinking the pickup coil 8 can be efficiently guided to the input coil. Moreover, since the number of parts can be reduced, the failure rate can be reduced and the system reliability can be improved.

【0015】図6,図7は本発明の変形例であり、図6
は3軸同時測定のピックアップコイル、図7は2軸同時
測定用のピックアップコイルである。いずれも、コア材
中心付近での磁場勾配を測定できる。マルチチャネル磁
束計に使用される1軸測定用のピックアップコイルの一
部、または全部を、本実施例で示す2軸、3軸のピック
アップコイルに置き換えることにより、従来よりも多く
の情報をもつ測定データを得ることができる。測定デー
タから磁場源の位置を推定する装置では、全てを2軸、
または3軸のピックアップコイルにするより、多くのピ
ックアップコイルは1軸とし、一部を2軸とするのが有
効である。
6 and 7 show a modification of the present invention.
Shows a pickup coil for simultaneous measurement of three axes, and FIG. 7 shows a pickup coil for simultaneous measurement of two axes. In either case, the magnetic field gradient near the center of the core material can be measured. By replacing part or all of the pickup coil for uniaxial measurement used in the multi-channel magnetometer with the biaxial and triaxial pickup coils shown in this embodiment, measurement having more information than before can be performed. You can get the data. In the device that estimates the position of the magnetic field source from the measurement data,
Alternatively, it is effective to use most of the pickup coils as one axis and partially as two axes rather than the three-axis pickup coil.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、堅
固な構造のピックアップコイルを高精度に形成すること
が可能になり、SQUID磁束計の信頼性向上、精度向
上につながる。また、コア材に支持体への取り付け機構
を設けることにより、ピックアップコイルの取り付け精
度が向上するので、磁束計の位置情報精度が向上する。
また、容易に交換が可能になるので保守性の向上につな
がる。
As described above, according to the present invention, it is possible to form a pickup coil having a rigid structure with high accuracy, which leads to improvement in reliability and accuracy of the SQUID magnetometer. Further, since the mounting accuracy of the pickup coil is improved by providing the core member with the mounting mechanism to the supporting body, the accuracy of position information of the magnetometer is improved.
In addition, since the replacement can be easily performed, the maintainability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るSQUID磁束計の構
成を示す構成図である。
FIG. 1 is a configuration diagram showing a configuration of an SQUID magnetometer according to an embodiment of the present invention.

【図2】コア材を支持部に固定する様子を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing a state in which a core material is fixed to a support portion.

【図3】コア材を支持部に固定する他の例を示す説明図
である。
FIG. 3 is an explanatory view showing another example of fixing the core material to the support portion.

【図4】コア材を支持部に固定する更に他の例を示す説
明図である。
FIG. 4 is an explanatory view showing still another example of fixing the core material to the support portion.

【図5】ピックアップコイルとインプットコイルとの接
続を示す説明図である。
FIG. 5 is an explanatory diagram showing a connection between a pickup coil and an input coil.

【図6】3軸同時測定用のピックアップコイルの構成図
である。
FIG. 6 is a configuration diagram of a pickup coil for simultaneous measurement of three axes.

【図7】2軸同時測定用のピックアップコイルの構成図
である。
FIG. 7 is a configuration diagram of a pickup coil for two-axis simultaneous measurement.

【図8】一般的なピックアップコイルの構成図である。FIG. 8 is a configuration diagram of a general pickup coil.

【符号の説明】[Explanation of symbols]

1 コア材 2 第2ループ面 3 第1ループ面 5 コイルパターン 6,7,10 支持体 8
ネジ 11,12 接続部 13 ボンディングワイヤ 14 SQUIDチップ 21 リング 22 爪
1 core material 2 2nd loop surface 3 1st loop surface 5 coil pattern 6,7,10 support 8
Screws 11, 12 Connection part 13 Bonding wire 14 SQUID chip 21 Ring 22 Claw

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検体内で発生した磁束を測定するピッ
クアップコイルを有し、該ピックアップコイルにて測定
された磁束に基づいて磁場分布を測定するSQUID磁
束計において、 前記ピックアップコイルは、立体的なコア材の表面にパ
ターン作成法により作成されることを特徴とするSQU
ID磁束計。
1. A SQUID magnetometer having a pickup coil for measuring a magnetic flux generated in a subject and measuring a magnetic field distribution based on the magnetic flux measured by the pickup coil, wherein the pickup coil is three-dimensional. SQU characterized by being formed on the surface of various core materials by a pattern forming method
ID magnetometer.
【請求項2】 1つの前記コア材に前記ピックアップコ
イルを複数形成したことを特徴とする請求項1記載のS
QUID磁束計。
2. The S according to claim 1, wherein a plurality of the pickup coils are formed on one core material.
QUID magnetometer.
【請求項3】 前記コア材は、常磁性の絶縁体材料で構
成されたことを特徴とする請求項1または2記載のSQ
UID磁束計。
3. The SQ according to claim 1 or 2, wherein the core material is made of a paramagnetic insulating material.
UID magnetometer.
JP6245187A 1994-10-11 1994-10-11 Squid flux meter Pending JPH08110372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6245187A JPH08110372A (en) 1994-10-11 1994-10-11 Squid flux meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6245187A JPH08110372A (en) 1994-10-11 1994-10-11 Squid flux meter

Publications (1)

Publication Number Publication Date
JPH08110372A true JPH08110372A (en) 1996-04-30

Family

ID=17129915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6245187A Pending JPH08110372A (en) 1994-10-11 1994-10-11 Squid flux meter

Country Status (1)

Country Link
JP (1) JPH08110372A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184618A (en) * 2006-01-06 2007-07-19 Biosense Webster Inc Small-size coil on core having printed circuit
CN107229021A (en) * 2017-05-22 2017-10-03 中国科学院上海微系统与信息技术研究所 Three-dimension reconstruction component and preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184618A (en) * 2006-01-06 2007-07-19 Biosense Webster Inc Small-size coil on core having printed circuit
CN107229021A (en) * 2017-05-22 2017-10-03 中国科学院上海微系统与信息技术研究所 Three-dimension reconstruction component and preparation method
CN107229021B (en) * 2017-05-22 2019-07-19 中国科学院上海微系统与信息技术研究所 Three-dimension reconstruction component and preparation method

Similar Documents

Publication Publication Date Title
CN100371729C (en) Weak magnetic field sensor using printed circuit board technology and its manufacturing method
US5434504A (en) Position sensors for linear motors including plural symmetrical fluxes generated by a planar drive coil and received by planar sense coils being colinear along an axis of motion
US8713809B2 (en) Fluxgate sensor and electronic compass making use thereof
US7087450B2 (en) Fabricating method for a fluxgate sensor integrated in printed circuit board
US5672967A (en) Compact tri-axial fluxgate magnetometer and housing with unitary orthogonal sensor substrate
US9341657B2 (en) Current sensor and printed circuit board for this sensor
JPS607726A (en) Electromagnetic aligning device
CN107305215B (en) Reducing bias in accelerometers via pole pieces
JP3093135B2 (en) Planar solenoid and SQUID magnetometer using planar solenoid
JP2013079942A (en) Uniform magnetic field generator
JPS61122585A (en) Manufacture of gradiometer having three-dimensional structure
DE69025351D1 (en) Gradient coil produced by etching in the Z-axis direction, for a magnetic resonance system
JPH08110372A (en) Squid flux meter
JPS6412003B2 (en)
US11002806B2 (en) Magnetic field detection device
JPH063427A (en) Magnetic detector
JPH06109820A (en) Three-dimensional detection coil
US5451871A (en) Pick-up coil assemblies and system for use in a multi-channel squid magnetometer
EP0031432B1 (en) Magnetic head mount assembly
Joisten et al. Microfluxgate performance improvement in microtechnology
JP3423498B2 (en) Near magnetic field probe for EMC and method of manufacturing the same
JPH03199985A (en) Unit for measuring minute magnetic field
JPH03269378A (en) Pickup coil for squid vector flux meter
JPH0894728A (en) Magnetic field sensor and its manufacture
JPH0461179A (en) Magnetic-flux measuring device