JPH08110295A - Non-fluorescence cell, its production and reforming method - Google Patents

Non-fluorescence cell, its production and reforming method

Info

Publication number
JPH08110295A
JPH08110295A JP26805594A JP26805594A JPH08110295A JP H08110295 A JPH08110295 A JP H08110295A JP 26805594 A JP26805594 A JP 26805594A JP 26805594 A JP26805594 A JP 26805594A JP H08110295 A JPH08110295 A JP H08110295A
Authority
JP
Japan
Prior art keywords
fluorescence
gas
cell
atmosphere
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26805594A
Other languages
Japanese (ja)
Inventor
Takashi Matsuda
俊 松田
Ritsuko Abiko
律子 安孫子
Seiichi Suzuki
誠一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
Original Assignee
NIPPON SEKIEI GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK filed Critical NIPPON SEKIEI GLASS KK
Priority to JP26805594A priority Critical patent/JPH08110295A/en
Publication of JPH08110295A publication Critical patent/JPH08110295A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Measuring Cells (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE: To obtain a cell superior in adhesion strength without emitting fluorescence by excitation light of arbitrary wavelength by using synthetic quartz glass of high purity without emitting fluorescence by specific excitation wavelength at least on an excitation light irradiation face. CONSTITUTION: If annealing treatment of a cell without fluorescence is performed in a clean gas environment such as oxygen gas in a quartz glass furnace tube for a long time, adhesion strength may be increased without emitting fluorescence. For instance, if similar treatment is performed in chlorine gas, oxygen gas or helium gas of high purity even though the cell emits fluorescence, the fluorescence can be eliminated, and a non-fluorescence cell with increased adhesion strength than ever can be obtained. The fluorescence is not produced in an excitation wavelength of 200-500nm, it can be eliminated even if the cell is annealed for a long time, the fluorescence produced on the cell on which the fluorescence emits after bonding of members themselves at the time of cell assembly can be removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、理化学用に使用される
分光光度計用セル、さらに詳しくは、特に被検出液の蛍
光を測定する場合に使用する無蛍光セル及びその製造方
法並びにその改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cell for a spectrophotometer used for physics and chemistry, more specifically, a non-fluorescent cell used for measuring the fluorescence of a liquid to be detected, a method for producing the same and a modification thereof. Regarding the quality method.

【0002】[0002]

【従来の技術】分光光度計用セルは各種の光分析用に使
用されており、使用する波長、測定する対象により、さ
まざまな形状の物、材質のものが使用されている。この
うち石英ガラス製のセルは、紫外の波長域での使用に優
れており、被測定物の透過率、吸光度などの測定の他に
も、セル内の被測定物が紫外線により励起されて発する
蛍光を測定する際にも使用されている。
2. Description of the Related Art A spectrophotometer cell is used for various optical analyses, and various shapes and materials are used depending on the wavelength used and the object to be measured. Of these, the quartz glass cell is excellent for use in the ultraviolet wavelength range, and in addition to measuring the transmittance and absorbance of the measured object, the measured object in the cell is excited by ultraviolet rays and emitted. It is also used when measuring fluorescence.

【0003】これらに使用するセルとしては、セル本体
に蛍光が発生しては、サンプル自体の蛍光と重なり合
い、正確な測定ができなくなる為、無蛍光セルが必要と
なる。この無蛍光セルには石英ガラスが用いられるが、
少なくとも励起光照射面には蛍光が発生しない合成石英
ガラスを用いて製作されている。
As a cell used for these, if fluorescence is generated in the cell body, the fluorescence overlaps with the fluorescence of the sample itself, and accurate measurement cannot be performed. Therefore, a non-fluorescence cell is required. Quartz glass is used for this non-fluorescent cell,
At least the excitation light irradiation surface is made of synthetic quartz glass that does not generate fluorescence.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0004】しかし、近年半導体技術や医療技術の高度
化に伴い、高純度分析に対応した製品の提供が不可欠と
なり、試料の蛍光を調べる蛍光分析用セルも従来にない
高精度、高品質化が必要になってきた。
However, in recent years, with the advancement of semiconductor technology and medical technology, it is indispensable to provide products corresponding to high-purity analysis, and a fluorescence analysis cell for examining the fluorescence of a sample has higher accuracy and higher quality than ever before. I need it.

【0005】合成石英ガラスは素材の段階では、蛍光を
発することがないが、セルの加工途中に254nmの励
起光で微弱な緑色の蛍光を発することがある。このた
め、近年の高純度分析に対応すべく無蛍光セルを得るに
は最終加工段階で蛍光のない、且つ所定の強度を有する
セルをセレクトして製作しており、この為歩留まりが悪
く、生産性の低い物となっている。
Synthetic quartz glass does not fluoresce when it is a material, but it sometimes emits weak green fluorescence with excitation light of 254 nm during cell processing. For this reason, in order to obtain a non-fluorescent cell for high-purity analysis in recent years, cells that do not have fluorescence and have a predetermined intensity are selected and manufactured at the final processing stage. It has a low quality.

【0006】又、セル組立の際、部材同士の接着を接着
面に圧力をかけながら電気炉内で行う場合、接着面が完
全に着かず接着痕が発生することがある。この接着痕は
長時間のアニール処理によって面同士を再接着し、接着
痕を無くすことができることを確認したが、長時間のア
ニール処理では蛍光が発生し、逆に汚れを誘発する。従
って、接着強度を増大させれば、無蛍光のものは生ぜ
ず、接着強度と無蛍光は相い反する関係にあり、無蛍光
セルの接着強度は他のセルと比較して弱い物となってい
た。このため、蛍光の発生を抑制しつつ、セルの接着強
度を増大させた無蛍光セルの提供が望まれていた。
In addition, when the members are bonded together in an electric furnace while applying pressure to the bonding surfaces during cell assembly, the bonding surfaces may not be completely adhered and adhesion marks may occur. It was confirmed that the bonding marks can be re-bonded to each other by annealing for a long time to eliminate the bonding marks, but the annealing for a long time causes fluorescence and conversely induces stains. Therefore, if the adhesive strength is increased, a non-fluorescent material does not occur, and the adhesive strength and the non-fluorescent material have a contradictory relationship, and the adhesive strength of the non-fluorescent cell is weaker than that of other cells. It was Therefore, it has been desired to provide a non-fluorescent cell in which the cell adhesion strength is increased while suppressing the generation of fluorescence.

【0007】さらに、電気炉を真空下でアニール処理温
度以上で、数時間空焼きを行うことによって蛍光発生の
要因とも考えられる炉壁からの金属不純物の蒸発による
汚染をあらかじめ除去し、蛍光の発生を抑制することは
可能であるが、装置的に大規模となるばかりか、炉底と
の接触は避けられず、再現性良く蛍光発生を防止すると
いう点で問題があった。
[0007] Further, by firing the electric furnace under vacuum at a temperature higher than the annealing temperature for several hours, contamination caused by evaporation of metal impurities from the furnace wall, which is considered to be a factor of fluorescence generation, is removed in advance to generate fluorescence. However, there is a problem in that not only the apparatus becomes large-scale, but also contact with the furnace bottom is unavoidable, and the fluorescence generation is prevented with good reproducibility.

【0008】また、従来、セルの蛍光発生の抑制は、材
料段階で蛍光を抑えることに主眼があり、その合成石英
ガラス自体を研究してきたが、実際の組立品になんらか
の理由で蛍光が発生したときに、後処理で蛍光をなくす
ことについては適当な改質方法がなかった。
Further, conventionally, the suppression of the fluorescence generation of the cell has been focused on suppressing the fluorescence at the material stage, and the synthetic quartz glass itself has been studied, but the fluorescence was generated in the actual assembly for some reason. At times, there was no suitable modification method for eliminating the fluorescence in the post-treatment.

【0009】本発明は、任意の波長の励起光で蛍光を発
することのない接着強度に優れたセルを安定的に提供す
ると共に、蛍光発生による歩留まりの低下や、生産性に
かかる問題点を解決し、また、実際の組立品に蛍光が発
生したときのセルの改質方法を提供することを目的とす
る。
The present invention stably provides a cell having excellent adhesive strength that does not fluoresce with excitation light of an arbitrary wavelength, and solves problems such as reduction in yield due to fluorescence generation and productivity. It is also an object of the present invention to provide a method for modifying a cell when fluorescence is generated in an actual assembly.

【0010】[0010]

【課題を解決するための手段】そこで、本発明者らは、
前記課題を解決するため鋭意研究の結果、石英ガラス炉
芯管内で、炉内雰囲気から遮断した清浄ガス雰囲気中で
熱処理を行なえば、無蛍光のセルが得られることを見出
し、さらにセルの生産工程を詳細に解析した結果、素材
に無かった蛍光が、セル組立の際の部材同士の接着の後
に発生しており、蛍光が発生したセルでも高純度の、塩
素存在下のガス、ヘリウムガス、または酸素ガスの存在
下で同様な熱処理を行えば、発生していた蛍光が解消す
ると共に接着強度が増加した無蛍光セルが容易に得られ
るとの知見を得て本発明を完成した。以下、本発明を詳
細に説明する。
Means for Solving the Problems Accordingly, the present inventors have:
As a result of earnest research to solve the above problems, in the quartz glass furnace core tube, it was found that a non-fluorescent cell can be obtained by heat treatment in a clean gas atmosphere isolated from the furnace atmosphere. As a result of detailed analysis, the fluorescence that was not in the material is generated after the bonding of the members during cell assembly, and even in the cell where the fluorescence is generated, high purity gas in the presence of chlorine, helium gas, or The present invention has been completed based on the finding that if the same heat treatment is performed in the presence of oxygen gas, the generated fluorescence is eliminated and a non-fluorescent cell having an increased adhesive strength can be easily obtained. Hereinafter, the present invention will be described in detail.

【0011】部材同士の接着は、酸水素炎で溶着する方
法と接着面に圧力を加えながら電気炉で加熱する方法が
ある。溶着では加工時の歪みを取るため後処理として電
気炉内でのアニールを行わなければならず、どちらの方
法とも電気炉内での熱処理を行っている。
The members can be bonded to each other by welding with an oxyhydrogen flame or heating with an electric furnace while applying pressure to the bonding surface. In welding, in order to remove strain during processing, annealing must be performed in an electric furnace as a post-treatment, and both methods perform heat treatment in the electric furnace.

【0012】この熱処理を行なった後、蛍光の発生した
合成石英ガラス表面をHFで溶解し、分析を行ったとこ
ろ、Fe,Ca,K,Cuの増加が認められ、蛍光の原
因が電気炉雰囲気内での微量金属不純物による汚染であ
ることが確認できた。
After the heat treatment, the surface of the synthetic quartz glass in which fluorescence was generated was dissolved in HF and analyzed. As a result, an increase in Fe, Ca, K and Cu was observed, and the cause of fluorescence was the electric furnace atmosphere. It was confirmed that the contamination was due to trace metal impurities inside.

【0013】そこで、この汚染を防ぐため、標準品で石
英炉芯管を製作し、内部に、高純度窒素ガス、高純度酸
素ガス、準医学用空気、ヘリウム、アルゴン、塩素存在
下の高純度のガスをそれぞれ流しながら、アニール処理
を行なったところ、いずれも蛍光の発生は無かった。こ
れは、炉内雰囲気から遮断することで微量金属不純物の
汚染がないことと、使用したガスにも金属不純物含有量
が数PPm以下であり、しかも電気炉内のような密閉で
はなく、一方向への流れを持たせたガス雰囲気とした
為、常に新鮮な清浄雰囲気を保つことが出来、汚染が発
生しなかったものと考えられる。使用する炉芯管材質
は、炉芯管自体の不純物による汚染及び耐熱性から、高
純度無水品が好ましい。
Therefore, in order to prevent this contamination, a quartz furnace core tube is manufactured as a standard product, and high-purity nitrogen gas, high-purity oxygen gas, quasi-medical air, helium, argon, high-purity in the presence of chlorine are provided inside. When the annealing treatment was performed while flowing the respective gases, no fluorescence was generated. This is because there is no contamination of trace metal impurities by shutting off from the atmosphere in the furnace, the content of metal impurities in the gas used is less than a few PPm, and the gas is not sealed like in an electric furnace, but in one direction. It is considered that because the gas atmosphere was made to flow to, it was possible to always maintain a fresh and clean atmosphere and no pollution occurred. The material of the furnace core tube used is preferably a high-purity anhydrous product because of contamination of the furnace core tube itself with impurities and heat resistance.

【0014】使用するガスと蛍光発生を詳細に観察した
結果、蛍光防止には高純度の、窒素ガス、酸素ガス、準
医学用空気、ヘリウム、アルゴン、塩素存在下のガスは
遮断のために流せば効果が有ることが分かったが、この
うち高純度の、酸素、ヘリウムについては蛍光が発生し
たものでも蛍光強度が弱くなりより効果的であることを
確認した。また、高純度の、酸素、ヘリウムにつき、さ
らにアニール処理を続けたところ、蛍光は消滅した。こ
れは酸素では表面の酸化作用、構造欠陥の緩和が生じ、
また、ヘリウムは石英ガラス内部へ拡散し不純物を追い
出す効果があるためと考えられる。コスト面から酸素ガ
ス使用が好ましい。
As a result of observing the gas to be used and the fluorescence generation in detail, for the fluorescence prevention, a high-purity gas such as nitrogen gas, oxygen gas, quasi-medical air, helium, argon or chlorine should be flown for the purpose of blocking. However, it was confirmed that even high-purity oxygen and helium, which generate fluorescence, have a weaker fluorescence intensity and are more effective. When high-purity oxygen and helium were further annealed, the fluorescence disappeared. This is because oxygen causes surface oxidation and relaxation of structural defects.
It is also considered that helium has the effect of diffusing into the quartz glass and driving out impurities. It is preferable to use oxygen gas in terms of cost.

【0015】石英ガラス炉芯管内での接着面に圧力を加
えながらの溶着、加熱処理を行うことは半導体製造装置
なみの設備が必要となり、高価で作業性も煩雑なものと
なる。しかし現状の工程では、電気炉雰囲気内で熱処理
を行う為、前述のように蛍光の発生はさけられず、無蛍
光セルを製作するには、熱処理後、後工程で表面を研磨
し、表面を削って汚染部分を無くし、蛍光がとれた物を
最終検査で選び製品としており、歩留まりが悪い物とな
っている。
Performing welding and heat treatment while applying pressure to the bonding surface in the quartz glass furnace core tube requires equipment similar to a semiconductor manufacturing apparatus, which is expensive and complicated in workability. However, in the current process, since heat treatment is performed in an electric furnace atmosphere, the generation of fluorescence is unavoidable as described above.To manufacture a non-fluorescent cell, after heat treatment, the surface is polished and the surface is polished in a later process. The final product is selected as a product by shaving to eliminate contaminated parts and removing fluorescent light, resulting in a poor yield.

【0016】これら生産性の問題を解決するため、接着
により蛍光の発生したセルを、炉芯管内雰囲気をO2
ャリアとしたHC1ガス中で熱処理を行ったところ、汚
染部分が塩素により純化され、蛍光が無くなった。この
ことから、通常の電気炉内で熱処理を行うという現状の
生産工程を変えること無しにも、最終の熱処理を電気炉
雰囲気から遮断された高純度の塩素ガス、塩化水素ガ
ス、塩素化合物ガス等の塩素存在下の雰囲気で行えば、
100%無蛍光のセルが得られ、歩留まりが大幅に改善
されることが判った。また、これと同様に、高純度の、
酸素、ヘリウムガスについても長時間の熱処理をそれぞ
れの雰囲気で行なうことにより無蛍光のセルが得られる
ことが判った。
In order to solve these productivity problems, the cell in which fluorescence was generated by adhesion was heat-treated in HC1 gas with the atmosphere in the furnace core tube as O 2 carrier, and the contaminated portion was purified by chlorine. The fluorescence is gone. From this, high-purity chlorine gas, hydrogen chloride gas, chlorine compound gas, etc. in which the final heat treatment was cut off from the electric furnace atmosphere without changing the current production process of performing heat treatment in an ordinary electric furnace. In the atmosphere of chlorine,
It was found that a 100% non-fluorescent cell was obtained and the yield was significantly improved. Also, like this, high purity,
It has been found that a non-fluorescent cell can be obtained by subjecting oxygen and helium gas to heat treatment for a long time in each atmosphere.

【0017】本発明を利用すれば、簡単な装置で確実
に、蛍光の無いセルを石英ガラス炉芯管内を酸素ガス等
の清浄ガス雰囲気で、長時間アニール処理を行なえば、
蛍光が発生することなく接着強度を増すことができ、例
え蛍光が発生しているセルでも高純度の塩素、酸素ガ
ス、またはヘリウムガスの存在下で同様な処理を行えば
蛍光を解消でき、今までよりも接着強度が増した無蛍光
セルを得ることが可能となった。
According to the present invention, if a cell having no fluorescence is surely annealed for a long time in a quartz glass furnace core tube in a clean gas atmosphere such as oxygen gas by using a simple apparatus,
It is possible to increase the adhesive strength without generating fluorescence, and even if fluorescence is generated in the cell, the fluorescence can be eliminated by performing the same treatment in the presence of high-purity chlorine, oxygen gas, or helium gas. It has become possible to obtain a non-fluorescent cell with an increased adhesive strength.

【0018】熱処理時の雰囲気としては、高純度の、窒
素ガス、酸素ガス、塩素ガス、塩化水素ガス、アルゴン
ガス、ヘリウムガスまたは準医学用空気を用いるのが好
ましく、ここに高純度とは金属元素不純物が総量として
微PPm以下のものをいい、PPbレベルのものがより
好ましい。又準医学用用空気とは、微生物等を除いた純
空気をいい、市販のものを用いることができる。
As the atmosphere during the heat treatment, it is preferable to use high purity nitrogen gas, oxygen gas, chlorine gas, hydrogen chloride gas, argon gas, helium gas or quasi-medical air. The total amount of elemental impurities is a fine PPm or less, and PPb level is more preferable. The term "quasi-medical air" means pure air from which microorganisms and the like are removed, and commercially available air can be used.

【0019】熱処理時の雰囲気条件は、炉芯管内を電気
炉内雰囲気から遮断する為に、酸素等の清浄ガスを流す
だけでよく、1〜5リットル/min程度で可能であ
る。大流量を流すことは、炉芯管内部の温度を低下させ
るため好ましくない。ただし、この中の遮断された雰囲
気下に存在させる塩素としては、5vol%程度の濃度
で十分な効果が得られる。
The atmospheric condition during the heat treatment is only required to flow a clean gas such as oxygen in order to shut off the inside of the furnace core tube from the atmosphere inside the electric furnace. Flowing a large flow rate is not preferable because it lowers the temperature inside the furnace core tube. However, a sufficient effect can be obtained with chlorine having a concentration of about 5 vol% as the chlorine present in the blocked atmosphere.

【0020】又、熱処理温度は900〜1400℃が好
ましく、900℃未満ではアニール、純化、接着強度増
加の相乗効果が認められず、また、1400℃を越える
とセル自体をアニールする場合セル形状を保持する上で
好ましくない。
The heat treatment temperature is preferably 900 to 1400 ° C. If the temperature is lower than 900 ° C., the synergistic effects of annealing, purification, and increase in adhesive strength are not recognized, and if it exceeds 1400 ° C., the cell shape is annealed. Not preferable for holding.

【0021】さらに、本発明は、少なくとも励起光照射
面、例えば、光入射面のほか、入射方向に対して90°
となる光出射面を本発明の合成石英ガラスを用いて蛍光
分析用セルとして用いることができるし、セルの任意の
面、または全体を本発明により得ることができる。
Further, according to the present invention, in addition to at least the excitation light irradiation surface, for example, the light incident surface, 90 ° with respect to the incident direction.
The light emitting surface to be used can be used as a cell for fluorescence analysis using the synthetic quartz glass of the present invention, and any surface of the cell or the whole can be obtained by the present invention.

【0022】[0022]

【発明の効果】本発明によれば、200nmから500
nmの励起波長で蛍光を発生させることなく、また長時
間アニール処理で蛍光が発生したセルでも蛍光を解消で
き、また、セル組立の際の部材同士の接着の後に蛍光が
発生したセルにおいても発生していた蛍光を解消でき、
今までよりも接着強度の増した、無蛍光セルが歩留まり
良く製作できる。
According to the present invention, 200 nm to 500 nm
The fluorescence can be eliminated even in cells that have been fluorescently generated by annealing for a long time without generating fluorescence at the excitation wavelength of nm, and can also be generated in cells that have fluorescently generated after the members are bonded together during cell assembly. You can eliminate the fluorescence that you were doing,
Non-fluorescent cells with higher adhesive strength than ever can be manufactured with high yield.

【0023】[0023]

【実施例】以下に実施例にて具体的に説明する。なお、
蛍光は紫外線254nm励起での緑色蛍光を意味する。
[Examples] Specific examples will be described below. In addition,
Fluorescence means green fluorescence with excitation of ultraviolet light at 254 nm.

【0024】実施例1 合成石英ガラス材(日本石英ガラス(株)製)にて1
2.5mm×12.5mm×40mmの6面研磨品を製
作した。これを高純度無水石英ガラス炉芯管内に入れ、
高純度窒素ガスを3リットル/min流しながらアニー
ル処理(1150℃,1Hrキープ)を行ったが、蛍光
の発生は認められなかった。同様に高純度の、酸素ガ
ス、準医学用空気、ヘリウムガス、アルゴンガス、塩素
ガス、塩化水素ガスの雰囲気でも蛍光は発生しなかっ
た。
Example 1 Synthetic quartz glass material (manufactured by Nippon Quartz Glass Co., Ltd.)
A 6-side polished product having a size of 2.5 mm × 12.5 mm × 40 mm was manufactured. Put this in a high-purity anhydrous silica glass furnace core tube,
Annealing treatment (1150 ° C., 1 Hr keep) was performed while flowing high-purity nitrogen gas at 3 liter / min, but no fluorescence was observed. Similarly, fluorescence was not generated even in a high-purity atmosphere of oxygen gas, quasi-medical air, helium gas, argon gas, chlorine gas, or hydrogen chloride gas.

【0025】比較例1 合成石英ガラス材(日本石英ガラス(株)製)にて1
2.5mm×12.5mm×40mmの6面研磨品を製
作した。これを電気炉に入れ、アニール処理(1150
℃,1Hrキープ)を行ったところ蛍光が発生した。蛍
光の発生したブロック表面をHFで溶解し、原子吸光分
析を実施したところ、表面にFe,Ca,K,Cuの汚
染が認められた。結果を表1に示す。
Comparative Example 1 1 with synthetic quartz glass material (manufactured by Nippon Quartz Glass Co., Ltd.)
A 6-side polished product having a size of 2.5 mm × 12.5 mm × 40 mm was manufactured. This is put in an electric furnace and annealed (1150
When it was kept at 1 ° C. for 1 hour, fluorescence was generated. When the block surface where fluorescence was generated was dissolved with HF and atomic absorption analysis was carried out, contamination of Fe, Ca, K and Cu was recognized on the surface. The results are shown in Table 1.

【表1】 [Table 1]

【0026】実施例2 アニール処理で蛍光が発生した合成石英ガラス材(日本
石英ガラス(株)製)12.5mm×12.5mm×4
0mmの6面研磨品を高純度無水石英ガラス炉芯管内に
入れ、接着強度を増す長時間アニール条件(1200
℃,2Hrキープ,その後900℃まで16℃/Hr降
温)でHC1 150ミリリットル/min,キャリア
2 3リットル/minの雰囲気で処理を行った。HC
1は昇温時とキープ時間のみ流し、降温時はO2のみ流
した。その結果、蛍光は解消していた。
Example 2 Synthetic quartz glass material (manufactured by Nippon Quartz Glass Co., Ltd.) in which fluorescence was generated by annealing treatment 12.5 mm × 12.5 mm × 4
Long-term annealing conditions (1200 mm) were used to put a 0 mm 6-side polished product in a high-purity anhydrous silica glass furnace core tube to increase the adhesive strength.
° C., was carried 2Hr keep, HC1 0.99 milliliters / min thereafter 16 ° C. / Hr cooled to 900 ° C.), the process in an atmosphere of carrier O 2 3 liters / min. HC
In No. 1, only the temperature was raised and the keeping time was passed, and when the temperature was lowered, only O 2 was passed. As a result, the fluorescence disappeared.

【0027】実施例3 実施例2に準じて、Cl2 150ミリリットル/mi
n、キァリアN2 3リットル/minの雰囲気で長時間
アニ−ル条件(1200℃、2Hrキ−プ、その後90
0℃まで16℃/Hr降温)で処理を行なった。Cl2
は昇温時とキ−プ時間のみ流し、降温時はN2のみ流し
た。その結果、蛍光は解消していた。
Example 3 According to Example 2, 150 ml of Cl 2 / mi
n, carrier N 2 3 liter / min atmosphere for a long time under annealing conditions (1200 ° C., 2 hr cap, then 90 min.
The treatment was carried out up to 0 ° C. at 16 ° C./Hr temperature decrease). Cl 2
Was flowed only during the temperature rise and the cape time, and only N 2 was flowed during the temperature decrease. As a result, the fluorescence disappeared.

【0028】実施例4 実施例2に準じて、O2 3リットル/minの雰囲気で
長時間アニ−ル条件(1200℃、4Hrキ−プ、その
後900℃まで16℃/Hr降温)で処理を行なった。
2は昇温から降温まで流した。その結果、蛍光は解消
していた。
Example 4 In accordance with Example 2, treatment was carried out in an atmosphere of O 2 3 liter / min for a long period of time under annealing conditions (1200 ° C., 4 Hr cap, then 900 ° C., 16 ° C./Hr temperature decrease). I did.
O 2 was made to flow from the temperature increase to the temperature decrease. As a result, the fluorescence disappeared.

【0029】実施例5 接着面の接着痕のあるLCセル(蛍光分析用フローセ
ル)蛍光不良品300個のうち、各75個を、実施例2
に準じて塩化水素ガス、実施例3に準じて塩素ガス、実
施例4に準じて酸素ガス、また、実施例4において酸素
ガスの代わりにヘリウムガスを用いて、それぞれの雰囲
気で処理した。その結果、塩化水素ガス、塩素ガスは2
Hrで、酸素ガスは4Hrで、また、ヘリウムガスでは
4Hrで全数蛍光の発生は無くなり、残っていた接着面
の接着痕も無くなっていた。
Example 5 Out of 300 defective LC cells (flow cells for fluorescence analysis) having a bonding mark on the bonding surface, 75 of each were tested as in Example 2.
Hydrogen chloride gas according to Example 3, chlorine gas according to Example 3, oxygen gas according to Example 4, and helium gas instead of oxygen gas in Example 4 were used for the respective treatments. As a result, hydrogen chloride gas and chlorine gas are 2
Hr, oxygen gas was 4 Hr, and helium gas was 4 Hr, and the total number of fluorescence was not generated, and the remaining adhesion mark on the adhesion surface was also eliminated.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも励起光照射面が、200nm
から500nmの励起波長で蛍光を発生しない高純度を
保持した合成石英ガラスからなる無蛍光セル。
1. An excitation light irradiation surface of at least 200 nm
A non-fluorescent cell made of synthetic quartz glass that maintains high purity and does not generate fluorescence at an excitation wavelength of 500 nm to 500 nm.
【請求項2】 石英ガラス炉芯管内で、炉内雰囲気から
遮断した清浄なガス雰囲気中で熱処理することを特徴と
する無蛍光セルの製造方法。
2. A method for manufacturing a non-fluorescent cell, which comprises heat-treating in a quartz glass furnace core tube in a clean gas atmosphere isolated from the furnace atmosphere.
【請求項3】 清浄ガス雰囲気が、高純度の、酸素ガ
ス、窒素ガス、準医学用空気、ヘリウムガス、アルゴン
ガス、塩素存在下のガスのいずれかの雰囲気であること
を特徴とする請求項2記載の無蛍光セルの製造方法。
3. The clean gas atmosphere is a high-purity atmosphere of any one of oxygen gas, nitrogen gas, quasi-medical air, helium gas, argon gas, and gas in the presence of chlorine. 2. The method for producing a non-fluorescent cell according to 2.
【請求項4】 アニール処理で蛍光が発生した合成石英
ガラス製セルを、さらに、高純度の、塩素存在下のガ
ス、ヘリウムガス、または酸素ガスのいずれかの雰囲気
で熱処理することを特徴とする無蛍光セルの改質方法。
4. The synthetic quartz glass cell, in which fluorescence is generated by the annealing treatment, is further heat-treated in a high-purity gas in the presence of chlorine, a helium gas, or an oxygen gas atmosphere. Method for modifying non-fluorescent cell.
【請求項5】 接着面の接着痕のあるセル自体を石英ガ
ラス炉芯管内で、炉内雰囲気から遮断した清浄なガス雰
囲気中で熱処理することを特徴とする無蛍光セルの改質
方法。
5. A method for reforming a non-fluorescent cell, which comprises heat-treating the cell itself having a bond mark on the bonding surface in a quartz glass furnace core tube in a clean gas atmosphere which is shielded from the atmosphere in the furnace.
【請求項6】 清浄ガス雰囲気が、高純度の、酸素ガ
ス、ヘリウムガス、塩素存在下のガスのいずれかの雰囲
気であることを特徴とする請求項5記載の無蛍光セルの
改質方法。
6. The method for reforming a non-fluorescent cell according to claim 5, wherein the clean gas atmosphere is a high-purity atmosphere of any one of oxygen gas, helium gas, and chlorine gas.
JP26805594A 1994-10-07 1994-10-07 Non-fluorescence cell, its production and reforming method Pending JPH08110295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26805594A JPH08110295A (en) 1994-10-07 1994-10-07 Non-fluorescence cell, its production and reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26805594A JPH08110295A (en) 1994-10-07 1994-10-07 Non-fluorescence cell, its production and reforming method

Publications (1)

Publication Number Publication Date
JPH08110295A true JPH08110295A (en) 1996-04-30

Family

ID=17453264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26805594A Pending JPH08110295A (en) 1994-10-07 1994-10-07 Non-fluorescence cell, its production and reforming method

Country Status (1)

Country Link
JP (1) JPH08110295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059412A (en) * 2002-07-31 2004-02-26 Shinetsu Quartz Prod Co Ltd Quartz glass jig and its manufacture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059412A (en) * 2002-07-31 2004-02-26 Shinetsu Quartz Prod Co Ltd Quartz glass jig and its manufacture method

Similar Documents

Publication Publication Date Title
EP0032594B1 (en) Method for producing silica glass
JP3206916B2 (en) Method for reducing defect concentration, method for producing optical glass for transmitting ultraviolet light, and optical glass for transmitting ultraviolet light
CN1441859A (en) Method for making thick signal crystal diamond layer and gemstones produced from layer
JP2007532459A (en) Quartz glass element for UV radiation source, its manufacturing method and method for determining suitability of quartz glass element
US9067814B2 (en) Method of producing synthetic quartz glass for excimer laser
JP2003081654A (en) Synthetic quartz glass, and production method therefor
US7497095B2 (en) Method for producing quartz glass jig and quartz glass jig
JPH08110295A (en) Non-fluorescence cell, its production and reforming method
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
Mochizuki et al. Reversible photoinduced spectral change in Eu 2 O 3 at room temperature
Mouchovski et al. Growth of ultra-violet grade CaF2 crystals and their application for excimer laser optics
JPH0419199B2 (en)
JPH0848532A (en) High viscosity synthetic quartz glass member and its production
JP4107905B2 (en) Synthetic silica glass optical material for YAG laser harmonics
JPH0881225A (en) Synthetic quartz glass for light transmission and its production
JPH0323236A (en) Optical member for laser light
JP2699107B2 (en) Quartz glass for UV transmission
JPS6012128A (en) Photochemical surface treating apparatus
JP4391163B2 (en) Synthetic silica glass optical material for YAG laser harmonics
Whiting et al. Spectral studies of O2−, NO2− and CrO42− in molten LiF-NaF-KF and of O2− in liquid ammonia
Weeks et al. The effect of OH on UV optical absorption of reduced GeO2 glasses
JP2007063128A (en) Method for manufacturing synthetic quartz glass for optical use
JP3356582B2 (en) Silica glass jig and processing method thereof
KR940007219B1 (en) Uv light-permeable glass and article comprising the same
Nishikawa et al. Role of nonstoichiometry on UV absorption and luminescence in high-purity silica.