JPH08107009A - Ferrite sintered body and its manufacture - Google Patents

Ferrite sintered body and its manufacture

Info

Publication number
JPH08107009A
JPH08107009A JP6261865A JP26186594A JPH08107009A JP H08107009 A JPH08107009 A JP H08107009A JP 6261865 A JP6261865 A JP 6261865A JP 26186594 A JP26186594 A JP 26186594A JP H08107009 A JPH08107009 A JP H08107009A
Authority
JP
Japan
Prior art keywords
ferrite
sintered body
vitrenous
pbo
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6261865A
Other languages
Japanese (ja)
Inventor
Hideyuki Karasawa
秀幸 唐沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP6261865A priority Critical patent/JPH08107009A/en
Publication of JPH08107009A publication Critical patent/JPH08107009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE: To enable improvement of heat shock resistance without damaging electromagnetic characteristic by carrying out sintering by adding vitrenous material in a raw material step. CONSTITUTION: Vitrenous material is added to ferrite material containing Fe2 O3 , Nip, ZnO and CuO and sintered. In a raw material step, vitrenous material added to ferrite material is mixed at the rate of PbO<=20wt%, 40wt.%<=H3 BO3 <=90wt.% and 10wt.%<=SiO2 <=40wt.%. An addition amount of vitrenous material is within a range of 0.1 to 2.0wt.% to ferrite material of 100wt%. Even if the ferrite sintered body 1 is inersed in a solder bath 6 without using a base part in a finish process, thermal striction is relaxed by vitrenous material of crystal grain boundary and crazing and crack can be prevented. Since the ferrite sintered body is excellent in electromagnetic characteristic and in heat shock resistance, useful ferrite magnetic core can be produced from the sintered body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種磁性材料として用
いられるフェライト焼結体及びその製法に関し、特に耐
ヒートショツク性に優れた磁性材料及びその製法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrite sintered body used as various magnetic materials and a method for producing the same, and more particularly to a magnetic material excellent in heat shock resistance and a method for producing the same.

【0002】[0002]

【従来の技術】フェライトからなるドラム形状の製品
は、通常、図3に示されたような配合から仕上までの製
造工程を経て作製される。この仕上工程では、図4に示
されたように、通常、焼成後の磁心1に巻線2を施し、
樹脂でできたベース部3と呼ばれる部分を介してリード
ピン5を磁心1に接着し、次いで、このリードピン5に
からめた巻線端部4をハンダ付けする。巻線2はエポキ
シ系絶縁層で被覆されており、この被覆層を剥離させな
がらハンダ付けする必要があるため、仕上げ工程は、4
00℃以上のハンダ槽6へ巻線端部4を浸漬して行われ
る。なお、上記ベース部3を用いない場合には、従来、
ハンダ槽6へ浸漬する前に200℃で磁心を予熱する事
が必要であった。また別の方法として、上記製造工程中
の成型時に成型密度を小さくして、熱歪を緩和するため
の空孔をもった焼結体を作る方法もある。
2. Description of the Related Art A drum-shaped product made of ferrite is usually manufactured through a manufacturing process from compounding to finishing as shown in FIG. In this finishing step, as shown in FIG. 4, normally, the winding 2 is applied to the magnetic core 1 after firing,
A lead pin 5 is bonded to the magnetic core 1 through a portion called a base portion 3 made of a resin, and then a winding end portion 4 wound on the lead pin 5 is soldered. Since the winding wire 2 is covered with an epoxy-based insulating layer and it is necessary to solder while peeling off the covering layer, the finishing process is 4
The winding end 4 is immersed in a solder bath 6 at a temperature of 00 ° C. or higher. If the base portion 3 is not used, conventionally,
It was necessary to preheat the magnetic core at 200 ° C. before dipping it in the solder bath 6. As another method, there is also a method of reducing the molding density at the time of molding during the above-mentioned manufacturing process to produce a sintered body having pores for relaxing thermal strain.

【0003】[0003]

【発明が解決しようとする課題】フェライト製品の小型
化に伴い、従来使用されていたフェライトコアのベ−ス
部を使用することができなくなった。しかしながら、こ
のベース部を除いただけの状態でフェライト磁心の巻線
とリードピンとをハンダ付けすると、フェライト磁心が
ひび割れするため、上記したように、必ず、200℃位
で予熱しなければならなかった。このため、工程数も多
くなり、また工程時間も余計にかかるという問題があっ
た。また、上記したような熱歪を緩和するための空孔を
もった焼結体では、電磁気特性が劣っているという問題
点があった。従来より、フェライト磁心は耐ヒートショ
ツク性が劣っており、特に、直流重畳特性の良好なフェ
ライト磁心(直流バイアス電流をかけた状態でインダク
タンスが一定であるもの)にはこの傾向が著しい。直流
重畳特性の良好なものは、フェライトの主成分以外の材
料を添加しないために、耐ヒートショツク性に劣ってい
たのである。耐ヒートショツク性を改善しようとすると
電磁気特性が犠牲になるので、また電磁気特性を改善し
ようとすれば耐ヒートショツク性が犠牲になるので、こ
れまで、電磁気特性と耐ヒートシヨツク性との両特性を
同時に満足するものはなかった。
With the miniaturization of ferrite products, it is no longer possible to use the base portion of the ferrite core that has been conventionally used. However, if the winding of the ferrite core and the lead pin are soldered only with the base portion removed, the ferrite core will crack, so that as described above, it was always necessary to preheat at about 200 ° C. For this reason, there are problems in that the number of steps increases and the process time also becomes extra. Further, there is a problem in that the sintered body having pores for alleviating the thermal strain as described above is inferior in electromagnetic characteristics. Conventionally, a ferrite core has poor heat shock resistance, and this tendency is particularly remarkable in a ferrite core having a good DC superposition characteristic (one having a constant inductance when a DC bias current is applied). A material having a good DC superposition characteristic was inferior in heat shock resistance because no material other than the main component of ferrite was added. Since the electromagnetic characteristics are sacrificed when trying to improve the heat shock resistance, and the heat shock resistance is sacrificed when trying to improve the electromagnetic characteristics.So far, both the electromagnetic characteristics and the heat shock resistance have been improved. There was nothing satisfying at the same time.

【0004】[0004]

【課題を解決するための手段】本発明は、電磁気特性を
損うことなく、耐ヒートショツク性の改善されたフェラ
イト燒結体を提供することを目的とする。そのため、本
発明者らは、ガラス質の添加について検討し、その種類
や添加量を詳細に検討した。その結果、PbO−H3
3−SiO2(又はCr23) 系ガラスを適量添加す
ることにより、電磁気特性を損うことなく、耐ヒートシ
ョツク性を改善できることを見出し、本発明を完成させ
るに至った。本発明のフェライト燒結体は、Fe23
NiO、ZnO及びCuOを含むフェライト材料に、原
料段階においてガラス質を添加して焼結したものであ
る。また、本発明のフェライト燒結体では、原料段階に
おいてフェライト材料に添加されるガラス質は、Pb
O、H3BO3及びSiO2 を、PbO≦20wt%、4
0wt%≦H3BO3≦90wt%及び10wt%≦Si
2 ≦40wt%の割合(合計で100wt%)で含有
するものであり、また該ガラス質の添加量は、該フェラ
イト材料100wt%に対し0.l〜2.0wt%の範
囲内であることが好ましい。また、10wt%≦SiO
2 ≦40wt%の代わりに10wt%≦Cr23≦40
wt%を含有するガラス質を添加してもよい。本発明の
フェライト燒結体は、Fe23、NiO、ZnO及びC
uOを含むフェライト材料に該ガラス質を添加し、焼結
することによって製造される。ガラス質の配合されたフ
ェライトは、一般に、耐熱性自体は改善されるが、μi
ac、Bsなどの電磁気特性はガラス質の添加なしの場
合に比べて低下していく。ガラス質の添加量の下限は耐
熱性保持のため限定され、上限は電磁気特性が著しく低
下しないようにするためである。即ち,下記の実施例及
び比較例の結果から明らかなように、0.1wt%より
低いと耐熱性が改善されず、0.1wt%を超えると初
めて耐熱性が改善され、また2wt%を超えると電磁気
特性の低下が著しくなる(実施例9〜11及び比較例1
4〜15)。従って、0.1〜2.0wt%の範囲に限
定した。次に、個々のガラス質成分についてであるが、
PbOの場合、20wt%を超えると耐熱性が悪くなる
が(比較例2〜4)、0wt%であっても耐熱性及び電
磁気特性に問題はない(実施例5〜7)ので、PbO≦
20wt%の範囲に限定した。H3BO3の場合、40w
t%未満及び100wt%では耐熱性が悪くなってしま
うが(比較例5〜7及び11)、90wt%以下では耐
熱性及び電磁気特性は良好である(実施例5〜7)の
で、40wt%≦H3BO3≦90wt%の範囲に限定し
た。また、SiO2 (又は、Cr23)の場合、40w
t%を超えると耐熱性は良好であるが、電磁気特性は悪
く、また10wt%より低いと耐熱性が悪い(比較例2
〜12)ので、10wt%≦ SiO2(又は、Cr
23)≦40wt%の範囲に限定した。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a sintered ferrite material having improved heat shock resistance without deteriorating electromagnetic characteristics. Therefore, the present inventors have examined the addition of vitreous substances, and examined the type and amount of addition in detail. As a result, PbO-H 3 B
The inventors have found that the heat shock resistance can be improved without impairing the electromagnetic characteristics by adding an appropriate amount of O 3 —SiO 2 (or Cr 2 O 3 ) glass, and have completed the present invention. The sintered ferrite of the present invention is Fe 2 O 3 ,
Glass material is added to a ferrite material containing NiO, ZnO, and CuO and sintered at the raw material stage. Further, in the sintered ferrite body of the present invention, the glass material added to the ferrite material in the raw material stage is Pb.
O, H 3 BO 3 and SiO 2 in PbO ≦ 20 wt%, 4
0 wt% ≦ H 3 BO 3 ≦ 90 wt% and 10 wt% ≦ Si
O 2 ≦ 40 wt% (total 100 wt%), and the addition amount of the glassy material is 0. It is preferably in the range of 1 to 2.0 wt%. Also, 10 wt% ≦ SiO
10 wt% ≤ Cr 2 O 3 ≤ 40 instead of 2 ≤ 40 wt%
A glassy material containing wt% may be added. The sintered ferrite of the present invention is made of Fe 2 O 3 , NiO, ZnO and C.
It is manufactured by adding the glassy material to a ferrite material containing uO and sintering it. Generally, glass-containing ferrite has improved heat resistance, but
The electromagnetic characteristics such as ac and Bs deteriorate as compared with the case where no glassy material is added. The lower limit of the amount of vitreous addition is limited to maintain heat resistance, and the upper limit is to prevent the electromagnetic characteristics from remarkably decreasing. That is, as is clear from the results of the following Examples and Comparative Examples, if it is lower than 0.1 wt%, the heat resistance is not improved, and if it exceeds 0.1 wt%, the heat resistance is improved and exceeds 2 wt%. And the electromagnetic characteristics are significantly deteriorated (Examples 9 to 11 and Comparative Example 1).
4-15). Therefore, the range is limited to 0.1 to 2.0 wt%. Next, regarding the individual glassy components,
In the case of PbO, if it exceeds 20 wt%, the heat resistance becomes poor (Comparative Examples 2 to 4), but even if it is 0 wt%, there is no problem in heat resistance and electromagnetic characteristics (Examples 5 to 7), so PbO ≦
It was limited to the range of 20 wt%. 40 W for H 3 BO 3
If it is less than t% or 100 wt%, the heat resistance is deteriorated (Comparative Examples 5 to 7 and 11), but if it is 90 wt% or less, the heat resistance and electromagnetic characteristics are good (Examples 5 to 7), so 40 wt% ≦ It was limited to the range of H 3 BO 3 ≦ 90 wt%. In the case of SiO 2 (or Cr 2 O 3 ), 40w
If it exceeds t%, the heat resistance is good, but the electromagnetic characteristics are poor, and if it is less than 10 wt%, the heat resistance is poor (Comparative Example 2).
~ 12), so 10 wt% ≤ SiO 2 (or Cr
2 O 3 ) ≤ 40 wt%.

【0005】[0005]

【作用】電磁気特性に優れたフェライト燒結体の場合、
ガラス質が添加されていないため、均一な粒径の結晶同
士が直に接しているので、ハンダ槽への浸漬により急激
な熱応力がかかると、発生する熱歪を緩和することがで
きずに、ひびや割れが発生することになる。しかるに、
本発明によれば、原料段階でフェライト材料にPbO−
3BO3−SiO2(又はCr23)系ガラス質を適量
添加しているので、図1に示されたように、仕上げ工程
においてフェライト燒結体1を、ベース部を用いないで
ハンダ槽6へ浸漬したとしても、上記熱歪を結晶粒界の
ガラス質が緩和し、結果としてひびや割れを防ぐことが
出来る。更に、上記のガラス質の添加量を所定の範囲内
に調整することによって、燒結体の結晶粒径が、例えば
ほぼ3〜30μmの範囲内にランダムに分布しているも
のが得られるので、結晶間に存在する微小な空間が熱歪
の緩和に役立つものと思われる。しかしながら、焼結体
の密度は5.1g/cm3(理論密度は5.2)なの
で、電磁気特性を損うことはない。
[Function] In the case of a sintered ferrite material having excellent electromagnetic characteristics,
Since no vitreous substances are added, crystals with uniform grain size are in direct contact with each other, so if a sudden thermal stress is applied by immersion in the solder bath, the generated thermal strain cannot be alleviated. , Cracks and cracks will occur. However,
According to the present invention, PbO- is added to the ferrite material at the raw material stage.
Since an appropriate amount of H 3 BO 3 —SiO 2 (or Cr 2 O 3 ) glass is added, as shown in FIG. 1, the ferrite sintered body 1 is soldered without using the base portion in the finishing process. Even when immersed in the bath 6, the glass strain at the crystal grain boundaries alleviates the thermal strain, and as a result, cracks and cracks can be prevented. Furthermore, by adjusting the addition amount of the above glassy material within a predetermined range, a crystal grain size of the sintered body can be obtained, for example, in which the crystal grain size is randomly distributed within a range of approximately 3 to 30 μm. It is considered that the small space existing between them helps to alleviate the thermal strain. However, since the density of the sintered body is 5.1 g / cm 3 (theoretical density is 5.2), the electromagnetic characteristics are not impaired.

【0006】[0006]

【実施例】以下本発明を実施例及び比較例に基づいて説
明する。 (実施例1〜11)Fe23:48.5モル%、Ni
O:21.5モル%、ZnO:25.0モル%及びCu
O:5.0モル%の比率で配合してなるフェライト材料
に、以下の表1に記載したような割合(フェライト材料
100wt%に対する添加量)でガラス質成分を添加し
て得た粉体100gを、0.5リットルのボールミル内
で2時間混合した。乾燥後、900〜1000℃で仮焼
したものをボールミルで2時間粉砕した。乾燥後、造粒
し、トロイダル(外径28φ、内径20φ)及びドラム
コア(外径3.8φ、中心軸l.9φ、ツバ厚l.Om
m)を成型した。かくして得られた成型体を1040〜
1100℃で焼成し、フェライト燒結体を作製した。
EXAMPLES The present invention will be described below based on Examples and Comparative Examples. (Example 1~11) Fe 2 O 3: 48.5 mol%, Ni
O: 21.5 mol%, ZnO: 25.0 mol% and Cu
100 g of a powder obtained by adding a glassy component to a ferrite material prepared by mixing O: 5.0 mol% at a ratio (amount added to 100 wt% of ferrite material) as shown in Table 1 below. Were mixed in a 0.5 liter ball mill for 2 hours. After drying, what was calcined at 900 to 1000 ° C. was crushed for 2 hours by a ball mill. After drying, granulation, toroidal (outer diameter 28φ, inner diameter 20φ) and drum core (outer diameter 3.8φ, central axis 1.9φ, brim thickness l.Om
m) was molded. The molded body thus obtained is made to be 1040-
It was fired at 1100 ° C. to produce a sintered ferrite body.

【0007】(比較例1)Fe23:48.5モル%、
NiO:21.5モル%、ZnO:25.0モル%及び
CuO:5.0モル%の比率で配合して得た粉体100
gを0.5リットルのボールミル内で2時間混合した。
乾燥後、900〜1000℃で仮焼したものをボールミ
ルで2時間粉砕し、更にアトライタで20分間粉砕し
た。乾燥後、上記実施例1〜11の場合と同じ条件及び
方法で造粒し、成型し、焼成して、フェライト燒結体を
作製した。 (比較例2〜15)ガラス質成分として表1に記載した
量を添加して、上記実施例1〜11記載の方法を繰り返
し、フェライト燒結体を作製した。上記実施例1〜11
及び比較例1〜15で得られた燒結体試料について、耐
熱性及び電磁気特性を次のようにして測定した。耐ヒー
トショツク性の測定は、ドラムコア形状の試料のツバを
下にして、その下半分を所定の温度に保ったハンダ槽に
3秒問浸漬し、試料のひびや割れの発生を調べた。ハン
ダ槽の温度を段階的に20℃づつ上げ、別の試料を用い
て上記操作を繰返した。割れの発生しなかった最高温度
をその試料の耐熱性温度とした。また、電磁気特性は、
トロイダル試料に60ターンの巻線を施し、初透磁率μ
iacと飽和磁束密度Bsとを測定して評価した。上記
ガラス質の組成並びに得られた試料の耐ヒートショック
性及び電磁気特性についての測定結果を以下の表1に示
す。
(Comparative Example 1) Fe 2 O 3 : 48.5 mol%,
Powder 100 obtained by blending NiO: 21.5 mol%, ZnO: 25.0 mol% and CuO: 5.0 mol%
g was mixed in a 0.5 liter ball mill for 2 hours.
After being dried, it was calcined at 900 to 1000 ° C., pulverized with a ball mill for 2 hours, and further pulverized with an attritor for 20 minutes. After drying, the ferrite sintered body was produced by granulating, molding and firing under the same conditions and methods as those in Examples 1 to 11 above. (Comparative Examples 2 to 15) The amounts described in Table 1 were added as glassy components, and the methods described in Examples 1 to 11 were repeated to produce sintered ferrite bodies. Examples 1 to 11 above
The heat resistance and electromagnetic characteristics of the sintered samples obtained in Comparative Examples 1 to 15 were measured as follows. The heat shock resistance was measured by immersing the drum core-shaped sample with the brim down and immersing the lower half in a solder bath kept at a predetermined temperature for 3 seconds to examine the occurrence of cracks and cracks in the sample. The temperature of the solder bath was raised stepwise by 20 ° C., and the above operation was repeated using another sample. The maximum temperature at which cracking did not occur was taken as the heat resistance temperature of the sample. The electromagnetic characteristics are
The winding of 60 turns is applied to the toroidal sample, and the initial permeability μ
Iac and saturation magnetic flux density Bs were measured and evaluated. Table 1 below shows the measurement results of the above glassy composition and the heat shock resistance and electromagnetic characteristics of the obtained sample.

【0008】[0008]

【表1】 [Table 1]

【0009】表1から明らかなように、比較例のフェラ
イト燒結体では電磁気特性(Bs)は大きいが、耐熱性
は著しく劣っていることが、また実施例(例えば、実施
例1、3、5及び8)のフェライト燒結体では、電磁気
特性(Bs、μ iac)と耐熱性との両方に於いて優
れていることが判る。実施例2及び4から、ガラス質成
分の添加量を増やすと、電磁気特性が低下する傾向があ
ることがわかる。また、比較例2〜15は、耐熱性が悪
い場合のガラス質成分の組成の例を示している。 更
に、図2に、表l中の比較例1と実施例lの試料をドラ
ム形の製品形状にした時の直流重畳特性を示す。実施例
1の場合、図2に示した特性においても、比較例と同等
以上である。表1中の実施例8では、SiO2 の代りに
Cr23を使用した。SiO2 の場合と同様の結果が得
られることがわかる。
As is clear from Table 1, the ferrite sintered bodies of the comparative examples have a large electromagnetic characteristic (Bs), but the heat resistance is remarkably inferior. It can be seen that the sintered ferrite products of (8) and (8) are excellent in both electromagnetic properties (Bs, μ iac) and heat resistance. From Examples 2 and 4, it can be seen that the electromagnetic characteristics tend to deteriorate as the amount of glassy component added increases. Further, Comparative Examples 2 to 15 show examples of the composition of the glassy component when the heat resistance is poor. Further, FIG. 2 shows the DC superposition characteristics when the samples of Comparative Example 1 and Example 1 in Table 1 were formed into a drum-shaped product. In the case of Example 1, the characteristics shown in FIG. 2 are also equal to or higher than those of the comparative example. In Example 8 in Table 1, Cr 2 O 3 was used instead of SiO 2 . It can be seen that the same result as in the case of SiO 2 is obtained.

【0010】[0010]

【発明の効果】本発明のフェライト燒結体は、電磁気特
性に優れかつ耐ヒートショツク性がよいので、その燒結
体から有用なフェライト磁心を作ることが出来る。ま
た、本発明のフェライト燒結体を作製する際に、リード
ピンを半田付けする時の予熱工程を省くことが出来るの
で、生産性の向上、設備や場所の省略化が可能となる。
Since the ferrite sintered body of the present invention has excellent electromagnetic characteristics and good heat shock resistance, a useful ferrite magnetic core can be produced from the sintered body. Further, when the ferrite sintered body of the present invention is manufactured, the preheating step when soldering the lead pins can be omitted, so that the productivity can be improved and the equipment and the place can be omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフェライト燒結体の仕上げ工程を説明
するための図。
FIG. 1 is a diagram for explaining a finishing process of a sintered ferrite body of the present invention.

【図2】本発明の実施例1の試料と比較例1の試料との
直流重畳特性を示す図。
FIG. 2 is a diagram showing DC superimposition characteristics of a sample of Example 1 of the present invention and a sample of Comparative Example 1.

【図3】フェライトのドラム形状の製品を製造するため
の工程を示す工程図。
FIG. 3 is a process drawing showing a process for manufacturing a ferrite drum-shaped product.

【図4】従来のフェライト燒結体の仕上げ工程を説明す
るための図。
FIG. 4 is a diagram for explaining a finishing process of a conventional sintered ferrite body.

【符号の説明】[Explanation of symbols]

1 フェライト磁心 2 巻線 3 ベース 4 巻線端部 5 リードピン 6 ハンダ槽 1 Ferrite magnetic core 2 Winding 3 Base 4 Winding end 5 Lead pin 6 Solder tank

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Fe23、NiO、ZnO及びCuOを
含むフェライト材料に、原料段階においてガラス質を添
加して焼結してなるフェライト焼結体。
1. A ferrite sintered body obtained by adding glassy material to a ferrite material containing Fe 2 O 3 , NiO, ZnO and CuO and sintering it at the raw material stage.
【請求項2】 該ガラス質は、PbO、H3BO3及びS
iO2 を、PbO≦20wt%、40wt%≦H3BO3
≦90wt%及び10wt%≦SiO2 ≦40wt%の
割合(合計で100wt%)で含有するものであり、ま
た該ガラス質の添加量は、該フェライト材料100wt
%に対し0.l〜2.0wt%である請求項1に記載の
フェライト焼結体。
2. The glassy material is PbO, H 3 BO 3 and S.
iO 2 is added to PbO ≦ 20 wt%, 40 wt% ≦ H 3 BO 3
≦ 90 wt% and 10 wt% ≦ SiO 2 ≦ 40 wt% (100 wt% in total), and the addition amount of the glassy material is 100 wt% of the ferrite material.
% To 0. The ferrite sintered body according to claim 1, which is 1 to 2.0 wt%.
【請求項3】 該ガラス質は、PbO、H3BO3及びC
23を、PbO≦20wt%、40wt%≦H3BO3
≦90wt%及び10wt%≦Cr23≦40wt%の
割合(合計で100wt%)で含有するものであり、ま
た該ガラス質の添加量は、該フェライト材料100wt
%に対し0.l〜2.0wt%である請求項1に記載の
フェライト焼結体。
3. The glassy material is PbO, H 3 BO 3 and C.
r 2 O 3 is added to PbO ≦ 20 wt%, 40 wt% ≦ H 3 BO 3
≦ 90 wt% and 10 wt% ≦ Cr 2 O 3 ≦ 40 wt% (100 wt% in total), and the addition amount of the glassy material is 100 wt% of the ferrite material.
% To 0. The ferrite sintered body according to claim 1, which is 1 to 2.0 wt%.
【請求項4】 Fe23、NiO、ZnO及びCuOを
含むフェライト材料にガラス質を添加し、焼結すること
を特徴とするフェライト焼結体の製法。
4. A method for producing a ferrite sintered body, which comprises adding a glass material to a ferrite material containing Fe 2 O 3 , NiO, ZnO and CuO and sintering the resultant.
【請求項5】 該ガラス質は、PbO、H3BO3及びS
iO2 を、PbO≦20wt%、40wt%≦H3BO3
≦90wt%及び10wt%≦SiO2 ≦40wt%の
割合(合計で100wt%)で含有するものであり、ま
た該ガラス質の添加量は、該フェライト材料100wt
%に対し0.l〜2.0wt%である請求項4に記載の
フェライト焼結体の製法。
5. The glassy material is PbO, H 3 BO 3 and S.
iO 2 is added to PbO ≦ 20 wt%, 40 wt% ≦ H 3 BO 3
≦ 90 wt% and 10 wt% ≦ SiO 2 ≦ 40 wt% (100 wt% in total), and the addition amount of the glassy material is 100 wt% of the ferrite material.
% To 0. The method for producing a ferrite sintered body according to claim 4, wherein the content is 1 to 2.0 wt%.
【請求項6】 該ガラス質は、PbO、H3BO3及びC
23を、PbO≦20wt%、40wt%≦H3BO3
≦90wt%及び10wt%≦Cr23≦40wt%の
割合(合計で100wt%)で含有するものであり、ま
た該ガラス質の添加量は、該フェライト材料100wt
%に対し0.l〜2.0wt%である請求項4に記載の
フェライト焼結体の製法。
6. The glassy material is PbO, H 3 BO 3 and C.
r 2 O 3 is added to PbO ≦ 20 wt%, 40 wt% ≦ H 3 BO 3
≦ 90 wt% and 10 wt% ≦ Cr 2 O 3 ≦ 40 wt% (total 100 wt%), and the addition amount of the glassy material is 100 wt% of the ferrite material.
% To 0. The method for producing a ferrite sintered body according to claim 4, wherein the content is 1 to 2.0 wt%.
JP6261865A 1994-09-30 1994-09-30 Ferrite sintered body and its manufacture Pending JPH08107009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6261865A JPH08107009A (en) 1994-09-30 1994-09-30 Ferrite sintered body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6261865A JPH08107009A (en) 1994-09-30 1994-09-30 Ferrite sintered body and its manufacture

Publications (1)

Publication Number Publication Date
JPH08107009A true JPH08107009A (en) 1996-04-23

Family

ID=17367837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6261865A Pending JPH08107009A (en) 1994-09-30 1994-09-30 Ferrite sintered body and its manufacture

Country Status (1)

Country Link
JP (1) JPH08107009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339028B1 (en) * 1998-08-21 2002-05-31 무라타 야스타카 Ferrite sintered compact and electronic part comprising the same
JP2011213578A (en) * 2010-03-16 2011-10-27 Tdk Corp Ferrite composition and electronic component
CN115028443A (en) * 2022-06-09 2022-09-09 广东风华高新科技股份有限公司 Laminated ferrite inductance material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339028B1 (en) * 1998-08-21 2002-05-31 무라타 야스타카 Ferrite sintered compact and electronic part comprising the same
JP2011213578A (en) * 2010-03-16 2011-10-27 Tdk Corp Ferrite composition and electronic component
CN115028443A (en) * 2022-06-09 2022-09-09 广东风华高新科技股份有限公司 Laminated ferrite inductance material and preparation method thereof
CN115028443B (en) * 2022-06-09 2023-10-31 广东风华高新科技股份有限公司 Laminated ferrite inductance material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100307195B1 (en) Composite magnetic material and process for producing the same
US2452531A (en) Process of manufacturing a magnetic material and magnetic core
WO2010095496A1 (en) Compressed powder core
EP0376319B1 (en) A composite ferrite material
JP3492802B2 (en) Low loss ferrite material
JP3405630B2 (en) Ferrite material
JPH08107009A (en) Ferrite sintered body and its manufacture
JPH09246034A (en) Magnetic core for pulse transformer
EP2620418B1 (en) Glass-ceramic composite material
JPS63158810A (en) Dust core
JP3245049B2 (en) Ferrite material and ferrite
JPH1135369A (en) Thermal shock resistant ferrite
JP2679716B2 (en) Ferrite core firing material
US6558566B2 (en) Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components
JPH08133826A (en) Thermal shock-resistant ferrite material and ferrite core using thereof
JPH06204021A (en) Composite magnetic material and its manufacture
JPH01179402A (en) Magnetic core for inductor
EP1231614A1 (en) Oxide magnetic material and core using the same
JPH09270313A (en) Ferrite material, and ferrite, and its manufacture
KR100459642B1 (en) Method for manufacturing permalloy powder and soft magnetic core with low core-loss
JPH04323806A (en) Thermal impact resisting ferrite material
US5966065A (en) Core for inductance elements and its production method
CN112479697B (en) MnZn ferrite material with low temperature coefficient and low loss at high frequency and preparation method thereof
JPH07133150A (en) Magnetic material for chip parts
CN114804849B (en) Nickel-zinc ferrite magnetic core and preparation method and application thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021216