JPH08108072A - Production of catalyst for hydrogenation reaction of aliphatic alkyl ester - Google Patents

Production of catalyst for hydrogenation reaction of aliphatic alkyl ester

Info

Publication number
JPH08108072A
JPH08108072A JP5303288A JP30328893A JPH08108072A JP H08108072 A JPH08108072 A JP H08108072A JP 5303288 A JP5303288 A JP 5303288A JP 30328893 A JP30328893 A JP 30328893A JP H08108072 A JPH08108072 A JP H08108072A
Authority
JP
Japan
Prior art keywords
catalyst
aqueous solution
hydrogenation reaction
copper
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5303288A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tomiyama
好行 冨山
Takahiro Makabe
孝裕 真壁
Michiji Okuda
理士 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie Catalysts Japan Inc
Original Assignee
Nissan Girdler Catalysts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Girdler Catalysts Co Ltd filed Critical Nissan Girdler Catalysts Co Ltd
Priority to JP5303288A priority Critical patent/JPH08108072A/en
Publication of JPH08108072A publication Critical patent/JPH08108072A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To obtain a Cu-Mn-Al catalyst having high activity, producing a small amt. of a by-product and easily separable from a product by filtration. CONSTITUTION: When a catalyst contg. copper oxide, aluminum oxide and manganese oxide as constituent components is prepd. by coprecipitation, an aq. soln. of metallic salts and an alkali metallic compd. are continuously and simultaneously added to heated water under stirring at a constant pH. In this method, alumina hydrate is previously added to at least one of the aq. soln. and the heated water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脂肪族アルキルエステル
類を高圧下に水素添加することにより高級アルコールを
製造するための触媒に関するものである。
FIELD OF THE INVENTION The present invention relates to a catalyst for producing higher alcohols by hydrogenating aliphatic alkyl esters under high pressure.

【0002】[0002]

【従来の技術】高級脂肪族アルコール類は化学工業の重
要な中間原料であり、脂肪族アルコールサルフェート、
ポリグリコールエーテル等の界面活性剤原料として使用
されており、天然油脂から得られる脂肪酸若しくは脂肪
酸エステル類を高圧下に接触的に水素添加することによ
って製造され、従来よりこの水素添加反応に対しては銅
・クロム系触媒が使用されて来ている。
BACKGROUND OF THE INVENTION Higher fatty alcohols are important intermediate raw materials in the chemical industry, and fatty alcohol sulphates,
It is used as a raw material for surfactants such as polyglycol ether and is produced by catalytically hydrogenating fatty acids or fatty acid esters obtained from natural fats and oils under high pressure. Copper / chromium based catalysts have been used.

【0003】銅・クロム系触媒は種々の方法によって製
造することが出来るが、アドキンス触媒として知られる
銅・クロマイト系触媒は高表面積を有しており、高活性
を示すばかりでなく安価な6価クロムを原料として製造
することが出来るので広範囲に使用されて来た経緯を有
し、通常触媒原料としてクロム酸塩類、重クロム酸塩類
或いは無水クロム酸等が使用され、金属銅塩類共存下に
沈殿法よって製造、供給されて来ている。
Copper / chromium-based catalysts can be produced by various methods, but copper / chromite-based catalysts known as Adkins catalysts have a high surface area and are not only highly active but also inexpensive hexavalent. Since it can be produced from chromium as a raw material, it has a history of being widely used.Chromates, dichromates or chromic anhydride are usually used as catalyst raw materials, and precipitates in the presence of metallic copper salts. It is manufactured and supplied according to the law.

【0004】クロム酸塩類或いは重クロム酸塩類等を原
料とする共沈法の銅・クロマイト系触媒は、クロムの化
学的性質上沈殿生成工程において6価クロムを完全に沈
殿させることが出来ず、その製造段階で排水等に含有さ
れ排出されて来るので環境汚染防止上その対策が必要で
あり、還元剤等での処理によって不溶性の沈澱物となし
捕集することによって系外への流出防止が図られている
が、結果的にクロム化合物を含むスラッヂを発生するの
でその廃棄措置を講じなければならないにも拘わらず未
だに最終的な処理法は確立されていない。
The co-precipitation copper / chromite type catalyst using a chromate or a dichromate as a raw material cannot completely precipitate hexavalent chromium in the precipitation forming step due to the chemical nature of chromium. Since it is contained in wastewater etc. and discharged at the manufacturing stage, it is necessary to take measures to prevent environmental pollution.By treating with a reducing agent, etc., it will not be an insoluble precipitate and it will be prevented from flowing out of the system. Although it has been attempted, a final treatment method has not been established yet despite the fact that sludge containing chromium compounds is generated as a result and the disposal measures must be taken.

【0005】(3) 又、銅・クロマイト系触媒は通常成型体又は粉体として
使用され、その製造段階から反応への適用過程で種々の
取扱をしなければならないが、その中で触媒が微粉化し
作業環境への飛散も起こり得るので、粉化防止のための
対策或いは集塵対策等を講ずる必要があり、銅・クロマ
イト系触媒は水素添加反応に対して優れた性能を有して
はいるが、クロムの有害性に対する配慮からクロム無添
加触媒の開発が要望されて来ている。
(3) Further, the copper-chromite type catalyst is usually used as a molded body or powder, and various handling must be carried out in the process of application from the production stage to the reaction, in which the catalyst is fine powder. It is necessary to take measures to prevent pulverization or dust collection, as it can be dispersed into the work environment and copper and chromite catalysts have excellent performance for hydrogenation reactions. However, there is a demand for the development of a chromium-free catalyst in consideration of the harmful effects of chromium.

【0006】一般に触媒成分としてのクロムは触媒に耐
熱性を与え、触媒構造を安定化するとされており、通常
クロムを含有しない触媒は低活性であると共に活性の耐
久性が劣る傾向を示し、クロム無添加で工業的に使用可
能な触媒となすためにはこれらの欠点を改善することが
必要とされ、クロムと同様な効果が期待される成分とし
て、酸化アルミニウム、酸化珪素、酸化チタン、酸化ジ
ルコニウム、酸化マグネシウム等を選び酸化銅と組み合
わせ使用することを中心にクロム無添加触媒の開発が行
われてきた。
It is generally said that chromium as a catalyst component imparts heat resistance to the catalyst and stabilizes the catalyst structure. Usually, a catalyst not containing chromium has low activity and tends to have poor activity durability. In order to make a catalyst that can be used industrially without any addition, it is necessary to improve these drawbacks, and aluminum oxide, silicon oxide, titanium oxide, zirconium oxide are components that are expected to have the same effect as chromium. , Magnesium oxide, etc. have been selected and used in combination with copper oxide for the development of chromium-free catalysts.

【0007】これら酸化物の中でも酸化アルミニウムは
各種工業触媒において、主要成分の一つとして使用され
て来ており、例えば低温一酸化炭素転化触媒としての銅
・亜鉛系触媒においては過去数十年にわたって必須の第
三成分として添加使用されて来た実績を有し、本発明分
野に属する水素添加用触媒においても有効な成分の一つ
と考えられており、銅系クロム無添加触媒開発の中で酸
化アルミニウムの添加については多くの試みがなされて
来ている。
Among these oxides, aluminum oxide has been used as one of the main components in various industrial catalysts. For example, copper-zinc catalysts as low-temperature carbon monoxide conversion catalysts have been used for decades. It has a track record of being added and used as an essential third component, and is considered to be one of the effective components in the catalyst for hydrogenation belonging to the field of the present invention. Many attempts have been made to add aluminum.

【0008】これら触媒は通常共沈法によって製造され
るが、アルミニウムを含む沈澱物は微細であると共に保
水性が高く一般に濾過が困難であり、工業的な触媒製造
においては濾過性の改善が必要とされる場合が多く、又
水素添加反応は過酷な条件によって行われるので触媒粒
子は反応中或いはその操作の中で粉化する傾向を有し、
後の生成物処理過程において生成物と触媒との濾過によ
る分離に困難を来すことがしばしばあるために、これら
問題を同時に解決する方法が提案されており、 (4) 例えば特開昭55−8820においては銅、鉄、アルミ
ニウム塩類水溶液と苛性ソーダ水溶液を常温、又は加温
下に同時滴下することによって沈殿物を生成させた後熟
成し、次いで水洗、濾過、乾燥、焼成することによって
触媒を製造することが、特開平4−59050及び5−
31366においては銅、鉄、アルミニウム塩類水溶液
とアルカリ金属化合物水溶液の中和反応を加熱下に行う
に際しアルミニウム化合物と銅と鉄を含む金属類化合物
及び銅とアルミニウムを含む金属類化合物を交互に沈殿
生成させた後熟成し、次いで水洗、濾過、乾燥、焼成す
ることによって触媒を製造することが開示されており、
従来触媒よりも高活性で濾過性も良好な触媒が得られた
としているが、いずれも鉄を必須成分としている。
These catalysts are usually produced by a coprecipitation method, but the precipitate containing aluminum is fine and has a high water retention property and is generally difficult to filter. Therefore, it is necessary to improve the filterability in industrial catalyst production. In many cases, the hydrogenation reaction is carried out under severe conditions, so the catalyst particles have a tendency to be pulverized during the reaction or during the operation thereof.
Since it is often difficult to separate the product and the catalyst by filtration in the subsequent product treatment process, a method for simultaneously solving these problems has been proposed. (4) For example, JP-A-55-55 In 8820, a catalyst is produced by forming a precipitate by simultaneously dropping an aqueous solution of copper, iron and aluminum salts and an aqueous solution of caustic soda at room temperature or under heating, and then aging, followed by washing with water, filtration, drying and firing. It is disclosed in Japanese Patent Laid-Open Nos. 4-59050 and 5-
In 31366, when a neutralization reaction of an aqueous solution of copper, iron, aluminum salts and an aqueous solution of an alkali metal compound is performed under heating, an aluminum compound, a metal compound containing copper and iron, and a metal compound containing copper and aluminum are alternately precipitated. It is disclosed that the catalyst is produced by aging, and then washing with water, filtration, drying, and calcination.
It is said that a catalyst having higher activity and better filterability than the conventional catalyst was obtained, but all of them contain iron as an essential component.

【0009】天然油脂はトリグリセライドとして存在し
ているので通常メタノール等によってエステル化した後
水素添加反応用原料とされるが、反応物中には若干の遊
離脂肪酸が残存して来るので反応中において触媒は酸浸
食を受ける傾向があり、有効成分の溶出による活性低下
或いは浸食に起因する触媒粒子崩壊、微粒子化に繋が
り、そのために水素添加反応終了後において生成物と触
媒の濾別性悪化による操業上の問題等を発生するので、
その触媒上の欠点を克服するために例えば独国特許DE
−4028295では銅、マンガンを成分とする触媒に
おいて、これら塩類水溶液とアルカリ水溶液との中和反
応によって得た沈澱物を水洗、濾過、乾燥した後高温処
理することによって触媒耐酸性の向上を図っている。
Since natural fats and oils exist as triglycerides, they are usually used as a raw material for hydrogenation reaction after being esterified with methanol or the like. However, some free fatty acids remain in the reaction product, so that they are used as catalysts during the reaction. Is prone to acid erosion, which leads to activity deterioration due to elution of the active ingredient or catalyst particle disintegration and particle formation due to erosion, which results in deterioration of filterability between the product and catalyst after the completion of hydrogenation reaction Because the problem of
In order to overcome its catalytic drawbacks, eg German patent DE
-4028295 aims to improve the acid resistance of the catalyst by washing, filtering and drying the precipitate obtained by the neutralization reaction between the salt aqueous solution and the alkaline aqueous solution, followed by high temperature treatment in the catalyst containing copper and manganese as components. There is.

【0010】[0010]

【発明が解決しようとする課題】脂肪族アルキルエステ
ル類水素添加用触媒は従来の銅・クロマイト系触媒から
クロムを含有しない触媒系への代替が図られており、銅
主体の多くの触媒が提案されているが、反応物中には若
干の遊離酸が含有されて来ること、反応条件が過酷であ
ること等のために触媒活性、活性の耐久性或いは水素添
加反応後の生成物からの触媒濾過性等に優れた触媒が要
求されており、これら問題解決のために多くの研究開発
がなされているが未だ改良すべき諸課題が残されてい
る。
[Problems to be Solved by the Invention] As a catalyst for hydrogenation of aliphatic alkyl esters, a conventional copper / chromite catalyst is being replaced by a catalyst system containing no chromium, and many catalysts mainly composed of copper are proposed. However, due to the fact that the reaction product contains some free acid and the reaction conditions are severe, the catalytic activity, durability of the activity, or the catalyst from the product after hydrogenation reaction A catalyst excellent in filterability and the like is required, and many researches and developments have been made to solve these problems, but there are still various problems to be improved.

【0011】(5)(5)

【課題を解決するための手段】共沈法は金属塩類水溶液
とアルカリ金属化合物水溶液との中和反応によって沈殿
物を生成させることを基本とする触媒製造法であり、高
活性、高表面積触媒を製造する手段として有効である
が、通常の共沈法では沈殿生成において経時的にその生
成条件が変化するので沈殿粒子は不均一化し、粒子径が
揃った沈澱物を得ることが出来ないのに対し、金属塩類
水溶液とアルカリ金属化合物水溶液とを攪拌下にある水
中に一定PHを保持しつつ連続的に同時添加すれば沈殿
生成環境の経時的な変化がないために従来法よりも小粒
子径触媒粉末含有量が少なく、平均粒子径が大きな触媒
粉末が得られることが想定されるので、本発明者等は銅
系クロム無添加触媒が抱えている課題を解決するため
に、金属塩類水溶液とアルカリ金属化合物水溶液とを同
時に添加する沈殿生成法について検討して来た。
[Means for Solving the Problems] The coprecipitation method is a catalyst production method based on the formation of a precipitate by a neutralization reaction between an aqueous metal salt solution and an aqueous alkali metal compound solution. Although it is effective as a means for producing, in the ordinary coprecipitation method, the production conditions change over time in the production of precipitates, so the precipitated particles become non-uniform and it is not possible to obtain a precipitate with a uniform particle size. On the other hand, if the aqueous solution of the metal salt and the aqueous solution of the alkali metal compound are continuously added simultaneously to the water under stirring while maintaining a constant pH, the precipitation generation environment will not change over time, and thus the particle size will be smaller than that of the conventional method. Since it is assumed that a catalyst powder having a small catalyst powder content and a large average particle diameter can be obtained, the present inventors have proposed that in order to solve the problems of the copper-based chromium-free catalyst, an aqueous solution of metal salts is used. Came studied alkali metal compound solution and at the same time precipitation method of adding.

【0012】主体となる触媒成分として銅、アルミニウ
ム、マンガンを選び、それら金属塩類の混合水溶液とア
ルカリ金属化合物水溶液とを攪拌下にある加熱水の中に
連続的に同時に滴下し一定PHを保持しつつ中和反応を
行うことによって沈澱物を得ることを触媒形成の中心と
なし、金属塩類の混合水溶液、アルカリ金属化合物水溶
液、或いは攪拌下にある加熱水の中の少なくとも一か所
にアルミナ水和物を加えることによって予め微細に分散
されたアルミニウム化合物を沈澱物以外の触媒構成物と
することによる触媒調製法について検討を加え、アルミ
ナ水和物を含む沈澱物は次いで水洗、濾過、乾燥、焼成
することによって水素添加用触媒を得たが、この様な限
定された条件の下に沈澱物生成を行うことによる触媒は
高表面積を有し、小粒子径触媒粉末の含有量が少なく、
平均粒子径が大きい触媒が得られ、更にオートクレーブ
装置による高圧下での脂肪族アルキルエステル類水素添
加反応を行ったところ、非常に高活性を示し、活性の耐
久性が良く、又触媒の溶出に係わる生成物の着色も認め
られず、しかも水素添加反応終了後において生成物と触
媒との濾別が容易な優れた触媒であることが判明した。
Copper, aluminum and manganese are selected as main catalyst components, and a mixed aqueous solution of these metal salts and an aqueous alkali metal compound solution are continuously and simultaneously dropped into heated water under stirring to maintain a constant PH. While forming a precipitate by carrying out a neutralization reaction is the center of catalyst formation, alumina hydration is carried out in at least one part of a mixed aqueous solution of metal salts, an aqueous solution of an alkali metal compound, or heated water under stirring. The catalyst preparation method by adding a finely dispersed aluminum compound in advance as a catalyst constituent other than the precipitate was added, and the precipitate containing the alumina hydrate was then washed with water, filtered, dried and calcined. The catalyst for hydrogenation was obtained by carrying out the above, and the catalyst obtained by carrying out the precipitate formation under such limited conditions has a high surface area, Low content of particle size catalyst powder,
A catalyst with a large average particle size was obtained, and further hydrogenation reaction of aliphatic alkyl esters under high pressure with an autoclave device showed very high activity, good activity durability, and good catalyst elution. No coloring of the product was observed, and it was found that the product was an excellent catalyst in which the product and the catalyst could be easily separated by filtration after the completion of the hydrogenation reaction.

【0013】本触媒調製法においては、アルミニウムは
その塩類を金属塩類の混合水溶液中 (6) に加えることにより沈澱物として触媒構成成分となすと
共に、金属塩類の混合水溶液、アルカリ金属化合物水溶
液、或いは攪拌下にある加熱水の中の少なくとも一か所
に予めアルミナ水和物を添加し、触媒構成成分となすこ
とによっても加えられるが、予めアルミナ水和物を添加
することは優れた触媒を得る上で必須であり、使用出来
るアルミナ水和物は通常市販されているギブサイト、べ
ーマイト、バイアライト、擬ベーマイトゲル、無定形ア
ルミナ水和物等を挙げることが出来るが好ましくはギブ
サイトで、その平均粒子径が7〜30μ、好ましくは1
0〜20μの範囲であり、又金属塩類水溶液中に加えら
れるアルミニウム塩類としては硝酸アルミニウム、硫酸
アルミニウム、塩化アルミニウム等であり、全触媒成分
を酸化物に換算した場合、酸化アルミニウム含有量は1
0.0〜70.0重量%、好ましくは15〜60重量%
で、その含有量が10.0重量%以下或いは70.0重
量%以上では高活性触媒は得られず、特にその含有量が
70.0重量%以上の触媒においては触媒の還元性に問
題を生じる。
In the present catalyst preparation method, aluminum is added as a precipitate to the catalyst component by adding the salt thereof to the mixed aqueous solution of the metal salt (6), and the mixed aqueous solution of the metal salt, the aqueous solution of the alkali metal compound, or It can also be added by adding alumina hydrate in advance to at least one place in the heated water under stirring to form a catalyst constituent component, but adding alumina hydrate in advance gives an excellent catalyst. Indispensable above, the alumina hydrate that can be used is usually commercially available gibbsite, boehmite, vialite, pseudo-boehmite gel, amorphous alumina hydrate and the like, but preferably gibbsite, and its average. The particle size is 7 to 30 μ, preferably 1
In the range of 0 to 20 μm, and aluminum salts added to the aqueous metal salt solution are aluminum nitrate, aluminum sulfate, aluminum chloride, etc., and when all the catalyst components are converted to oxides, the aluminum oxide content is 1
0.0 to 70.0% by weight, preferably 15 to 60% by weight
When the content is 10.0% by weight or less or 70.0% by weight or more, a highly active catalyst cannot be obtained. Particularly, in the case where the content is 70.0% by weight or more, there is a problem in the reducing property of the catalyst. Occurs.

【0014】銅成分は金属塩類水溶液中の成分の1つと
して銅塩類を添加溶解することによって加えられ、使用
される塩類としては硝酸銅、硫酸銅、塩化銅等であり、
触媒中に占める酸化銅の含有量は全触媒成分を酸化物に
換算した場合酸化銅として20.0〜80.0重量%、
好ましくは30.0〜65.0重量%の範囲で、その含
有量が20.0重量%以下或いは80.0%以上では活
性が低く、実用に耐える触媒を得ることが出来ない。
The copper component is added by adding and dissolving the copper salt as one of the components in the aqueous metal salt solution, and the salts used are copper nitrate, copper sulfate, copper chloride, etc.,
The content of copper oxide in the catalyst is 20.0 to 80.0% by weight as copper oxide when all the catalyst components are converted to oxides.
The content is preferably in the range of 30.0 to 65.0% by weight, and when the content is 20.0% by weight or less or 80.0% or more, the activity is low and a catalyst that can be used practically cannot be obtained.

【0015】更に本発明触媒においては第3成分として
マンガンが添加されるが、銅成分と同様に硝酸マンガ
ン、硫酸マンガン、塩化マンガン等を金属塩類水溶液中
に塩類成分の1つとして添加溶解することによって加え
られ、全触媒成分を酸化物に換算した場合酸化マンガン
としての含有量は0.1〜10.0重量%、好ましくは
0.5〜7.0重量%の範囲であり、その含有量が0.
1重量%以下では高活性触媒は得られず、10.0重量
%以上では触媒の耐酸性が不充分となり、触媒を繰り返
し使用するに当たっての活性及び濾過性の低下が見ら
れ、又好ましくない (7) 副反応を生じ易くなる。
Further, in the catalyst of the present invention, manganese is added as the third component, but like the copper component, manganese nitrate, manganese sulfate, manganese chloride, etc. are added and dissolved in the aqueous metal salt solution as one of the salt components. The content of manganese oxide is 0.1 to 10.0% by weight, preferably 0.5 to 7.0% by weight, when all the catalyst components are converted into oxides. Is 0.
If it is less than 1% by weight, a highly active catalyst cannot be obtained, and if it is more than 10.0% by weight, the acid resistance of the catalyst becomes insufficient, and the activity and filterability upon repeated use of the catalyst are deteriorated. 7) Side reactions are likely to occur.

【0016】本発明触媒製造においては、沈澱物生成で
使用される金属塩類水溶液の濃度はその水溶液中の全金
属塩類含有量を金属に換算した場合5〜30wt.%の
範囲で使用され、一方沈殿剤はアルカリ金属元素の中の
ナトリウム、或いはカリウム化合物の水溶液であり、こ
れら金属化合物として挙げることが出来るのは水酸化
物、炭酸塩、重炭酸塩或いはこれら化合物の混合物であ
るが、特に炭酸塩が好ましく、5〜30重量%の水溶液
として使用される。
In the production of the catalyst of the present invention, the concentration of the aqueous metal salt solution used for forming the precipitate is 5 to 30 wt.% When the total content of metal salts in the aqueous solution is converted to metal. %, While the precipitating agent is an aqueous solution of a sodium or potassium compound in the alkali metal elements, and examples of these metal compounds include hydroxides, carbonates, bicarbonates or these compounds. However, carbonate is particularly preferable, and it is used as an aqueous solution of 5 to 30% by weight.

【0017】金属塩類水溶液およびアルカリ金属化合物
水溶液は攪拌しつつある加熱水中に一定PH下で連続的
に同時添加され沈澱物を生成させるが、得られる沈澱は
金属類化合物の混合物となっており、これら金属類化合
物の性状は沈殿が生成する環境としての水溶液温度或い
はPH値に大きく依存しており、均一な物理的及び化学
的性状を有すると共に大きな粒子径からなる沈澱物を得
るためには温度及びPH値を制御することが重要であ
る。
The aqueous solution of metal salt and the aqueous solution of alkali metal compound are continuously added simultaneously with stirring in heated water under constant pH to form a precipitate, and the obtained precipitate is a mixture of metal compounds. The properties of these metal compounds are largely dependent on the temperature of the aqueous solution or the PH value as the environment in which precipitation occurs. In order to obtain a precipitate having uniform physical and chemical properties and a large particle size, the temperature And it is important to control the PH value.

【0018】本発明触媒製造においては加熱水温度は6
0〜100℃、好ましくは70〜98℃の範囲であり、
その温度が60℃以下では好ましい性状を有する沈澱物
は得られないために安定した活性を示すと共に遊離酸に
対する耐久性を有する触媒とは無し得ず、又100℃以
上の温度では各触媒成分間で形成された複合酸化物前駆
体の変質が起こり、高活性を有する触媒を得ることが出
来ない。
In the production of the catalyst of the present invention, the heating water temperature is 6
0 to 100 ° C, preferably 70 to 98 ° C,
When the temperature is 60 ° C or lower, a precipitate having preferable properties cannot be obtained, so that a catalyst showing stable activity and having durability against free acid cannot be obtained. The deterioration of the composite oxide precursor formed in 1) occurs, and a catalyst having high activity cannot be obtained.

【0019】一方沈殿生成において一定に保持されるP
H値は5〜11、好ましくは6〜10の範囲から選ばれ
る値で、均一な性状の沈澱物を得るために沈殿剤滴下中
は一定PH値に保持されることが必要で、その値が5以
下では金属塩類を充分沈殿させることが出来ず、触媒収
率が低下してその組成が設計値からはずれた触媒とな
り、11以上ではアルミニウムの一部が溶出し始めるの
で触媒の収率或いはその組成に問題を生ずると共に沈澱
物の性状が損なわれるために性能的に良好な触媒 (8) が得られない。
On the other hand, P which is kept constant in the formation of precipitates
The H value is a value selected from the range of 5 to 11, preferably 6 to 10, and in order to obtain a precipitate having uniform properties, it is necessary to maintain a constant PH value during the dropping of the precipitating agent, and the value is If it is 5 or less, the metal salts cannot be sufficiently precipitated, and the catalyst yield decreases, and the composition becomes a catalyst that deviates from the designed value. If it is 11 or more, a part of aluminum begins to elute, so the catalyst yield or its A catalyst (8) having good performance cannot be obtained because it causes problems in composition and impairs the properties of the precipitate.

【0020】次いで沈澱物を含む水溶液の加熱を継続し
つつ攪拌下に保持することによって熟成するが、保持時
間は0.5〜10.0時間、好ましくは1.0〜5.0
の範囲で行われ、その時間が1.0以下では熟成が充分
でなく、又10.0以上では熟成に掛けた時間に見合う
触媒への性能上或いは物性上の効果を期待することが出
来ない。
Next, the aqueous solution containing the precipitate is aged by keeping it under stirring while continuing heating, and the holding time is 0.5 to 10.0 hours, preferably 1.0 to 5.0.
If the time is 1.0 or less, the aging is not sufficient, and if it is 10.0 or more, the effect on the catalyst in terms of performance or physical properties corresponding to the time taken for the aging cannot be expected. .

【0021】熟成終了後沈澱物は水洗、濾過、乾燥、焼
成されるが水洗は触媒中への不純物混入を防止するため
に重要で、水洗、濾過を数回繰り返すことによって実施
され、乾燥は沈澱物ケーキ中に含まれている遊離水分を
除去するための操作であり、50〜200℃、好ましく
は80〜150℃の温度範囲で行われるのに対し、焼成
は乾燥物中の結合水等を分解除去することによって触媒
成分を酸化物となすと共に各触媒成分間に複合酸化物を
生成させるために行われ、触媒に耐酸性或いは活性の安
定性を与えるために重要であり、通常300〜1000
℃、好ましくは350〜800℃の温度範囲で数時間焼
成することが必要で、その温度が300℃以下では触媒
成分を酸化物となすためには不充分であり、1000℃
以上の温度では酸化物の結晶成長が助長される。
After the completion of aging, the precipitate is washed with water, filtered, dried and calcined. Washing with water is important for preventing impurities from being mixed into the catalyst. It is carried out by repeating washing and filtering several times, and the drying is carried out by the precipitation. It is an operation for removing free water contained in the product cake, and is performed in a temperature range of 50 to 200 ° C., preferably 80 to 150 ° C., while the baking removes bound water and the like in the dried product. It is performed to decompose and remove the catalyst component to form an oxide and to form a complex oxide between the catalyst components, which is important for imparting acid resistance or activity stability to the catalyst, and usually 300 to 1000.
It is necessary to perform calcination for several hours in a temperature range of 350 ° C, preferably 350 to 800 ° C. If the temperature is 300 ° C or lower, it is insufficient to form the catalyst component as an oxide, and 1000 ° C.
At the above temperature, crystal growth of oxide is promoted.

【0022】得られた触媒粉末について物性測定を行っ
たところ高表面積を有し、小粒子径の触媒粉末含有量が
少なく、しかも平均粒子径の大きな酸化物粉末が得られ
たが、その性能を調べるためにオートクレーブ装置によ
って高圧下にラウリン酸メチルの水素添加反応を行った
ところ、高活性を示すと共に触媒の溶出に係わる生成物
の着色は認められず、又反応終了後の濾過による生成物
と触媒の分離が容易であり、しかも副反応物の生成が少
ない触媒が得られたことを確認した。
When the physical properties of the obtained catalyst powder were measured, an oxide powder having a high surface area, a small content of the catalyst powder having a small particle size, and a large average particle size was obtained. When hydrogenation reaction of methyl laurate was carried out under high pressure by an autoclave device to investigate, no coloration of the product showing high activity and relating to the elution of the catalyst was observed, and the product was obtained by filtration after completion of the reaction. It was confirmed that the catalyst was obtained in which the separation of the catalyst was easy and the generation of by-products was small.

【0023】触媒成分金属類を1段階によって共沈させ
ることにより脂肪酸エステルの水素添加に優れた性能を
示すと共に生成物と触媒との分離性に優れた触媒が得ら
れた (9) が、本発明者等は更に1段階によって共沈物を得た後、
そのスラリーの加熱攪拌を継続しつつ別金属成分塩類水
溶液とアルカリ金属化合物水溶液とを一定PH下、更に
連続的に同時添加することによって2段階での共沈物生
成を行い、次いで沈澱物を熟成した後水洗、濾過、乾
燥、焼成することによって触媒酸化物粉末を得たが、こ
の酸化物調製においてもアルミニウムはその塩類を金属
塩類の混合水溶液中に加えることにより沈澱させ触媒構
成成分となすと共に、金属塩類の混合水溶液、別金属塩
類水溶液、アルカリ金属化合物水溶液、或いは攪拌下に
ある加熱水の中の少なくとも一か所に予めアルミナ水和
物を加えることによっても触媒構成成分となした。
By coprecipitating the catalyst component metals in one step, a catalyst exhibiting excellent hydrogenation of the fatty acid ester and excellent separability between the product and the catalyst was obtained (9). After obtaining co-precipitates by one more step, the inventors
A coprecipitate is formed in two steps by continuously and simultaneously adding another metal component salt aqueous solution and an alkali metal compound aqueous solution while continuously heating and stirring the slurry, and then aging the precipitate. After that, the catalyst oxide powder was obtained by washing with water, filtration, drying and calcination.Also in the preparation of this oxide, aluminum was precipitated by adding its salt to a mixed aqueous solution of metal salts to form a catalyst constituent component. The catalyst constituent was also prepared by adding alumina hydrate in advance to at least one of the mixed aqueous solution of metal salts, the aqueous solution of another metal salt, the aqueous solution of alkali metal compound, or the heated water under stirring.

【0024】2段階共沈殿法においても使用した金属塩
類、アルカリ金属化合物及びアルミナ水和物は1段階共
沈殿法の場合と同じであり、又沈澱物生成後の熟成、水
洗、濾過、乾燥、焼成等の処理も1段階共沈殿法と全く
同様に実施することによって触媒酸化物粉末を得たが、
この酸化物について物性測定を行ったところ高表面積を
有し、小粒子径の触媒粉末含有量が少なく、平均粒子径
の大きな酸化物粉末が1段階共沈殿法と同様に得られて
おり、その性能を調べるためにオートクレーブ装置によ
って高圧下にラウリン酸メチルの水素添加反応を行った
ところ、一層の高活性を示すと共に触媒の溶出に係わる
生成物の現象は認められず、反応終了後の濾過による生
成物と触媒の分離が容易であり、しかも副反応物の生成
が少ない触媒が得られたことを確認し、本発明を完成す
るに至った。
The metal salts, alkali metal compound and alumina hydrate used in the two-step coprecipitation method are the same as in the one-step coprecipitation method, and the aging, washing with water, filtration and drying after the precipitation of the precipitate are carried out. The catalyst oxide powder was obtained by performing the treatment such as calcination exactly as in the one-step coprecipitation method.
When the physical properties of this oxide were measured, an oxide powder having a high surface area, a small content of catalyst powder having a small particle size, and a large average particle size was obtained in the same manner as in the one-step coprecipitation method. When the hydrogenation reaction of methyl laurate was carried out under high pressure by an autoclave device to investigate the performance, it showed a higher activity and the phenomenon of the product related to the elution of the catalyst was not observed, and the reaction was performed after filtration. It was confirmed that a catalyst was obtained in which the product and the catalyst were easily separated and the side reaction product was less produced, and the present invention was completed.

【0025】[0025]

【発明の効果】本発明によれば酸化銅、酸化アルミニウ
ム、酸化マンガンよりなる触媒を金属塩類水溶液及びア
ルカリ金属化合物水溶液を攪拌下にある加熱水中に一定
PHを保持しつつ連続的に同時添加し、1段階、又は2
段階にわたって共沈操作を行うことによって沈澱物を生
成する触媒調製法において、触媒成分としてのアルミニ
ウムを金属塩類水溶液中へのアルミニウム塩類添加によ
ると同時にアルミナ水和物を金属塩類水溶液、2段階共
沈殿法によって使用される別金属塩類水溶液、ア (10) ルカリ金属化合物水溶液、或いは攪拌下にある加熱水中
に予め添加しておくことにより調製された触媒は高表面
積を有し、小粒子径触媒粉末含有量が少なく、平均粒子
径が大きい触媒酸化物粉末であり、脂肪族アルキルエス
テル類の水素添加反応に対して高活性を示すと共に触媒
成分の溶出がなく、しかも反応終了後での濾過工程にお
いて生成物と触媒の分離が容易であり、脂肪族アルキル
エステル類水素添加に対して実用上優れた触媒である。
According to the present invention, a catalyst composed of copper oxide, aluminum oxide, and manganese oxide is continuously and simultaneously added to an aqueous solution of a metal salt and an aqueous solution of an alkali metal compound under stirring while maintaining a constant PH. 1 stage, or 2
In a method for preparing a catalyst, which produces a precipitate by performing coprecipitation operation over steps, aluminum as a catalyst component is added to an aqueous solution of a metal salt, and at the same time alumina hydrate is added to the aqueous solution of a metal salt, a two-step coprecipitation method. The catalyst prepared by previously adding it to another metal salt aqueous solution used in accordance with the method, an alkali metal compound aqueous solution (10), or heated water under stirring has a high surface area and has a small particle size catalyst powder. It is a catalyst oxide powder with low content and large average particle size, which shows high activity for the hydrogenation reaction of aliphatic alkyl esters and does not elute the catalyst component, and in the filtration step after the reaction is completed. The product and the catalyst can be easily separated, and the catalyst is practically excellent for the hydrogenation of aliphatic alkyl esters.

【0026】[0026]

【実施例】次に本発明を実施例によって具体的に説明す
るが、その中で記載されている性能評価は次のような装
置及び条件で実施し、又表面積測定は液体窒素温度にお
ける窒素吸着によって、粒子径測定はレーザー回折型の
測定装置によった。 性能測定装置 上下攪拌式オートクレーブ(内容積 100ml) 性能評価条件 反応物 ラウリン酸メチル 仕込み量(g) 40 触媒量(g) 2.0 反応圧力〔kg/cm2 (G)〕 280 反応温度(℃) 250 濾過試験条件 濾過圧力〔kg/cm2 (G)〕 1.0 濾過温度(℃) 55
EXAMPLES The present invention will now be described in detail by way of examples. The performance evaluation described therein is carried out under the following equipment and conditions, and the surface area is measured by nitrogen adsorption at liquid nitrogen temperature. The particle size was measured by a laser diffraction type measuring device. Performance measuring device Vertical stirring type autoclave (internal volume 100 ml) Performance evaluation conditions Reactant Methyl laurate Charge amount (g) 40 Catalyst amount (g) 2.0 Reaction pressure [kg / cm 2 (G)] 280 Reaction temperature (° C) ) 250 Filtration test conditions Filtration pressure [kg / cm 2 (G)] 1.0 Filtration temperature (° C) 55

【0027】触媒性能評価法 ラウリン酸メチル(純度98wt.%)40g及び触媒
酸化物粉末2.0gを100ml上下攪拌式オートクレー
ブ中に秤取し、温度200℃、水素圧力10kg/cm
2 (G)、攪拌速度60回/分の条件で60分間触媒の
水素還元を行った後、温度及び圧力を夫々280℃、2
50kg/cm2 (G)に変更し、同条件下10 (11) 0分間維持することによって水素化反応を行い、得られ
た生成物は冷却後加圧式濾過器によって触媒と分離し、
次いでガスクロマトグラフィーによってその組成分析を
行い、触媒活性及び選択性を評価したが、触媒活性とし
てのラウリン酸メチル転化率は下式によって求め、又触
媒選択性は副反応生成物としてのハイドロカーボン生成
量によった。
Catalyst Performance Evaluation Method 40 g of methyl laurate (purity 98 wt.%) And 2.0 g of catalyst oxide powder were weighed in a 100 ml vertical stirring autoclave, and the temperature was 200 ° C. and the hydrogen pressure was 10 kg / cm.
2 (G), after hydrogen reduction of the catalyst for 60 minutes at a stirring rate of 60 times / min, the temperature and pressure were set to 280 ° C. and 2
The hydrogenation reaction was carried out by changing to 50 kg / cm 2 (G) and maintaining it under the same conditions for 10 (11) 0 minutes, and the obtained product was separated from the catalyst by a pressure filter after cooling,
Then, the composition was analyzed by gas chromatography to evaluate the catalytic activity and selectivity. The conversion rate of methyl laurate as the catalytic activity was obtained by the following formula, and the catalytic selectivity was determined as the formation of hydrocarbon as a side reaction product. It depends on the quantity.

【0028】触媒濾過試験 水素化反応終了後、オートクレーブより取り出した生成
物は冷却され、次いでラウリルアルコール80mlを加え
て希釈した後外部加熱式温度コントローラー付加圧濾過
器中に移し、濾過圧力1kg/cm2 (G)、温度55℃に
おいて所定量(50〜100ml)の生成物を濾過するに
要する時間を求めることによって触媒の濾過性とした。
Catalytic Filtration Test After the hydrogenation reaction was completed, the product taken out from the autoclave was cooled, then diluted by adding 80 ml of lauryl alcohol, and then transferred to an external heating type temperature controller added pressure filter to obtain a filtration pressure of 1 kg / cm 2. 2 (G), the filterability of the catalyst was determined by determining the time required to filter a given amount (50-100 ml) of product at a temperature of 55 ° C.

【0029】実施例1−1 還流式冷却器付き反応器に純水24Lを加えた後攪拌下
に95℃に加熱昇温させておき(A液とする)、これと
平行して硫酸銅(CuSO4 ・5H2 O)3.8kg、
硫酸マンガン(MnSO4 ・4〜5H2 O)0.4k
g、を純水24Lに溶解させた水溶液に水酸化アルミニ
ウム(ギブサイト系)1.4kgを添加分散させた水溶
液(B液とする)、及び炭酸ソーダ(Na2 CO3
2.7kgを純水9Lに溶解させた水溶液(C液とす
る)を準備調製し、A液を攪拌下に95℃に保ちつつ、
一定PH(8.0)下にB液及びC液をA液中に同時滴
下し、60分間で添加終了することによって沈殿物を生
成させた。
Example 1-1 After adding 24 L of pure water to a reactor equipped with a reflux condenser, the mixture was heated to 95 ° C. under stirring and heated to a temperature of A (solution A), and in parallel with this, copper sulfate ( CuSO 4 · 5H 2 O) 3.8kg ,
Manganese Sulfate (MnSO 4・ 4-5H 2 O) 0.4k
An aqueous solution prepared by adding 1.4 kg of aluminum hydroxide (gibbsite-based) to an aqueous solution prepared by dissolving 24 g of pure water in 24 L of pure water (referred to as solution B), and sodium carbonate (Na 2 CO 3 ).
Prepare and prepare an aqueous solution (referred to as liquid C) in which 2.7 kg of pure water is dissolved in 9 L of pure water, and while keeping liquid A at 95 ° C. under stirring,
Solution B and solution C were simultaneously added dropwise to solution A under a constant pH (8.0), and a precipitate was generated by completing the addition in 60 minutes.

【0030】得られた沈殿物は更に温度95℃に維持し
つつ60分間攪拌を続行することによって熟成した後濾
過、水洗を数回繰り返し、濾過液の電気伝導度が100
μS (12) 以下に低下した時点で水洗を終了し、次いで濾別するこ
とによって得た沈殿ケーキは110℃、12時間乾燥後
電気炉中に移し750℃、1時間焼成することによって
触媒酸化物粉体を得たが、この触媒は下記の組成を有
し、その表面積、小粒子(粒子径3μ以下)触媒粉末含
有量、及び平均粒子径測定結果は表−1に、触媒性能評
価及び濾過試験の結果は表−2に示した通りであった。 触媒組成 CuO 54.8 wt.% Mn2 3 6.1 wt.% Al2 3 39.1 wt.%
The obtained precipitate is further aged by continuing stirring for 60 minutes while maintaining the temperature at 95 ° C., and then filtration and washing with water are repeated several times, and the electric conductivity of the filtrate is 100.
The precipitate cake obtained by terminating the washing with water at the point of time when μS (12) dropped below and then filtering off was dried at 110 ° C. for 12 hours, then transferred to an electric furnace and calcined at 750 ° C. for 1 hour to obtain a catalyst oxide. A powder was obtained. This catalyst had the following composition, and its surface area, small particle (particle size 3 μm or less) catalyst powder content, and average particle size measurement results are shown in Table 1, and catalyst performance evaluation and filtration. The test results were as shown in Table-2. Catalyst composition CuO 54.8 wt. % Mn 2 O 3 6.1 wt. % Al 2 O 3 39.1 wt. %

【0031】実施例1−2 実施例1−1において硫酸銅、硫酸マンガンに加えて硫
酸アルミニウム〔Al2 (SO4 3 ・16H2 O)
3.7kgをB液中に添加溶解した以外は、実施例1−
1と全く同一処理法によって実施例1−2の触媒を調製
したが、この触媒は下記の組成を有し、その平均粒子径
測定結果は表−1に、触媒性能評価及び濾過試験の結果
は表−2に示した通りであった。 触媒組成 CuO 43.5 wt.% Mn2 3 5.2 wt.% Al2 3 51.3 wt.%
Example 1-2 In addition to copper sulfate and manganese sulfate in Example 1-1, aluminum sulfate [Al 2 (SO 4 ) 3 · 16H 2 O) was used.
Example 1-except that 3.7 kg was added and dissolved in solution B
The catalyst of Example 1-2 was prepared by exactly the same treatment method as in Example 1. The catalyst had the following composition, the average particle size measurement results thereof are shown in Table 1, and the catalyst performance evaluation and filtration test results are shown. It was as shown in Table-2. Catalyst composition CuO 43.5 wt. % Mn 2 O 3 5.2 wt. % Al 2 O 3 51.3 wt. %

【0032】比較例1 還流式冷却器付き反応器に硫酸銅(CuSO4 ・5H2
O)3.8kg、硫酸マンガン(MnSO4 ・4〜5H
2 O)0.4kgを秤取し、純水24Lを攪拌下に加え
て溶解した後、水酸化アルミニウム(ギブサイト系)
1.4kgを添加分散させ、攪拌を継続しつつ95℃に
昇温しておき(沈殿母液とする)、これと平行して炭酸
ソーダ(Na2 CO3 )2.7kgを純水9Lに溶解さ
せた水溶液を調製し、予め準備調製しておいた沈殿母液
中に温度95℃を維持しつつ滴下し (13) 、約60分間で沈殿を生成させた後、PH値を8に調整
することによって沈殿生成操作を終了する。
Comparative Example 1 Copper sulfate (CuSO 4 .5H 2 ) was added to a reactor equipped with a reflux condenser.
O) 3.8 kg, manganese sulphate (MnSO 4・ 4-5H
2 O) 0.4 kg is weighed, and 24 L of pure water is added with stirring to dissolve, and then aluminum hydroxide (gibbsite type)
1.4 kg was added and dispersed, and the temperature was raised to 95 ° C. while continuing stirring (precipitation mother liquor). In parallel with this, 2.7 kg of sodium carbonate (Na 2 CO 3 ) was dissolved in 9 L of pure water. Prepare the prepared aqueous solution and drop it into the mother liquor of the precipitation prepared in advance while maintaining the temperature at 95 ° C (13). After the precipitation is generated in about 60 minutes, adjust the PH value to 8. The precipitation generation operation is completed by.

【0033】得られた沈殿物は更に温度95℃に維持し
つつ60分間攪拌を続行することによって熟成した後濾
過、水洗を数回繰り返し、濾過液の電気伝導度が100
μS以下に低下した時点で水洗を終了し、次いで濾別す
ることによって得た沈殿ケーキは110℃、12時間乾
燥後電気炉中に移し750℃、1時間焼成することによ
って触媒酸化物粉体を得たが、この触媒は下記の組成を
有し、その表面積、小粒子径(粒子径3μ以下)触媒粉
末含有量、及び平均粒子径測定結果は表−1に、触媒性
能評価及び濾過試験の結果は表−2に示した通りであっ
た。 触媒組成 CuO 54.3 wt.% Mn2 3 7.8 wt.% Al2 3 37.9 wt.%
The obtained precipitate is further aged by continuing stirring for 60 minutes while maintaining the temperature at 95 ° C., and then filtration and washing with water are repeated several times, and the electric conductivity of the filtrate is 100.
The precipitate cake obtained by terminating the washing with water at the time when the temperature dropped to μS or less and then filtering off was dried at 110 ° C. for 12 hours, then transferred to an electric furnace and calcined at 750 ° C. for 1 hour to obtain a catalyst oxide powder. This catalyst had the following composition, and its surface area, small particle size (particle size 3 μm or less) catalyst powder content, and average particle size measurement results are shown in Table 1, and the results of catalyst performance evaluation and filtration test are shown. The results were as shown in Table-2. Catalyst composition CuO 54.3 wt. % Mn 2 O 3 7.8 wt. % Al 2 O 3 37.9 wt. %

【0034】実施例2−1 還流式冷却器付き反応器に純水24Lを加えた後攪拌下
に95℃に加熱昇温させておき(A液とする)、これと
平行して硫酸銅(CuSO4 ・5H2 O)3.8kg、
硫酸マンガン(MnSO4 ・4〜5H2 O)0.4k
g、を純水24Lに溶解させた水溶液に水酸化アルミニ
ウム(ギブサイト系)1.4kgを添加分散させた水溶
液(B液とする)、及び炭酸ソーダ(Na2 CO3
2.7kgを純水9Lに溶解させた水溶液(C液とす
る)を準備調製し、A液を攪拌下に95℃に保ちつつ、
一定PH(8.0)下にB液及びC液をA液中に同時滴
下し、60分間で添加終了することによって第一段階の
沈殿生成を終了する。
Example 2-1 After adding 24 L of deionized water to a reactor equipped with a reflux condenser, the mixture was heated to 95 ° C. under stirring and heated to a temperature of A (solution A), and in parallel with this, copper sulfate ( CuSO 4 · 5H 2 O) 3.8kg ,
Manganese Sulfate (MnSO 4・ 4-5H 2 O) 0.4k
An aqueous solution prepared by adding 1.4 kg of aluminum hydroxide (gibbsite-based) to an aqueous solution prepared by dissolving 24 g of pure water in 24 L of pure water (referred to as solution B), and sodium carbonate (Na 2 CO 3 ).
Prepare and prepare an aqueous solution (referred to as liquid C) in which 2.7 kg of pure water is dissolved in 9 L of pure water, and while keeping liquid A at 95 ° C. under stirring,
The solution B and the solution C are simultaneously added dropwise to the solution A under a constant pH (8.0), and the addition of the solution is completed in 60 minutes, thereby completing the first-stage precipitation formation.

【0035】一方これとは別に硫酸銅(CuSO4 ・5
2 O)0.4kg、硫酸アルミニウ〔Al2 (S
4 3 ・16H2 O〕3.7kgを純水8.7Lに溶
解させた水溶(D液とする)及び炭酸ソーダ(Na2
3 )2.0kgを純水7.1L (14) に溶解せた水溶液(E液とする)を用意しておき、第一
段階の沈殿生成を終了したスラー中に、沈殿温度95℃
の保持及び継続攪拌を行いつつD液及びE液を同時滴下
し、一定PH(8.0)下に60分間で添加を終了する
ことによって第二段階の沈殿生成を完結させた。
[0035] On the other hand Apart from copper sulfate from this (CuSO 4 · 5
H 2 O) 0.4 kg, aluminum sulfate [Al 2 (S
O 4 ) 3 · 16H 2 O] 3.7 kg dissolved in 8.7 L of pure water to prepare water solution (Solution D) and sodium carbonate (Na 2 C).
An aqueous solution (referred to as liquid E) in which 2.0 kg of O 3 ) was dissolved in 7.1 L of pure water (14) was prepared, and the precipitation temperature was set to 95 ° C. in the slur after completion of the first-stage precipitation formation.
The solution D and the solution E were simultaneously added dropwise while maintaining the above condition and continuous stirring, and the addition of the solution was completed in 60 minutes under a constant pH (8.0) to complete the second-stage precipitation formation.

【0036】得られた沈殿物は更に温度95℃に維持し
つつ60分間攪拌を続行することによって熟成した後濾
過、水洗を数回繰り返し、濾過液の電気伝導度が100
μS以下に低下した時点で水洗を終了し、次いで濾別す
ることによって得た沈殿ケーキは110℃、12時間乾
燥後電気炉中に移し750℃、1時間焼成することによ
って触媒酸化物粉体を得たが、この触媒は下記の組成を
有し、その表面積、小粒子(粒子径3μ以下)触媒粉末
含有量、及び平均粒子径測定結果は表−1に、触媒性能
評価及び濾過試験の結果は表−2に示した通りであっ
た。 触媒組成 CuO 44.1 wt.% Mn2 3 4.7 wt.% Al2 3 51.2 wt.%
The obtained precipitate is further aged by continuing stirring for 60 minutes while maintaining the temperature at 95 ° C., and then filtration and washing with water are repeated several times so that the filtrate has an electric conductivity of 100.
The precipitate cake obtained by terminating the washing with water at the time when the temperature dropped to μS or less and then filtering off was dried at 110 ° C. for 12 hours, then transferred to an electric furnace and calcined at 750 ° C. for 1 hour to obtain a catalyst oxide powder. This catalyst had the following composition, and its surface area, small particle (particle size 3 μm or less) catalyst powder content, and average particle size measurement results are shown in Table 1, and the results of catalyst performance evaluation and filtration test. Was as shown in Table-2. Catalyst composition CuO 44.1 wt. % Mn 2 O 3 4.7 wt. % Al 2 O 3 51.2 wt. %

【0037】実施例2−2、2−3 実施例2−1において、B液への硫酸銅仕込み量を1.
6kg又は8.3kg、D液への硫酸銅仕込み量を0.
17kg又は0.92kg、E液への炭酸ソーダ仕込み
量を1.9kg又は2.2kg、とした以外は実施例2
−1と全く同一処理法によって実施例2−2、2−3の
触媒を調製したが、これら触媒は下記の組成を有し、そ
の平均粒子径測定結果は表−1に、触媒性能評価及び濾
過試験の結果は表−2に示した通りであった。 (15)
Examples 2-2, 2-3 In Example 2-1, the amount of copper sulfate charged to solution B was 1.
6 kg or 8.3 kg, and the amount of copper sulfate charged to the liquid D was set to 0.
Example 2 except that the amount of sodium carbonate charged to the liquid E was 17 kg or 0.92 kg and 1.9 kg or 2.2 kg.
The catalysts of Examples 2-2 and 2-3 were prepared by exactly the same treatment method as in -1, but these catalysts had the following compositions, and the average particle size measurement results are shown in Table 1 and the catalyst performance evaluation and The results of the filtration test were as shown in Table-2. (15)

【0038】実施例2−4、2−5 実施例2−1における第一段階での沈殿生成におい
て、、B液への硫酸マンガン仕込み量を夫々0.3kg
又は0.2kg、とした以外は実施例2−1と全く同一
処理法によって実施例2−4、2−5の触媒を調製した
が、これら触媒は下記の組成を有し、その平均粒子径測
定結果は表−1に、触媒性能評価及び濾過試験の結果は
表−2に示した通りであった。
Examples 2-4 and 2-5 In the precipitation formation in the first stage in Example 2-1, the manganese sulfate charge amount to the solution B was 0.3 kg, respectively.
Alternatively, the catalysts of Examples 2-4 and 2-5 were prepared by the same treatment method as that of Example 2-1, except that the amount was 0.2 kg. The measurement results are shown in Table-1, and the results of the catalyst performance evaluation and filtration test are shown in Table-2.

【0039】実施例2−6、2−7 実施例2−1において、B液への水酸化アルミニウム仕
込み量を0.7kg又は2.1kg、D液への硫酸アル
ミニウム仕込み量を1.9kg又は5、7kg、E液へ
の炭酸ソーダ仕込み量を実施例2−1と同量又は3.0
kgとした以外は実施例2−1と全く同一処理法によっ
て実施例2−6、2−7の触媒を調製したが、これら触
媒は下記の組成を有し、その平均粒子径測定結果は表−
1に、触媒性能評価及び濾過試験の結果は表−2に示し
た通りであった。
Examples 2-6 and 2-7 In Example 2-1, the amount of aluminum hydroxide charged to the liquid B was 0.7 kg or 2.1 kg, and the amount of aluminum sulfate charged to the liquid D was 1.9 kg or. 5, 7 kg, the amount of sodium carbonate charged to the liquid E is the same as in Example 2-1, or 3.0
The catalysts of Examples 2-6 and 2-7 were prepared by exactly the same treatment method as in Example 2-1, except that the amount was kg. The catalysts have the following compositions, and the average particle size measurement results are shown in the table. −
The results of the catalyst performance evaluation and the filtration test are shown in Table 1.

【0040】比較例2−1 (16) 実施例2−1において、B液への硫酸銅、硫酸マンガ
ン、水酸化アルミニウム仕込み量を8.3kg及び0.
12kg及び0.41kg、D液への硫酸銅、硫酸アル
ミニウム仕込み量を0.9kg及び1.1kg、C液並
びにE液への炭酸ソーダ仕込み量を5.3kg及び0.
9kgとした以外は実施例2−1と全く同一処理法によ
って比較例2−1の触媒を調製したが、これら触媒は下
記の組成を有し、その平均粒子径測定結果は表−1に、
触媒性能評価及び濾過試験の結果は表−2に示した通り
であった。 触媒組成 CuO 85.8 wt.% Mn2 3 1.2 wt.% Al2 3 13.0 wt.%
Comparative Example 2-1 (16) In Example 2-1, the charged amounts of copper sulfate, manganese sulfate and aluminum hydroxide to the solution B were 8.3 kg and 0.
12 kg and 0.41 kg, the amounts of copper sulfate and aluminum sulfate charged to the D liquid are 0.9 kg and 1.1 kg, and the amounts of sodium carbonate charged to the C liquid and the E liquid are 5.3 kg and 0.
Catalysts of Comparative Example 2-1 were prepared by the same treatment method as in Example 2-1, except that the amount was 9 kg. These catalysts have the following compositions, and the average particle size measurement results are shown in Table-1.
The results of the catalyst performance evaluation and the filtration test are shown in Table 2. Catalyst composition CuO 85.8 wt. % Mn 2 O 3 1.2 wt. % Al 2 O 3 13.0 wt. %

【0041】比較例2−2、2−3 実施例2−1において、B液への硫酸マンガン仕込み量
を夫々0kg又は3.02kg、C液への炭酸ソーダ仕
込み量を2.4kg又は4.5kgとした以外は実施例
2−1と全く同一処理法によって比較例2−2、2−3
の触媒を調製したが、これら触媒は下記の組成を有し、
その平均粒子径測定結果は表−1に、触媒性能評価及び
濾過試験の結果は表−2に示した通りであった。
Comparative Examples 2-2, 2-3 In Example 2-1, the amount of manganese sulfate charged to the liquid B was 0 kg or 3.02 kg, and the amount of sodium carbonate charged to the liquid C was 2.4 kg or 4. Comparative Examples 2-2, 2-3 by the same treatment method as in Example 2-1 except that the amount was 5 kg.
Were prepared, which had the following composition:
The average particle diameter measurement results are shown in Table-1, and the catalyst performance evaluation and filtration test results are shown in Table-2.

【0042】比較例2−4、2−5 実施例2−1において、B液への水酸化アルミニウム仕
込み量を夫々0kg又は3.5kg、D液へ硫酸アルミ
ニウム仕込み量を0kg又は9.5kg、並びにE液へ
の炭酸ソーダ仕込み量を0.17kg又は4.9kgと
した以外は実施 (17) 例2−1と全く同一処理法によって比較例2−4、2−
5の触媒を調製したが、これら触媒は下記の組成を有
し、その平均粒子径測定結果は表−1に、触媒性能評価
及び濾過試験の結果は表−2に示した通りであった。
Comparative Examples 2-4 and 2-5 In Example 2-1, the amount of aluminum hydroxide charged to solution B was 0 kg or 3.5 kg, and the amount of aluminum sulfate charged to solution D was 0 kg or 9.5 kg, respectively. Also, it was carried out except that the amount of sodium carbonate charged into the E liquid was 0.17 kg or 4.9 kg. (17) Comparative Examples 2-4, 2-by the same treatment method as in Example 2-1.
The catalyst of No. 5 was prepared. These catalysts had the following compositions, and the average particle diameter measurement results were as shown in Table-1, and the catalyst performance evaluation and filtration test results were as shown in Table-2.

【0043】実施例3 実施例2−1において、第一段階及び第二段階での沈殿
生成をいずれも80℃で行った以外は実施例2−1と全
く同一処理法によって実施例3の触媒を調製したが、こ
の触媒は下記の組成を有し、その平均粒子径測定結果は
表−1に、触媒性能評価及び濾過試験の結果は表−2に
示した通りであった。 触媒組成 CuO 45.2 wt.% Mn2 3 5.0 wt.% Al2 3 49.8 wt.%
Example 3 The catalyst of Example 3 was prepared in the same manner as in Example 2-1, except that the precipitation in the first step and the precipitation in the second step were both carried out at 80 ° C. This catalyst had the following composition. The average particle size measurement results were as shown in Table-1, and the catalyst performance evaluation and filtration test results were as shown in Table-2. Catalyst composition CuO 45.2 wt. % Mn 2 O 3 5.0 wt. % Al 2 O 3 49.8 wt. %

【0044】比較例3 実施例2−1において、第一段階及び第二段階での沈殿
生成をいずれも50℃で行った以外は実施例2−1と全
く同一処理法によって実施例3の触媒を調製したが、こ
の触媒は下記の組成を有し、その平均粒子径測定結果は
表−1に、触媒性能評価及び濾過試験の結果は表−2に
示した通りであった。 触媒組成 CuO 45.1 wt.% Mn2 3 4.6 wt.% Al2 3 50.3 wt.% (18)
Comparative Example 3 The catalyst of Example 3 was prepared in the same manner as in Example 2-1, except that the precipitation in the first step and the precipitation in the second step were both carried out at 50 ° C. This catalyst had the following composition. The average particle size measurement results were as shown in Table-1, and the catalyst performance evaluation and filtration test results were as shown in Table-2. Catalyst composition CuO 45.1 wt. % Mn 2 O 3 4.6 wt. % Al 2 O 3 50.3 wt. % (18)

【0045】[0045]

【表1】 *小粒子径(粒子径3μ以下)触媒粉末含有量 (19)[Table 1] * Small particle size (particle size 3μ or less) catalyst powder content (19)

【0046】[0046]

【表2】 [Table 2]

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 69/22 9546−4H // C07B 61/00 300 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C07C 69/22 9546-4H // C07B 61/00 300

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 銅、アルミニウム、マンガンの金属塩類
水溶液及びアルカリ金属化合物水溶液を攪拌下にある加
熱水中に一定PH下で同時添加した後熟成し、次いで水
洗、濾過、乾燥、焼成することによる触媒製造法におい
て、金属塩類水溶液、アルカリ金属化合物水溶液、又は
攪拌下にある加熱水中の少なくとも1ヶ所に予めアルミ
ナ水和物を添加する脂肪族アルキルエステル類水素添加
反応用触媒の製造法。
1. A catalyst prepared by simultaneously adding an aqueous metal salt solution of copper, aluminum and manganese and an aqueous alkali metal compound solution to heated water under stirring at a constant pH and then aging, followed by washing with water, filtration, drying and firing. A method for producing a catalyst for hydrogenation reaction of an aliphatic alkyl ester, wherein an alumina hydrate is added in advance to at least one location in an aqueous solution of a metal salt, an aqueous solution of an alkali metal compound, or heated water under stirring.
【請求項2】 銅、マンガンよりなる金属塩類水溶液及
びアルカリ金属化合物水溶液を攪拌下にある加熱水中に
一定PH下で同時添加することによって得たスラリー中
に、銅、アルミニウムよりなる別金属塩類水溶液及びア
ルカリ金属化合物水溶液を加熱攪拌を継続しつつ一定P
H下で同時添加した後熟成し、次いで水洗、濾過、乾
燥、焼成することによる触媒製造法において、金属塩類
水溶液、別金属塩類水溶液、アルカリ金属化合物水溶
液、又は攪拌下にある加熱水中の少なくとも1ヶ所に予
めアルミナ水和物を添加する脂肪族アルキルエステル類
水素添加反応用触媒の製造法。
2. An aqueous solution of another metal salt of copper and aluminum in a slurry obtained by simultaneously adding an aqueous metal salt solution of copper and manganese and an aqueous solution of an alkali metal compound to heated water under stirring at a constant pH. And the alkali metal compound aqueous solution is heated to a constant P while continuing stirring.
In a method for producing a catalyst by simultaneous addition under H, aging, and then washing with water, filtration, drying, and calcination, at least one of a metal salt aqueous solution, another metal salt aqueous solution, an alkali metal compound aqueous solution, or heated water under stirring is used. A method for producing a catalyst for hydrogenation reaction of aliphatic alkyl esters, in which hydrated alumina is added in advance to several places.
【請求項3】 攪拌下にある加熱水の温度が60〜10
0℃である請求項1及び2記載の脂肪族アルキルエステ
ル類水素添加反応用触媒の製造法。
3. The temperature of the heated water under stirring is 60 to 10
It is 0 degreeC, The manufacturing method of the catalyst for hydrogenation reaction of aliphatic alkylesters of Claim 1 or 2.
【請求項4】 一定PH値が5〜11の範囲から選ばれ
た値である請求項1及び2記載の脂肪族アルキルエステ
ル類水素添加反応用触媒の製造法。
4. The method for producing a catalyst for hydrogenation reaction of an aliphatic alkyl ester according to claim 1, wherein the constant PH value is a value selected from the range of 5 to 11.
【請求項5】 全触媒成分を酸化物に換算した場合、酸
化銅含有量が20.0〜80.0重量%、酸化アルミニ
ウム含有量が10.0〜70.0重量%、酸化マンガン
含有量が0.10〜10.0重量%である請求項1及び
2記載の脂肪族アルキルエステル類水素添加反応用触媒
の製造法。
5. When all the catalyst components are converted into oxides, the copper oxide content is 20.0 to 80.0% by weight, the aluminum oxide content is 10.0 to 70.0% by weight, and the manganese oxide content is Is 0.10 to 10.0% by weight, and the method for producing a catalyst for hydrogenation reaction of aliphatic alkyl esters according to claim 1 or 2.
【請求項6】 予め添加されるアルミナ水和物がギブサ
イト、ベーマイト、バイアライト、擬ベーマイトゲルの
中の少なくとも1つである請求項1及び2記載の脂肪族
アルキルエステル類水素添加反応用触媒の製造法。 (2)
6. The catalyst for hydrogenation reaction of aliphatic alkyl esters according to claim 1 or 2, wherein the alumina hydrate added in advance is at least one of gibbsite, boehmite, bayerite and pseudo-boehmite gel. Manufacturing method. (2)
JP5303288A 1993-11-10 1993-11-10 Production of catalyst for hydrogenation reaction of aliphatic alkyl ester Pending JPH08108072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5303288A JPH08108072A (en) 1993-11-10 1993-11-10 Production of catalyst for hydrogenation reaction of aliphatic alkyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5303288A JPH08108072A (en) 1993-11-10 1993-11-10 Production of catalyst for hydrogenation reaction of aliphatic alkyl ester

Publications (1)

Publication Number Publication Date
JPH08108072A true JPH08108072A (en) 1996-04-30

Family

ID=17919153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5303288A Pending JPH08108072A (en) 1993-11-10 1993-11-10 Production of catalyst for hydrogenation reaction of aliphatic alkyl ester

Country Status (1)

Country Link
JP (1) JPH08108072A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110094040A (en) * 2008-11-10 2011-08-19 바스프 코포레이션 Copper catalyst for dehydrogenation application
WO2015037312A1 (en) * 2013-09-13 2015-03-19 堺化学工業株式会社 Method for producing catalyst particles for hydrogenation, and catalyst particles for hydrogenation
JP2017528313A (en) * 2014-09-12 2017-09-28 クラリアント・インターナシヨナル・リミテツド Extruded Cu-Al-Mn hydrogenation catalyst
EP3294453A1 (en) 2015-03-26 2018-03-21 BASF Corporation Hydrogenolysis catalysts with high acid tolerance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110094040A (en) * 2008-11-10 2011-08-19 바스프 코포레이션 Copper catalyst for dehydrogenation application
JP2012508104A (en) * 2008-11-10 2012-04-05 ビー・エイ・エス・エフ、コーポレーション Copper catalysts for dehydrogenation applications
TWI490038B (en) * 2008-11-10 2015-07-01 Basf Catalysts Llc Catalytic composition, method for converting 1,4-butanediol to γ-butyrolactone and method for producing copper catalyst
WO2015037312A1 (en) * 2013-09-13 2015-03-19 堺化学工業株式会社 Method for producing catalyst particles for hydrogenation, and catalyst particles for hydrogenation
JP2017528313A (en) * 2014-09-12 2017-09-28 クラリアント・インターナシヨナル・リミテツド Extruded Cu-Al-Mn hydrogenation catalyst
US10639616B2 (en) 2014-09-12 2020-05-05 Clariant International Ltd Extruded Cu—Al—Mn hydrogenation catalyst
EP3294453A1 (en) 2015-03-26 2018-03-21 BASF Corporation Hydrogenolysis catalysts with high acid tolerance
US10350577B2 (en) 2015-03-26 2019-07-16 Basf Corporation Hydrogenolysis catalysts with high acid tolerance
US11077428B2 (en) 2015-03-26 2021-08-03 Basf Corporation Hydrogenolysis catalysts with high acid tolerance

Similar Documents

Publication Publication Date Title
KR100453095B1 (en) Preparation and use of non-chrome catalysts for cu/cr catalyst applications
JP4062647B2 (en) Catalyst for steam reforming of methanol
JP2624938B2 (en) Copper catalyst
JPH03186349A (en) Hydrogenation catalyst and production and use thereof
US4278567A (en) Process for preparation of copper-iron-aluminum hydrogenation catalyst
US5120700A (en) Process for producing hydrogenation catalyst
US6054497A (en) Process for producing methanol and catalyst therefor
US4386017A (en) Preparation of improved catalyst composition
DE2914765C2 (en) Process for the preparation of methyl formate
JPH08108072A (en) Production of catalyst for hydrogenation reaction of aliphatic alkyl ester
JPH02280836A (en) Preparation of catalyst for dimethyl ether synthesis
SU1126205A3 (en) Method for preparing catalyst of methanol synthesis
DE102005049135A1 (en) Process for the hydrogenation of carbonyl compounds
JPH0734867B2 (en) Hydrogenation catalyst and method for producing the same
KR100283706B1 (en) Alcohol production method
JPH05168928A (en) Catalyst for dehydrogenation reaction, production thereof and production of carbonyl compound using the catalyst
JP3184567B2 (en) Hydrogenation catalyst and method for producing the same
CN112973710A (en) Copper-chromium catalyst, preparation method thereof and method for preparing alkanol by hydrogenating olefine aldehyde or aldehyde
JPH0724320A (en) Production of catalyst for steam reforming of methanol
JPS60257837A (en) Catalyst for decomposing/reforming methanol and its preparation
JP3272386B2 (en) Alcohol production catalyst and method for producing the same
JP3132359B2 (en) Method for producing α-phenylethyl alcohol
CN112517018B (en) Catalyst for preparing trimethylolpropane by hydrogenating 2, 2-dimethylolbutyraldehyde and preparation method and application thereof
WO2013064965A1 (en) Process for the preparation of cerium(iii) compounds
JPH0673633B2 (en) Method for producing copper-iron-aluminum catalyst

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees