JPH08109011A - Increase in reactivity in nitriding of aluminum - Google Patents

Increase in reactivity in nitriding of aluminum

Info

Publication number
JPH08109011A
JPH08109011A JP27188094A JP27188094A JPH08109011A JP H08109011 A JPH08109011 A JP H08109011A JP 27188094 A JP27188094 A JP 27188094A JP 27188094 A JP27188094 A JP 27188094A JP H08109011 A JPH08109011 A JP H08109011A
Authority
JP
Japan
Prior art keywords
nitriding
aluminum
aln
reactivity
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27188094A
Other languages
Japanese (ja)
Inventor
Shigeru Ito
滋 伊藤
Kazuharu Yoshida
一晴 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27188094A priority Critical patent/JPH08109011A/en
Publication of JPH08109011A publication Critical patent/JPH08109011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To improve the reactivity between Al and nitrogen and enable efficient production of AlN by etching the Al surface. CONSTITUTION: In the reaction of Al with nitrogen, the reaction heat emits, when the nitriding starts form the Al surface. Thus, the Al surface is etched as a pretreatment to increase the Al surface area and improve the reactivity. Thus, a large amount of heat is emitted on the initial nitriding, and the remaining Al is allowed to react with nitrogen with this reaction heat whereby AlN is produced efficiently. Thus, the nitriding of Al of a large size becomes possible in spite that such nitriding has been impossible because of their low reactivity, thus an AlN powder of high purity can be produced at lower cost than the conventional process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】窒化アルミニウム(以下「AlN」と
いう)の焼結体は、高温における強度、耐熱衝撃性、高
温耐食性が高いことから金属溶融坩堝等に利用されてい
る。最近では、高熱伝導性、電気絶縁性、シリコンに近
い熱膨張率を持つという性質から、半導体の基板(放熱
板)として実用化され始めている。現在、アルミニウム
とN2を反応させてAlNを製造するには、反応性の高いア
ルミニウムとして、微粉末状のアルミニウムが必要であ
る。しかしながら、同程度の純度で比較した場合、微粉
末状アルミニウムは大きなアルミニウムに比べて高価で
あり、微粉末状アルミニウムの使用がAlNの製造コスト
を高くしている。本発明は、従来の原料に比べ安価であ
る反応性の低い、より大きなアルミニウムを原料に用い
る。そして、反応助剤の添加無しでこれを窒化すること
により、低コストで高純度のAlNを製造する方法を提供
するものである。
[Field of Industrial Application] Sintered bodies of aluminum nitride (hereinafter referred to as "AlN") are used in metal melting crucibles and the like because of their high strength at high temperature, thermal shock resistance, and high temperature corrosion resistance. Recently, it has begun to be put into practical use as a semiconductor substrate (heat sink) because of its high thermal conductivity, electrical insulation, and the coefficient of thermal expansion close to that of silicon. Currently, in order to produce AlN by reacting aluminum with N 2 , finely powdered aluminum is required as highly reactive aluminum. However, when compared at the same degree of purity, fine powder aluminum is more expensive than large aluminum, and the use of fine powder aluminum increases the manufacturing cost of AlN. The present invention uses, as a raw material, larger aluminum which is less expensive than conventional raw materials and has low reactivity. The present invention provides a method for producing high-purity AlN at low cost by nitriding it without adding a reaction aid.

【0002】[0002]

【従来の技術】アルミニウムの直接窒化によりAlNを製
造する際、反応性の低さから、活性なアルミニウムとし
て粒径数10μm以下の微粉末状アルミニウム、すなわち
アトマイズ粉が必要不可欠である。さらに最近は、高純
度のAlNが求められるに従い、原料のアトマイズ粉にも
高純度なものが用いられてきている。しかしながら、高
純度のアトマイズ粉は高価であり、アトマイズ粉の使用
がAlNの価格を上昇させる原因となっている。これに対
して、高純度でも比較的安価である反応性の低い、より
大きなアルミニウムを原料に用いて、反応助剤の添加無
しで直接窒化によりAlNを製造することに成功した例は
ない。
2. Description of the Related Art When AlN is produced by direct nitriding of aluminum, fine powdery aluminum having a particle size of 10 μm or less, that is, atomized powder is indispensable as active aluminum because of its low reactivity. Furthermore, recently, with the demand for high-purity AlN, high-purity atomized powder has been used as a raw material. However, high-purity atomized powder is expensive, and the use of atomized powder causes the price of AlN to rise. On the other hand, there is no example of succeeding in producing AlN by direct nitriding without adding a reaction auxiliary agent, using a large amount of aluminum, which has high reactivity and is relatively inexpensive and has low reactivity.

【0003】[0003]

【発明が解決しようとする課題】アルミニウムの直接窒
化では、初めにアルミニウム粒子の表面から窒化が始ま
ると粒子表面に窒化膜が生成する。この窒化膜の生成は
その後の反応の進行にプラスとマイナスの二つの影響を
およぼすと考えられる。マイナスの効果としては、窒化
膜内部のアルミニウムへの窒素の拡散を阻害する効果で
あり、プラスの効果としては、窒化膜の生成の際に反応
熱が発生し、窒化膜内部のアルミニウムへの窒素の拡散
を促進する効果である。微粉末状のアルミニウムの窒化
の場合には比表面積が大きいために初期の窒化の際に充
分に反応熱が発生し、窒化が進行するが、大きなアルミ
ニウムの場合では初期の窒化の際に反応熱が充分に発生
せずに、表面が窒化するのみで反応はほとんど止まって
しまう。
In direct nitriding of aluminum, when nitriding starts from the surface of aluminum particles, a nitride film is formed on the surface of the particles. It is considered that the formation of this nitride film has two positive and negative effects on the subsequent reaction. The negative effect is that it inhibits the diffusion of nitrogen into the aluminum inside the nitride film, and the positive effect is that reaction heat is generated during the formation of the nitride film, and the nitrogen inside the aluminum inside the nitride film is generated. Is the effect of promoting the diffusion of. In the case of nitriding aluminum in the form of fine powder, since the specific surface area is large, sufficient reaction heat is generated during the initial nitriding and nitriding proceeds, but in the case of large aluminum, the reaction heat during the initial nitriding Is not sufficiently generated, and the reaction almost stops only by nitriding the surface.

【0004】これに対して本発明は、上記のプラスの効
果を高めるために、大きなアルミニウムの比表面積を増
やすことによって表面を活性にする。そして、初期の窒
化で大量の反応熱を発生させ、この熱により窒化膜内部
のアルミニウムをすべて窒化させることにより、従来は
ほとんど窒化しなかった大きなアルミニウムを一度の操
作で100%窒化することを目的としている。
In contrast, the present invention activates the surface by increasing the specific surface area of large aluminum in order to enhance the above-mentioned positive effects. Then, by generating a large amount of reaction heat in the initial nitriding and nitriding all of the aluminum inside the nitride film by this heat, the purpose is to nitrid 100% of the large aluminum that was rarely nitrided in the past in one operation. I am trying.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、エッチングによってアルミニウムの表面を荒らして
表面を活性にして、この原料を窒化することを試みた。
アルミニウムのエッチング→窒化の工程でAlNを製造し
た。
In order to achieve the above object, an attempt was made to nitride the raw material by roughening the surface of aluminum by etching to activate the surface.
AlN was manufactured in the process of etching aluminum → nitriding.

【0006】なお、窒化操作は次のようにするとよい。
窒化反応は昇温途中で開始することから、加熱を開始す
る前に電気炉の内部から完全に酸素を取り除いておく方
がよい。
The nitriding operation is preferably performed as follows.
Since the nitriding reaction starts during heating, it is better to completely remove oxygen from the inside of the electric furnace before starting heating.

【0007】さらに、本格的な窒化反応が開始する前
に、アルミニウムの溶融によって比表面積が減少して活
性が失われないために、アルミニウムの融点(660℃)
以下までは、昇温速度を遅くして、アルミニウムの表面
にAlNの薄い膜を生成する必要がある。
Further, before the full-scale nitriding reaction starts, the melting point of aluminum (660 ° C.) because the specific surface area is not reduced by the melting of aluminum and the activity is not lost.
Up to the following, it is necessary to slow the temperature rising rate to form a thin film of AlN on the surface of aluminum.

【0008】そして、AlNの薄い膜を生成させた後に100
0℃以上の温度で窒化を行うのが好ましい。
Then, after forming a thin film of AlN, 100
Nitriding is preferably performed at a temperature of 0 ° C. or higher.

【0009】[0009]

【作用】上記のように、大きなアルミニウムを窒化する
際に前処理としてエッチング処理を行うことにより、一
回の窒化操作で高い窒化率が得られる。これは、大きな
アルミニウムの比表面積が増加し表面が活性化すること
により初期の反応の際に大量の反応熱が発生し、以後の
窒化を促進することによる。
As described above, a high nitriding rate can be obtained by one nitriding operation by performing the etching treatment as a pretreatment when nitriding large aluminum. This is because the large specific surface area of aluminum increases and the surface is activated, so that a large amount of reaction heat is generated during the initial reaction and the subsequent nitriding is promoted.

【0010】さらに、アルミニウムの融点以下でアルミ
ニウムの表面にAlNの薄い膜を生成させることにより、
表面の活性な形状が維持されて、その後高温で本格的な
窒化反応を起こすことができる。
Further, by forming a thin film of AlN on the surface of aluminum below the melting point of aluminum,
The active shape of the surface is maintained, and then a full-scale nitriding reaction can occur at high temperature.

【0011】[0011]

【実施例1】原料アルミニウムに、直径2mm、長さ50mm
のアルミニウム線材(純度99.99%)を用いた。これを、
前処理として25wt%NaOHaq、20wt%HClaqにそれぞれ30秒
浸し、水洗した。その後、1.0N-HClaq中でアルミニウム
を陽極、黒鉛を陰極として、室温下、1000A/m2の電流密
度で60秒電解エッチングした。このアルミニウム線材4g
をSi3N4反応管(長さ60mm、内径14mm)に充填し、横型
管状電気炉中にセットした。そして、N2ガスを400ml/mi
nで供給しながら5℃/minで昇温後、1300℃で2時間保持
して窒化率99.3%のAlNを作製した。
[Example 1] Aluminum 2 mm in diameter and 50 mm in length
The aluminum wire rod (purity 99.99%) was used. this,
As a pretreatment, it was immersed in 25 wt% NaOHaq and 20 wt% HClaq for 30 seconds each and washed with water. After that, electrolytic etching was performed at room temperature at a current density of 1000 A / m 2 for 60 seconds in 1.0 N-HClaq using aluminum as an anode and graphite as a cathode. 4g of this aluminum wire
Was filled in a Si 3 N 4 reaction tube (length 60 mm, inner diameter 14 mm) and set in a horizontal tubular electric furnace. And N 2 gas is 400 ml / mi
While supplying n, the temperature was raised at 5 ° C / min, and the temperature was kept at 1300 ° C for 2 hours to prepare AlN having a nitriding rate of 99.3%.

【0012】[0012]

【実施例2】上記実施例1において、昇温速度を7℃/mi
nとして、他の操作は全て同じとしたところ、窒化率98.
8%のAlNを得ることができた。
[Example 2] In Example 1, the temperature rising rate was set to 7 ° C / mi.
As n, all other operations were the same, and the nitriding rate was 98.
8% AlN could be obtained.

【0013】[0013]

【発明の効果】本発明は、以上に説明したように構成さ
れているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0014】従来窒化が不可能であった大きなアルミニ
ウムを原料に用いることにより、従来に比べ安価に高純
度のAlNを作製できる。
High-purity AlN can be manufactured at a lower cost than in the conventional case by using a large aluminum as a raw material, which has been conventionally impossible to be nitrided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムの表面をエッチングするこ
とにより、アルミニウムと窒素の反応性を向上させる。
次いで、このアルミニウムを原料に用い、これを窒素あ
るいはアンモニアを含んだ雰囲気中で加熱することを特
徴とする窒化アルミニウムの製造法。
1. The reactivity of aluminum and nitrogen is improved by etching the surface of aluminum.
Next, a method for producing aluminum nitride, which comprises using this aluminum as a raw material and heating it in an atmosphere containing nitrogen or ammonia.
【請求項2】 エッチングが可能であればアルミニウム
の形態は特に問わない、請求項1に記載の方法。
2. The method according to claim 1, wherein the form of aluminum is not particularly limited as long as it can be etched.
JP27188094A 1994-10-12 1994-10-12 Increase in reactivity in nitriding of aluminum Pending JPH08109011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27188094A JPH08109011A (en) 1994-10-12 1994-10-12 Increase in reactivity in nitriding of aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27188094A JPH08109011A (en) 1994-10-12 1994-10-12 Increase in reactivity in nitriding of aluminum

Publications (1)

Publication Number Publication Date
JPH08109011A true JPH08109011A (en) 1996-04-30

Family

ID=17506198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27188094A Pending JPH08109011A (en) 1994-10-12 1994-10-12 Increase in reactivity in nitriding of aluminum

Country Status (1)

Country Link
JP (1) JPH08109011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159439A (en) * 1996-12-26 2000-12-12 Toyota Jidosha Kabushiki Kaisha Process for producing aluminum nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159439A (en) * 1996-12-26 2000-12-12 Toyota Jidosha Kabushiki Kaisha Process for producing aluminum nitride

Similar Documents

Publication Publication Date Title
JPH08109011A (en) Increase in reactivity in nitriding of aluminum
CN105837224A (en) Method for preparing aluminum nitride ceramics by aid of ammonium fluoride which is used as additive
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JPH07309611A (en) Production of aluminum nitride powder
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
US3395981A (en) Method of manufacturing aluminum nitride
US4704264A (en) Process for production of silane
KR100394523B1 (en) Method For Manufacturing AlN Powder
JPH05255848A (en) Production of thin aluminum nitride film
JP3725686B2 (en) Method for manufacturing aluminum nitride whisker
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JP2831411B2 (en) Method for producing aluminum nitride powder
JP3942441B2 (en) Method for producing aluminum nitride
JPH0460046B2 (en)
JPS6316360B2 (en)
KR101770256B1 (en) Manufacturing method of aluminium nitride powder
JPS60131810A (en) Manufacture of yttrium nitride
JPS63225505A (en) Production of high-purity aluminum nitride powder
TWI616399B (en) Method for controlling a surface morphology of silicon nitride powders with a pressure of a nitrogen atmosphere
JPH0226813A (en) Purification of aluminum nitride powder
JPH064481B2 (en) Manufacturing method of aluminum nitride powder
JPH05220621A (en) Graphite-silicon carbide composite electrode for electro-chemical machining
JP2000302555A (en) Production of bulk aluminum nitride
JPH0321502B2 (en)
JPH10101312A (en) Production of aluminum nitride