JPH0810625A - Catalyst and method for fixing carbon dioxide - Google Patents

Catalyst and method for fixing carbon dioxide

Info

Publication number
JPH0810625A
JPH0810625A JP6146139A JP14613994A JPH0810625A JP H0810625 A JPH0810625 A JP H0810625A JP 6146139 A JP6146139 A JP 6146139A JP 14613994 A JP14613994 A JP 14613994A JP H0810625 A JPH0810625 A JP H0810625A
Authority
JP
Japan
Prior art keywords
carbon dioxide
catalyst
reaction
solar rays
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6146139A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ozora
弘幸 大空
Kazuto Kobayashi
一登 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6146139A priority Critical patent/JPH0810625A/en
Publication of JPH0810625A publication Critical patent/JPH0810625A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To fix carbon dioxide by the solar rays by constituting a catalyst for fixing carbon dioxide by making a visible light excitation type semiconductor supported with a light pervious base material in molecular thickness level and bringing carbon dioxide and water into contact with this catalyst under the irradiation with the solar rays to synthesize oxygen-containing hydrocarbon. CONSTITUTION:A catalyst for fixing carbon dioxide is constituted by making a visible light excitation type semiconductor supported with a light pervious base material in molecular thickness level. Oxygen-containing hydrocarbon is synthesized from carbon dioxide by bringing carbon dioxide and water into contact with this catalyst under the irradiation with the solar rays. For example, the prepared photocatalyst 3 and a reaction soln. adjusted in pH are received in the inner bottom part of a reactor 2 to which a CO2 supply pipe 1 is connected and irradiated with the solar rays through a window 5 made of quartz while the inner pressure of the reactor is monitored by a pressure gauge 6. By this constitution, the optical fixing reaction of CO2 due to the solar rays is advanced and the catalyst is enhanced in activity by forming the catalyst into a membrane form and the separation of the reaction soln. and the catalyst after the completion of reaction is made easy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二酸化炭素(CO2 )固
定化用触媒及び二酸化炭素の光学的固定化方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a catalyst for immobilizing carbon dioxide (CO 2 ) and a method for optically immobilizing carbon dioxide.

【0002】[0002]

【従来の技術】従来、酸化チタン(TiO2 )粉末を用
いてCO2 をメタノール及びメタンに転換する固定化方
法が知られている。この方法は通常、光触媒微粒子を懸
濁させた水溶液にCO2 を吹き込みながら、紫外光を照
射するもので次のような問題点があった。反応後の触
媒の分離が困難、TiO2 はそれ自身のバンドギャッ
プの特性から太陽光を用いることができない。
2. Description of the Related Art Conventionally, an immobilization method for converting CO 2 into methanol and methane using titanium oxide (TiO 2 ) powder has been known. This method is usually one in which UV light is irradiated while CO 2 is blown into an aqueous solution in which photocatalyst fine particles are suspended, and there are the following problems. It is difficult to separate the catalyst after the reaction, and TiO 2 cannot use sunlight due to its own band gap characteristic.

【0003】[0003]

【発明が解決しようとする課題】従来法では、TiO2
粉末にCO2 ガスを接触させて同時に紫外光を照射し、
主にメタノールに転換する固定化方法である。ここで、
太陽光を用いてCO2 の高い固定化率を達成するには、
太陽光のエネルギで励起しうる光触媒の開発及び生成物
質に対する高選択性が不可欠であるが、従来法には以下
の欠点がある。 (1)光触媒として酸化チタンを用いているために、太
陽光は利用できず、エネルギの高い紫外光によってのみ
光固定化反応が進行する。 (2)紫外光を利用する光触媒反応では生成物の分解反
応が進行し、固定化反応の見掛けの反応速度が小さい。
In the conventional method, TiO 2 is used.
CO 2 gas is brought into contact with the powder, and ultraviolet light is irradiated at the same time,
The immobilization method is mainly conversion to methanol. here,
To achieve a high CO 2 immobilization rate using sunlight,
Although it is essential to develop a photocatalyst that can be excited by the energy of sunlight and to have high selectivity for the product, the conventional method has the following drawbacks. (1) Since titanium oxide is used as a photocatalyst, sunlight cannot be used, and the photofixation reaction proceeds only by high-energy ultraviolet light. (2) In the photocatalytic reaction utilizing ultraviolet light, the decomposition reaction of the product proceeds, and the apparent reaction rate of the immobilization reaction is low.

【0004】本発明は上記技術水準に鑑み、太陽光のよ
うな可視光によって二酸化炭素を固定化し得る触媒及び
該触媒を用いての二酸化炭素の固定化方法を提供しよう
とするものである。
In view of the above-mentioned state of the art, the present invention is to provide a catalyst capable of immobilizing carbon dioxide by visible light such as sunlight, and a method of immobilizing carbon dioxide using the catalyst.

【0005】[0005]

【課題を解決するための手段】本発明は (1)可視光励起型半導体を分子厚さで光透過性基材に
担持してなることを特徴とする二酸化炭素固定化用触
媒。 (2)上記(1)記載の二酸化炭素固定化用触媒に二酸
化炭素及び水を太陽光照射下で接触させることを特徴と
する二酸化炭素より含酸素炭化水素の合成方法。 である。
MEANS FOR SOLVING THE PROBLEMS The present invention is (1) a carbon dioxide-immobilizing catalyst characterized in that a visible light excited semiconductor is carried by a light-transmitting substrate in a molecular thickness. (2) A method for synthesizing oxygen-containing hydrocarbon from carbon dioxide, which comprises contacting carbon dioxide and water with the catalyst for carbon dioxide immobilization according to the above (1) under sunlight irradiation. Is.

【0006】[0006]

【作用】本発明において使用される可視光励起型半導体
としてはSiC,CdS,GaPなどの紫外光域よりも
低エネルギの光で励起されるものがあげられる。また、
光透過性基材としては一般に石英ガラスが用いられ、そ
の形状は板状、ビーズ状、ファイバー状などいずれの形
状のものでもよい。光透過性基材に担持される可視光励
起型半導体の厚さは薄いほど触媒活性が高い。(量子サ
イズ効果)そのため、その担持厚さは単分子〜数分子厚
さの分子厚さにすべきである。光触媒(可視光励起型半
導体)の活性を向上させるには上述したように微粒子化
あるいは薄膜化が必要であるが、半導体を微粒子化ある
いは薄膜化するには限度があり、かつハンドリングも困
難になる。しかし光透過性基材の表面に半導体を薄膜で
形成させることは比較的容易であり、ハンドリングも良
好になる。(微粒子の散乱などが避けられる)また、こ
のように半導体を光透過性基材に担持させておくと、二
酸化炭素固定後の光触媒の分離が容易になる。半導体を
担持させる基材は光透過性のものであれば足りるが、さ
らに多孔質であれば光触媒が担持される幾何学的面積が
大きくなるので特に好ましい。上述した光触媒に太陽光
照射の下で二酸化炭素と水を接触させると、太陽光によ
って光触媒の半導体が励起して触媒能を発揮し、含酸素
炭化水素(メタノール、エタノール)が生成する。
The visible light excitation type semiconductor used in the present invention includes SiC, CdS, GaP and the like which are excited by light having energy lower than the ultraviolet light region. Also,
Quartz glass is generally used as the light-transmissive base material, and the shape thereof may be any shape such as a plate shape, a bead shape, and a fiber shape. The thinner the visible light excited semiconductor supported on the light transmissive substrate, the higher the catalytic activity. (Quantum size effect) Therefore, the supported thickness should be a molecular thickness of a single molecule to a few molecules. In order to improve the activity of the photocatalyst (visible light excitation type semiconductor), it is necessary to make the particles finer or thinner as described above, but there is a limit to making the semiconductor finer or thinner and the handling becomes difficult. However, it is relatively easy to form a thin film of a semiconductor on the surface of the light transmissive base material, and the handling becomes good. (Scattering of fine particles and the like can be avoided) In addition, by supporting the semiconductor on the light transmissive base material in this way, the separation of the photocatalyst after fixation of carbon dioxide becomes easy. The base material for supporting the semiconductor is sufficient if it is light transmissive, but if it is more porous, the geometric area on which the photocatalyst is supported is increased, which is particularly preferable. When carbon dioxide and water are brought into contact with the above-described photocatalyst under sunlight irradiation, the semiconductor of the photocatalyst is excited by the sunlight to exert its catalytic ability, and oxygen-containing hydrocarbon (methanol, ethanol) is generated.

【0007】[0007]

【実施例】可視光励起型半導体としてSiC,CdS,
GaPの粉体及びSiC,CdS,GaPを多孔質石英
ガラス上に薄膜状に調製したものについて、その活性を
評価した。薄膜状に調製した光触媒の代表としてSiC
薄膜型光触媒をあげ、その製造方法を下記に示す。多孔
質石英ガラス基材に反応ガスである四塩化珪素とメタン
を拡散させ、800〜900℃でプラズマCVD(化学
蒸着)処理を施して基材表面に分子厚さのSiC薄膜を
形成させた。光固定化反応にはこれを粉砕せず板状(1
5mm×15mm)のまま使用した。上記多孔質石英ガ
ラスは組成としてSiO2 :96%、B2 3 :3%及
びその他成分よりなり、多孔度:28vol%(空隙率
として)、平均孔径:40Å、内表面積:250m2
gのものであった。
[Example] As a visible light excited semiconductor, SiC, CdS,
The activity of GaP powder and SiC, CdS, and GaP prepared as thin films on porous quartz glass were evaluated. SiC as a typical photocatalyst prepared as a thin film
A thin film type photocatalyst is given and its manufacturing method is shown below. Silicon tetrachloride and methane, which are reaction gases, were diffused into a porous quartz glass substrate, and plasma CVD (chemical vapor deposition) treatment was performed at 800 to 900 ° C. to form a SiC thin film having a molecular thickness on the substrate surface. For the photo-immobilization reaction, this was not crushed into a plate (1
(5 mm × 15 mm) was used as it was. The above-mentioned porous quartz glass has a composition of SiO 2 : 96%, B 2 O 3 : 3% and other components, porosity: 28 vol% (as porosity), average pore diameter: 40Å, internal surface area: 250 m 2 /
g.

【0008】図1に光固定化反応の実験装置の構成を示
す。1はCO2 供給管であり、2は反応器{150mm
(W)×40mm(D)×30mm(H)}で、3は調
製した光触媒、4はpH調製した反応液であり、5は石
英製の窓でこれを介して太陽光を照射した。反応器内の
圧力は6の圧力計でモニターした。
FIG. 1 shows the structure of an experimental device for photo-fixation reaction. 1 is a CO 2 supply pipe, 2 is a reactor {150 mm
(W) × 40 mm (D) × 30 mm (H)}, 3 is a prepared photocatalyst, 4 is a pH adjusted reaction solution, and 5 is a quartz window through which sunlight is applied. The pressure inside the reactor was monitored by a pressure gauge of 6.

【0009】実験は粉体の光触媒及び調製した薄膜型触
媒を用いて常温常圧下で以下の方法で行った。 (1)可視光励起型光触媒3を250℃の電気炉中に二
時間置き前処理を施す。 (2)反応器2中で、この触媒を3mlの純水中に静置
する。 (3)二酸化炭素を注入し反応器2内をパージする。
(30分間) (4)二酸化炭素の注入を停止し反応器2内にCO2
封入する。(常圧) (5)反応器2に太陽光を照射し、CO2 光固定化反応
を行う。(2時間) (6)反応による生成物は反応後に反応溶液及び反応器
内ガスを分析し同定・定量した。
The experiment was carried out by the following method at room temperature and normal pressure using the powdered photocatalyst and the prepared thin film type catalyst. (1) The visible light excitation type photocatalyst 3 is placed in an electric furnace at 250 ° C. for 2 hours for pretreatment. (2) In the reactor 2, the catalyst is allowed to stand in 3 ml of pure water. (3) Carbon dioxide is injected to purge the inside of the reactor 2.
(30 minutes) (4) Stop the injection of carbon dioxide and fill the reactor 2 with CO 2 . (Atmospheric pressure) (5) The reactor 2 is irradiated with sunlight to carry out a CO 2 photo-fixation reaction. (2 hours) (6) The product of the reaction was identified and quantified by analyzing the reaction solution and the gas in the reactor after the reaction.

【0010】この実験で得られたメタノール及びエタノ
ールの生成速度、及び固定化効率を従来法と比較した結
果を以下の表1に示す。なお従来法とは上記実験におい
て薄膜形触媒の代わりに酸化チタンの微粉末を使用して
実施したものである。
Table 1 below shows the results of comparison of the production rate of methanol and ethanol and the immobilization efficiency obtained in this experiment with the conventional method. Note that the conventional method is carried out by using fine powder of titanium oxide instead of the thin film catalyst in the above experiment.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】【The invention's effect】

(1)可視光で励起する半導体光触媒(SiC、Cd
S、GaP)を用いているために太陽光によってCO2
の光固定化反応が進行する。 (2)光触媒の薄膜化により触媒が高活性となる。 (3)光触媒の薄膜触媒については基材に固定化した触
媒であるため反応終了後の反応液と触媒との分離が容易
である。
(1) Semiconductor photocatalyst (SiC, Cd) excited by visible light
S, GaP) causes CO 2
The photo-immobilization reaction proceeds. (2) The catalyst becomes highly active due to the thinning of the photocatalyst. (3) Since the thin film catalyst of the photocatalyst is a catalyst immobilized on a substrate, it is easy to separate the reaction liquid and the catalyst after the reaction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例において使用したCO2 光固
定化装置の説明図。
FIG. 1 is an explanatory view of a CO 2 light immobilization device used in an embodiment of the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 29/15 31/04 9155−4H 31/08 9155−4H // C07B 61/00 300 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C07C 29/15 31/04 9155-4H 31/08 9155-4H // C07B 61/00 300

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可視光励起型半導体を分子厚さで光透過
性基材に担持してなることを特徴とする二酸化炭素固定
化用触媒。
1. A catalyst for carbon dioxide immobilization, which comprises a visible light excited semiconductor having a molecular thickness supported on a light transmissive substrate.
【請求項2】 請求項1記載の二酸化炭素固定化用触媒
に二酸化炭素及び水を太陽光照射下で接触させることを
特徴とする二酸化炭素より含酸素炭化水素の合成方法。
2. A method for synthesizing oxygen-containing hydrocarbon from carbon dioxide, which comprises contacting carbon dioxide and water with the catalyst for carbon dioxide fixation according to claim 1 under irradiation of sunlight.
JP6146139A 1994-06-28 1994-06-28 Catalyst and method for fixing carbon dioxide Withdrawn JPH0810625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6146139A JPH0810625A (en) 1994-06-28 1994-06-28 Catalyst and method for fixing carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6146139A JPH0810625A (en) 1994-06-28 1994-06-28 Catalyst and method for fixing carbon dioxide

Publications (1)

Publication Number Publication Date
JPH0810625A true JPH0810625A (en) 1996-01-16

Family

ID=15401030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6146139A Withdrawn JPH0810625A (en) 1994-06-28 1994-06-28 Catalyst and method for fixing carbon dioxide

Country Status (1)

Country Link
JP (1) JPH0810625A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239168A (en) * 2000-03-02 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for carrying photocatalyst on porous glass membrane
JP5830527B2 (en) * 2011-04-04 2015-12-09 株式会社日立製作所 Semiconductor device, hydrogen production system, and methane or methanol production system
JP2017049906A (en) * 2015-09-04 2017-03-09 株式会社オービックビジネスコンサルタント My-number information registration device, my-number information registration, and program
CN110508301A (en) * 2019-08-29 2019-11-29 华南农业大学 Biogas full constituent inverting biological catalyst for methanol SrNiO3/SiC-SiO2- Foam and preparation method thereof
CN114832732A (en) * 2022-05-25 2022-08-02 西安交通大学 Mass transfer enhanced bubbling fixed bed photocatalytic carbon dioxide reduction reactor and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239168A (en) * 2000-03-02 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for carrying photocatalyst on porous glass membrane
JP5830527B2 (en) * 2011-04-04 2015-12-09 株式会社日立製作所 Semiconductor device, hydrogen production system, and methane or methanol production system
JP2017049906A (en) * 2015-09-04 2017-03-09 株式会社オービックビジネスコンサルタント My-number information registration device, my-number information registration, and program
CN110508301A (en) * 2019-08-29 2019-11-29 华南农业大学 Biogas full constituent inverting biological catalyst for methanol SrNiO3/SiC-SiO2- Foam and preparation method thereof
CN114832732A (en) * 2022-05-25 2022-08-02 西安交通大学 Mass transfer enhanced bubbling fixed bed photocatalytic carbon dioxide reduction reactor and method

Similar Documents

Publication Publication Date Title
Mishra et al. Defects in nanosilica catalytically convert CO2 to methane without any metal and ligand
Gazsi et al. Decomposition and reforming of formic acid on supported Au catalysts: Production of CO-free H2
Goguet et al. Deactivation mechanism of a Au/CeZrO4 catalyst during a low-temperature water gas shift reaction
Fan et al. Mechanism of photooxidation of trichloroethylene on TiO2: detection of intermediates by infrared spectroscopy
Mizushima et al. Catalytic effects of metal-loaded membrane-like alumina tubes on ammonia synthesis in atmospheric pressure plasma by dielectric barrier discharge
Chuang et al. FTIR study of adsorption and reactions of methyl formate on powdered TiO2
WO1998023374A1 (en) Photocatalyst having visible light activity and uses thereof
Ren et al. Photocatalytic degradation of gaseous organic species on photonic band-gap titania
Lloyd et al. Surface photochemistry: V. Preparation of ethyl fragments on Pt (111)
EP1154836B1 (en) Hydrogen-selective silica based membrane
Lichtin et al. TiO2-photocatalyzed oxidative degradation of CH3CN, CH3OH, C2HCl3, and CH2Cl2 supplied as vapors and in aqueous solution under similar conditions
JPH0810625A (en) Catalyst and method for fixing carbon dioxide
JPS6044053A (en) Photo-reactive membrane like catalyst
Fereidooni et al. Effect of substrate conductivity on charge transfer and CO2 photoreduction in water vapor over silica-modified TiO2 films
JP2972876B1 (en) Alcohol vapor blocking film in the gas phase
JPH0824629A (en) Photo-catalytic reaction tank
HUP0100703A2 (en) Method for the direct catalytic oxidation of unsaturated hydrocarbons in gaseous phase and gold coated supporting catalyst
JP3612552B2 (en) Photoreaction catalyst
JPH05155794A (en) Method for photochemically fixing carbon dioxide
JP5561729B2 (en) Surface oxidation method for carbon materials
US4938855A (en) Photopromoted catalytic method for making ammonia from molecular nitrogen using molecular hydrogen as a reducing agent
US6805739B2 (en) Component and manufacture of a photo-catalyst
JPH05146671A (en) Photofixation method of carbon dioxide
JPH11333302A (en) Photocatalyst and its production
JP3263961B2 (en) Method and apparatus for producing ruthenium catalyst

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904