JPH08105864A - Test apparatus and method using elastic wave pulse - Google Patents

Test apparatus and method using elastic wave pulse

Info

Publication number
JPH08105864A
JPH08105864A JP6261350A JP26135094A JPH08105864A JP H08105864 A JPH08105864 A JP H08105864A JP 6261350 A JP6261350 A JP 6261350A JP 26135094 A JP26135094 A JP 26135094A JP H08105864 A JPH08105864 A JP H08105864A
Authority
JP
Japan
Prior art keywords
pulse
test
signal
test body
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6261350A
Other languages
Japanese (ja)
Inventor
Kazuhiro Mukai
一弘 向井
Takeshi Yoshimura
剛 吉村
Takuichi Imanaka
拓一 今中
Jun Suetsugu
純 末次
Noriaki Hama
紀昭 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIHAKAI KENSA KK
Original Assignee
HIHAKAI KENSA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIHAKAI KENSA KK filed Critical HIHAKAI KENSA KK
Priority to JP6261350A priority Critical patent/JPH08105864A/en
Publication of JPH08105864A publication Critical patent/JPH08105864A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE: To stably evaluate a subject by transmitting elastic wave pulses to the subject, receiving pulses multiple-reflected in the subject, Fourier- transforming first and the following pulses among the received pulses respectively and obtaining a ratio signal of conversion signals respectively obtained from the above signals. CONSTITUTION: Elastic wave pulses x (ω) are transmitted via a probe 2 to a subject S. A first pulse b1 (t) initially received among those multiple-reflected and propagating and a second pulse b2 (t) reflected according to characteristics Rf (ω) on a border face of the subject S and again propagating in the subject S are selected. Respective functions (ω), b1 (t), b2 (t) are Fourier-transformed to obtain X (ω), B1 (ω), B2 (ω) respectively corresponding to the above functions. A ratio signal B3(ω)=B2(ω)/B1(ω) comprises only transfer functions exhibiting reflection characteristics opposite to those of a material, so that by obtaining this signal, deterioration test and flaw detection can be performed independently of transmission/reception characteristics of the probe and the border face and input signal characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波パルス等の弾性
波パルスを用いて金属材料その他の一般材料の劣化試験
や探傷試験等を行う装置及びその試験方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for performing a deterioration test, a flaw detection test and the like on metallic materials and other general materials by using elastic wave pulses such as ultrasonic pulses and a test method therefor.

【0002】[0002]

【従来の技術】図9に示す超音波による鋼材の劣化試験
を例にとって上記従来技術を説明する。線形時間不変系
の特性はそのインパルス応答h(t)によって記述で
き、この系に対し信号x(t)をパルサーより入力した
際のレシーバーの応答が信号b(t)であるとすると、
信号b(t)は時間関数h(t)とx(t)との畳み込
み積分に等しくなる。時間関数b(t),h(t),x
(t)をフーリエ変換した関数をそれぞれB(ω),H
(ω),X(ω)とすれば、次の通り関数H(ω)とX
(ω)との積によって関数B(ω)を周波数領域での形
式で表現できる。なお、以下本明細書において、アルフ
ァベット大文字を含む関数はフーリエ変換された関数を
意味するものとする。B(ω)=H(ω)X(ω)
2. Description of the Related Art The above-mentioned prior art will be described by taking a deterioration test of a steel material by ultrasonic waves shown in FIG. 9 as an example. The characteristics of the linear time-invariant system can be described by its impulse response h (t), and if the response of the receiver when the signal x (t) is input from the pulsar to this system is the signal b (t),
The signal b (t) is equal to the convolution integral of the time functions h (t) and x (t). Time functions b (t), h (t), x
The functions obtained by Fourier transforming (t) are B (ω) and H, respectively.
If (ω) and X (ω), the functions H (ω) and X
The function B (ω) can be expressed in the frequency domain form by the product of (ω). It should be noted that, in the present specification, a function including uppercase letters of the alphabet means a Fourier transformed function. B (ω) = H (ω) X (ω)

【0003】また、伝達関数H(ω)は伝達系を構成す
る各因子の積として次の通り表現できる。 H(ω)=Po(ω)To(ω)D(ω)Rb(ω)D(ω)Tr(ω)Pr(ω) ここに、各伝達関数は次の各特性伝達関数のフーリエ変
換を示す。 Po(ω):探触子の送信特性 To(ω):境界面の送信特性 D (ω):材料の伝達特性 Rb(ω):裏面の反射特性 Tr(ω):境界面の受信特性 Pr(ω):探触子の受信特性
Further, the transfer function H (ω) can be expressed as a product of each factor constituting the transfer system as follows. H (ω) = Po (ω) To (ω) D (ω) Rb (ω) D (ω) Tr (ω) Pr (ω) where each transfer function is the Fourier transform of the following characteristic transfer function. Show. Po (ω): Transmission characteristic of probe To (ω): Transmission characteristic of boundary surface D (ω): Transfer characteristic of material Rb (ω): Reflection characteristic of back surface Tr (ω): Reception characteristic of boundary surface Pr (Ω): Transceiver reception characteristics

【0004】よって、B(ω)とX(ω)との関係は次
の通りとなる。 B(ω)=Po(ω)To(ω)D(ω)Rb(ω)D(ω)Tr(ω)Pr(ω)
X(ω) したがって、鋼材の劣化を示す指標としての伝達関数D
(ω)は次の式により求められる。 D(ω)=(B(ω)/(Po(ω)Pr(ω)To(ω)Tr(ω)X(ω)Rb(ω)))1/2 …(イ)
Therefore, the relationship between B (ω) and X (ω) is as follows. B (ω) = Po (ω) To (ω) D (ω) Rb (ω) D (ω) Tr (ω) Pr (ω)
X (ω) Therefore, the transfer function D as an index showing the deterioration of the steel material
(Ω) is calculated by the following equation. D (ω) = (B (ω) / (Po (ω) Pr (ω) To (ω) Tr (ω) X (ω) Rb (ω))) 1/2 (a)

【0005】ここに、従来の金属材料の超音波による劣
化試験においては、あらかじめ基準片を用いて超音波試
験を実施してデータベースを作成していた。上記式
(イ)には探触子の送受信特性、境界面の送受信特性及
び入力信号が含まれている。したがって、実際の現場に
おける超音波試験を実施するに当たり、データベースに
基づいて試験の評価を正確に行うには、各特性を正確に
再現する必要がある。しかるに、材料表面と探触子の接
触状況、探触子の固体差及びパルサーの固体差等の見地
より、これら各特性を正確に再現することは非常に困難
であり、試験による評価誤差が大きいという問題があっ
た。
Here, in the conventional ultrasonic deterioration test of metallic materials, an ultrasonic test was performed in advance using a reference piece to create a database. The above equation (a) includes the transmission / reception characteristics of the probe, the transmission / reception characteristics of the boundary surface, and the input signal. Therefore, in performing an ultrasonic test in an actual site, it is necessary to accurately reproduce each characteristic in order to accurately evaluate the test based on the database. However, it is very difficult to accurately reproduce each of these characteristics from the standpoint of the contact state between the material surface and the probe, the individual difference of the probe, the individual difference of the pulsar, etc., and the evaluation error due to the test is large. There was a problem.

【0006】[0006]

【発明が解決しようとする課題】かかる問題に鑑みて、
本発明は、試験体と探触子等との接触状況、探触子等の
特性又はパルサーの特性のばらつきに拘らず、安定した
評価の可能な弾性波パルスを用いた試験装置及び試験方
法を提供することを目的とする。
In view of such a problem,
The present invention provides a test apparatus and a test method using elastic wave pulses that can be stably evaluated regardless of the contact state between a test body and a probe or the like, variations in the characteristics of the probe or the like, or the characteristics of the pulsar. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明にかかる弾性波パルスを用いた試験装置の特
徴構成は、試験体に弾性波パルスx(t)を送信するパ
ルサーと、多重反射により前記試験体中を伝播した前記
パルスを受信可能なレシーバーと、前記パルスのうち、
前記試験体中を伝播して前記レシーバーで一番目に受信
された第一パルスb1(t)、及び、当該第一パルスb
1(t)が当該試験体における受信側の境界面で反射す
ると共に再び当該試験体中を伝播して前記レシーバーで
次に受信された第二パルスb2(t)を選択するパルス
選択手段と、前記第一、第二パルスb1(t)、b2
(t)をそれぞれフーリエ変換して第一、第二変換信号
B1(ω)、B2(ω)を得るフーリエ変換手段と、前
記第二変換信号B2(ω)及び前記第一変換信号B1
(ω)の比である試験体評価用の比信号B3(ω)=B
2(ω)/B1(ω)を得る演算手段とを備えたことに
ある。
In order to achieve the above object, the test apparatus using the elastic wave pulse according to the present invention is characterized by a pulsar for transmitting an elastic wave pulse x (t) to a test object and a multiplex. Of the pulse and a receiver capable of receiving the pulse propagated in the test body by reflection,
The first pulse b1 (t), which is propagated through the test body and received first by the receiver, and the first pulse b
Pulse selection means for selecting the second pulse b2 (t), which is reflected by the receiving-side boundary surface of the test object and propagates through the test object again, and is received next by the receiver. The first and second pulses b1 (t), b2
Fourier transform means for respectively Fourier transforming (t) to obtain first and second transform signals B1 (ω) and B2 (ω), the second transform signal B2 (ω) and the first transform signal B1.
Ratio signal B3 (ω) = B for evaluating the test body, which is the ratio of (ω)
And a calculation means for obtaining 2 (ω) / B1 (ω).

【0008】また、本発明にかかる弾性波パルスを用い
た試験方法の特徴構成は、試験体に弾性波パルスx
(t)を送信し、多重反射により前記試験体中を伝播し
た前記パルスをレシーバーで受信し、前記パルスのう
ち、前記試験体中を伝播して前記レシーバーで一番目に
受信された第一パルスb1(t)をフーリエ変換して第
一変換信号B1(ω)を求めると共に、当該第一パルス
b1(t)が当該試験体における受信側の境界面で反射
すると共に再び当該試験体中を伝播して前記レシーバー
で次に受信された第二パルスb2(t)をフーリエ変換
して第二変換信号B2(ω)を求め、前記第二変換信号
B2(ω)と前記第一変換信号B1(ω)との比である
比信号B3(ω)=B2(ω)/B1(ω)を求め、前
記比信号B3(ω)により試験体の評価を行うことにあ
る。
The characteristic structure of the test method using the elastic wave pulse according to the present invention is that the elastic wave pulse x
(T) is transmitted, the pulse propagated in the test body by multiple reflection is received by the receiver, and the first pulse of the pulses propagated in the test body and received first by the receiver. b1 (t) is Fourier-transformed to obtain a first converted signal B1 (ω), and the first pulse b1 (t) is reflected on the receiving-side boundary surface of the test body and propagates in the test body again. Then, the second pulse b2 (t) received next by the receiver is Fourier transformed to obtain a second converted signal B2 (ω), and the second converted signal B2 (ω) and the first converted signal B1 ( The ratio signal B3 (ω) = B2 (ω) / B1 (ω), which is the ratio to ω), is obtained, and the test sample is evaluated by the ratio signal B3 (ω).

【0009】[0009]

【作用】図1を例にとって、上記試験装置及び試験方法
の特徴構成の作用について説明する。パルス選択手段
は、パルサーより送信された弾性波パルスx(t)のう
ち、試験体中を伝播してレシーバーで一番目に受信され
た第一パルスb1(t)、及び、当該第一パルスb1
(t)が当該試験体における受信側の境界面で特性Rf
(ω)に従い反射すると共に再び当該試験体中を伝播し
て前記レシーバーで次に受信された第二パルスb2
(t)を選択する。これら各関数x(t)、b1
(t)、b2(t)のフーリエ変換された関数をそれぞ
れX(ω)、B1(ω)、B2(ω)とすれば、関数B
1(ω)、B2(ω)は次式により表現できる。 B1(ω)=Po(ω)To(ω)D(ω)Rb(ω)D(ω)Tr(ω)Pr
(ω)X(ω) B2(ω)=Po(ω)To(ω)D(ω)Rb(ω)D(ω)Rf(ω)D
(ω)Rb(ω)D(ω)Tr(ω)Pr(ω)X(ω) ここに、各伝達関数は次の各特性伝達関数のフーリエ変
換を示す。 Po(ω):探触子の送信特性 To(ω):送信伝達特性 D (ω):材料の伝達特性 Rb(ω):裏面での反射特性 Tr(ω):受信伝達特性 Pr(ω):探触子の受信特性 Rf(ω):表面での反射特性
The operation of the characteristic configuration of the above-described test apparatus and test method will be described with reference to FIG. 1 as an example. Among the elastic wave pulses x (t) transmitted from the pulser, the pulse selection means is the first pulse b1 (t) that is propagated through the test body and received first by the receiver, and the first pulse b1.
(T) is the characteristic Rf at the receiving-side boundary surface of the test body.
The second pulse b2 which is reflected according to (ω) and propagates through the test body again and is then received by the receiver.
Select (t). Each of these functions x (t), b1
If the Fourier-transformed functions of (t) and b2 (t) are X (ω), B1 (ω), and B2 (ω), the function B
1 (ω) and B2 (ω) can be expressed by the following equations. B1 (ω) = Po (ω) To (ω) D (ω) Rb (ω) D (ω) Tr (ω) Pr
(ω) X (ω) B2 (ω) = Po (ω) To (ω) D (ω) Rb (ω) D (ω) Rf (ω) D
(ω) Rb (ω) D (ω) Tr (ω) Pr (ω) X (ω) Here, each transfer function represents the Fourier transform of the following characteristic transfer function. Po (ω): Transmission characteristic of probe To (ω): Transmission transfer characteristic D (ω): Transfer characteristic of material Rb (ω): Reflection characteristic on back surface Tr (ω): Reception transfer characteristic Pr (ω) : Transducer reception characteristics Rf (ω): Surface reflection characteristics

【0010】演算手段により比信号B3(ω)を次の如
く求める。 B3(ω)=B2(ω)/B1(ω) =D(ω)Rb(ω)D(ω)Rf(ω) …(a) この式は材料の伝達特性、及び、表裏の反射特性を示す
伝達関数のみによって構成されており、探触子の送受信
特性、境界面の送受信特性及び入力信号特性の影響は受
けない。
The ratio signal B3 (ω) is obtained by the calculating means as follows. B3 (ω) = B2 (ω) / B1 (ω) = D (ω) Rb (ω) D (ω) Rf (ω) (a) This equation represents the transfer characteristics of the material and the reflection characteristics of the front and back sides. It is configured only by the transfer function shown, and is not affected by the transmission / reception characteristics of the probe, the transmission / reception characteristics of the boundary surface, and the input signal characteristics.

【0011】そして、比信号B3(ω)により試験体の
評価を行うのであるが、例えば、当該B3(ω)のうち
D(ω)に着目することで材料の劣化試験等を実施する
ことができ、Rb(ω)に着目することで探傷試験等を
実施することが可能である。
Then, the test sample is evaluated by the ratio signal B3 (ω). For example, a material deterioration test or the like can be carried out by focusing on D (ω) of the B3 (ω). Therefore, it is possible to carry out a flaw detection test or the like by focusing on Rb (ω).

【0012】[0012]

【発明の効果】このように、上記本発明にかかる弾性波
パルスを用いた試験装置及び試験方法の特徴構成によれ
ば、評価用の比信号は境界面の送受信特性の影響を受け
ないので、探触子と試験体との密着状況や接触媒質が試
験の度に異なっても、安定した評価結果を得ることがで
き、しかも試験を迅速に行うことが可能となった。ま
た、比信号は探触子の送受信特性及び入力信号特性の影
響を受けないので、探触子やパルサー特性の固体差が大
きくても安定した評価結果を得ることができるようにな
り、加えて、探触子等の選択範囲が広くなって試験を行
い易くなった。さらに、品質管理上、特性固体差の大き
い安価な探触子やパルサーを用いることも可能となっ
た。
As described above, according to the characteristic configurations of the testing apparatus and the testing method using the elastic wave pulse according to the present invention, the evaluation specific signal is not affected by the transmission / reception characteristics of the boundary surface. Even if the contact state between the probe and the test body and the contact medium were different each time the test was performed, stable evaluation results could be obtained, and the test could be performed quickly. In addition, since the ratio signal is not affected by the transmission / reception characteristics of the probe and the input signal characteristics, it is possible to obtain stable evaluation results even if there is a large individual difference in the probe and pulsar characteristics. , The selection range of the probe etc. became wider and the test became easier. Furthermore, for quality control, it has become possible to use inexpensive probes and pulsars with large differences in characteristics between individuals.

【0013】[0013]

【実施例】まず、図1〜3、図4(a)及び図5を参照
しながら、本発明の第一実施例を説明する。なお、本実
施例における各関数は上記作用の項において説明したも
のと同様である。
First, a first embodiment of the present invention will be described with reference to FIGS. 1 to 3, 4A and 5. Note that each function in this embodiment is the same as that described in the section of the above action.

【0014】図3は、本発明の試験方法を実施するため
の試験システム1のブロック図を示す。本実施例におけ
る試験体Sは鋼材であり、試験システム1は、トランス
デューサーとして機能する超音波探触子2と、パーソナ
ルコンピュータにより構成した試験装置3と、ディスプ
レイ装置4とを備えている。探触子2はグリースやマシ
ン油等の接触媒質を塗布してから試験体Sに密着させて
ある。
FIG. 3 shows a block diagram of a test system 1 for carrying out the test method of the present invention. The test body S in this embodiment is a steel material, and the test system 1 includes an ultrasonic probe 2 that functions as a transducer, a test device 3 configured by a personal computer, and a display device 4. The probe 2 is adhered to the test body S after applying a contact medium such as grease or machine oil.

【0015】試験装置3は、探触子2を介して弾性波パ
ルスの一例である超音波パルスx(t)を送信するパル
サー11と、多重反射により試験体S中を伝播したパル
スを受信可能なレシーバー12とを有している。パルサ
ー11は一定間隔で複数個のパルスを発振するためのト
リガを内蔵しており、パルスの発振個数は内蔵するカウ
ンタの設定により適宜変更可能である。本実施例では3
2個のパルスを発振するように設定してある。
The test apparatus 3 can receive a pulser 11 that transmits an ultrasonic pulse x (t), which is an example of an elastic wave pulse, through the probe 2, and a pulse that propagates in the test body S by multiple reflection. The receiver 12 has The pulser 11 has a built-in trigger for oscillating a plurality of pulses at regular intervals, and the number of oscillated pulses can be appropriately changed by setting the built-in counter. In this embodiment, 3
It is set to oscillate two pulses.

【0016】レシーバー12により受信されたパルスb
(t)は、A/Dコンバータ13によりデジタル化さ
れ、メモリ14に蓄積される。受信パルスb(t)は多
重反射信号であり、メモリ14は個々の発信パルスに対
応する受信パルスb(t)を平均化する。パルス選択部
15は、後述するように、平均化された受信パルスb
(t)より第一、第二パルスb1(t)、b2(t)を
選択する手段である。
Pulse b received by receiver 12
(T) is digitized by the A / D converter 13 and stored in the memory 14. The received pulse b (t) is a multiple reflection signal, and the memory 14 averages the received pulse b (t) corresponding to each transmitted pulse. The pulse selection unit 15 uses the averaged received pulse b as described later.
It is a means for selecting the first and second pulses b1 (t) and b2 (t) from (t).

【0017】パルス選択部15からの出力は、時間領域
表示系31と周波数領域表示系32とに択一選択可能に
分岐されると共に、再びビデオ回路19に入力され、デ
ィスプレイ装置4をもって信号の波形を表示する。時間
領域表示系31は同期回路21を備えており、選択時に
あっては、横軸を時間軸tとすると共に縦軸を信号の受
信強度とする表現でディスプレイ装置4に対し受信信号
b(t)を表示可能である。
The output from the pulse selecting section 15 is branched into a time domain display system 31 and a frequency domain display system 32 so as to be selectively selectable, and is input to the video circuit 19 again. Is displayed. The time domain display system 31 includes a synchronization circuit 21, and at the time of selection, the horizontal axis is the time axis t and the vertical axis is the signal reception intensity, and the received signal b (t ) Can be displayed.

【0018】一方、周波数領域表示系32は、第一、第
二パルスb1(t)、b2(t)等をそれぞれ高速フー
リエ変換アルゴリズムによりフーリエ変換して第一、第
二変換信号B1(ω)、B2(ω)等を得るフーリエ変
換手段としてのFFTアナライザ16と、後述する演算
を行う第一、第二演算部17、18とを備えており、横
軸を角速度ωとする周波数領域での表現により信号を表
示する。ハードディスク(HD)22は、後述するよう
に、材料の伝達特性や欠陥の伝達特性等のデータベース
(DB)を記憶するものである。なお、表示形態は、信
号波形を実部と虚部とに分けて表示する他、各周波数成
分の振幅と位相とに分けて表示することも可能である。
On the other hand, the frequency domain display system 32 Fourier-transforms the first and second pulses b1 (t), b2 (t), etc. by the fast Fourier transform algorithm, and then the first and second transformed signals B1 (ω). , B2 (ω), and the like, and an FFT analyzer 16 as a Fourier transform means, and first and second calculation units 17 and 18 for performing the calculation to be described later, and in the frequency domain where the horizontal axis is the angular velocity ω. Display signals by representation. The hard disk (HD) 22 stores a database (DB) of transfer characteristics of materials and transfer characteristics of defects, as will be described later. Note that the display form can be displayed by dividing the signal waveform into the real part and the imaginary part, and can also be displayed by dividing the amplitude and phase of each frequency component.

【0019】ここで、上記試験システム1を用いて材料
の劣化度試験を行う方法について説明する。まず、図5
に示すように、パルサー11中のカウンタをリセット
し、カウンタに1を加える(ステップN1,N2)。次
いでパルサーにより関数x(t)よりなるパルスを発信
し、多重反射した関数b(t)よりなるパルスをレシー
バー12により受信し、時間関数としての波形をメモリ
13に記憶する(N3〜N5)。カウンタのN値が32
未満のときは、再びステップN2〜N5を繰り返す(N
6)。カウンタのN値が32に達したところでパルスの
発信を停止し、メモリ内の信号の平均化処理を行う(N
7)。
Here, a method of conducting a material deterioration degree test using the test system 1 will be described. First, FIG.
As shown in, the counter in the pulsar 11 is reset and 1 is added to the counter (steps N1 and N2). Then, the pulser emits a pulse having a function x (t), the pulse having a multiple reflection function b (t) is received by the receiver 12, and the waveform as a time function is stored in the memory 13 (N3 to N5). N value of counter is 32
When it is less than N, steps N2 to N5 are repeated again (N
6). When the N value of the counter reaches 32, the pulse transmission is stopped and the signal in the memory is averaged (N
7).

【0020】次いで、時間領域表示系31を介し、図4
(a)に示す形式で受信パルスb(t)をディスプレイ
装置4に表示する(N8)。本実施例では、ディスプレ
イ装置4の表示を参照しつつ、時間軸の特定区間を指示
することで、第一、第二の底面エコーf1、f2をそれ
ぞれ上述の第一、第二パルスb1(t)、b2(t)と
して選択する(N9)。この選択情報に基づいてパルス
選択部15は受信パルスb(t)より第一、第二パルス
b1(t)、b2(t)を選択してFFTアナライザ1
6に出力し、FFTアナライザ16により第一、第二パ
ルスb1(t)、b2(t)はそれぞれフーリエ変換さ
れて第一、第二変換信号B1(ω)、B2(ω)となる
(N10)。そして、第一演算部17において、次式の
如く第二変換信号B2(ω)を第一変換信号B1(ω)
で除することにより、両者の比である比信号B3(ω)
を得る(N11)。 B3(ω)=B2(ω)/B1(ω) =(D(ω))2Rb(ω)Rf(ω) …(b)
Then, through the time domain display system 31, FIG.
The received pulse b (t) is displayed on the display device 4 in the format shown in (a) (N8). In the present embodiment, by referring to the display of the display device 4 and designating a specific section of the time axis, the first and second bottom surface echoes f1 and f2 are respectively described above as the first and second pulses b1 (t). ), B2 (t) (N9). Based on this selection information, the pulse selection unit 15 selects the first and second pulses b1 (t) and b2 (t) from the received pulse b (t) to select the FFT analyzer 1
6, and the FFT analyzer 16 Fourier-transforms the first and second pulses b1 (t) and b2 (t) into first and second converted signals B1 (ω) and B2 (ω), respectively (N10). ). Then, in the first calculation unit 17, the second converted signal B2 (ω) is converted into the first converted signal B1 (ω) as follows.
The ratio signal B3 (ω), which is the ratio of the two, is divided by
Is obtained (N11). B3 (ω) = B2 (ω) / B1 (ω) = (D (ω)) 2 Rb (ω) Rf (ω) (b)

【0021】以下は、第二演算部18において、この比
信号B3(ω)を用いて材料の劣化度評価を行うための
手順に相当する(N12〜N16)。
The following is equivalent to the procedure for evaluating the degree of deterioration of the material in the second arithmetic unit 18 using this ratio signal B3 (ω) (N12 to N16).

【0022】第一、第二パルスb1(t)、b2(t)
の受信時間間隔をΔt、試験体Sの縦波の音速をCとす
れば、試験体Sの板厚Lは次式により求められる。 L=Δt×C/2 また、基準となる試験体Sの板厚をLo、あらかじめ求
めた表裏の反射特性をそれぞれRbo(ω)、Rfo
(ω)とすれば、板厚を基準長さに換算した材料の伝達
特性Do(ω)は次の通りとなる(N12)。 Do(ω)=(D(ω))1/L =[{B3(ω)/(Rbo(ω)Rfo(ω))}1/21/L …(c)
First and second pulses b1 (t), b2 (t)
The plate thickness L of the test body S can be obtained by the following equation, where Δt is the reception time interval of τ and C is the sound velocity of the longitudinal wave of the test body S. L = Δt × C / 2 Further, Lo is the plate thickness of the reference test body S, and Rbo (ω) and Rfo are the reflection characteristics of the front and back sides obtained in advance, respectively.
Assuming (ω), the transfer characteristic Do (ω) of the material obtained by converting the plate thickness into the reference length is as follows (N12). Do (ω) = (D (ω)) 1 / L = [{B3 (ω) / (Rbo (ω) Rfo (ω))} 1/2 ] 1 / L ... (c)

【0023】一方、劣化度jをパラメーターとして異な
らせた複数の基準片を用いて基準長さに換算した材料の
伝達特性Do(ω,j)を求め、これをデーターベース
として上記HD22に登録しておき、適当な劣化度jを
指示することでHD22より比較用の伝達特性Do
(ω,j)を選択する(N13)。そして、次式の如
く、受信信号より求めた材料の伝達特性Do(ω)とデ
ータベースより選択した材料の伝達特性Do(ω,j)
との差ΔDo(ω)を求める(N14)。 ΔDo(ω)=Do(ω)−Do(ω,j) …(d)
On the other hand, the transfer characteristic Do (ω, j) of the material converted to the reference length is obtained by using a plurality of reference pieces with the deterioration degree j as a parameter, and this is registered in the HD22 as a database. The transfer characteristic Do for comparison from the HD 22 is set by instructing an appropriate deterioration degree j.
Select (ω, j) (N13). Then, as shown in the following equation, the transfer characteristic Do (ω) of the material obtained from the received signal and the transfer characteristic Do (ω, j) of the material selected from the database are obtained.
Then, the difference ΔDo (ω) with is obtained (N14). ΔDo (ω) = Do (ω) −Do (ω, j) (d)

【0024】伝達特性の差ΔDo(ω)をディスプレイ
装置4に表示し(N15)、ΔDo(ω)がフラットで
あるか否かを目視や自動判別プログラム等により判断す
る(N16)。ΔDo(ω)がフラットであれば、その
ときの劣化度jをもって試験体の劣化度を推定評価する
ことが可能であり、処理は終了する。ΔDo(ω)がフ
ラットでなければ、再びステップN13〜N15を繰り
返す。
The transfer characteristic difference ΔDo (ω) is displayed on the display device 4 (N15), and whether or not ΔDo (ω) is flat is judged by visual inspection or an automatic discrimination program (N16). If ΔDo (ω) is flat, it is possible to estimate and evaluate the degree of deterioration of the test body using the degree of deterioration j at that time, and the process ends. If ΔDo (ω) is not flat, steps N13 to N15 are repeated again.

【0025】なお、上記データベースの各値は、図2に
示すように、例えば厚さLoの部分及びその半分の厚さ
Lo/2の部分を有する基準片を用いて次の手順により
測定する。まず、厚さLoの部分では、次式が成立す
る。 B3(ω)=B2(ω)/B1(ω) =(D(ω))2Rbo(ω)Rfo(ω) …(e)
Each value in the above-mentioned database is measured by the following procedure using a reference piece having, for example, a portion having a thickness Lo and a portion having a thickness Lo / 2 which is a half thereof as shown in FIG. First, in the portion of thickness Lo, the following equation is established. B3 (ω) = B2 (ω) / B1 (ω) = (D (ω)) 2 Rbo (ω) Rfo (ω) (e)

【0026】一方、厚さLo/2の部分での比信号及び
材料の伝達特性をそれぞれB3’D’とすると、次式が
成立する。 B3’(ω)=B2’(ω)/B1’(ω) =(D’(ω))2Rbo(ω)Rfo(ω) =(D(ω)1/22Rbo(ω)Rfo(ω) =D(ω)Rbo(ω)Rfo(ω) …(f) B3’(ω)2=(D(ω))2(Rbo(ω)Rfo(ω))2 …(g)
On the other hand, assuming that the ratio signal and the material transfer characteristics in the thickness Lo / 2 portion are B3'D ', the following equations hold. B3 ′ (ω) = B2 ′ (ω) / B1 ′ (ω) = (D ′ (ω)) 2 Rbo (ω) Rfo (ω) = (D (ω) 1/2 ) 2 Rbo (ω) Rfo (Ω) = D (ω) Rbo (ω) Rfo (ω) (f) B3 ′ (ω) 2 = (D (ω)) 2 (Rbo (ω) Rfo (ω)) 2 (g)

【0027】したがって、式(e)〜(g)を用いて、板厚を
基準長さに換算した基準となる材料の伝達特性Do
(ω)及び反射特性Rbo(ω)Rfo(ω)を次式のご
とく求めることができる。 B3(ω)/B3’(ω)=D(ω) Do(ω)=(D(ω))1/Lo B3’(ω)2/B3(ω)=Rbo(ω)Rfo(ω)
Therefore, the transfer characteristics Do of the reference material obtained by converting the plate thickness into the reference length by using the equations (e) to (g) Do
(Ω) and the reflection characteristic Rbo (ω) Rfo (ω) can be obtained as in the following equation. B3 (ω) / B3 ′ (ω) = D (ω) Do (ω) = (D (ω)) 1 / Lo B3 ′ (ω) 2 / B3 (ω) = Rbo (ω) Rfo (ω)

【0028】なお、発明者等の実験によれば、特性周波
数10MHzの探触子を用いた場合においては、鋼板の
表面にサンドブラストを施すか否かに拘らず、反射特性
Rb(ω)Rf(ω)はほぼ一定であることが確認され
ている。
According to experiments conducted by the inventors, when a probe having a characteristic frequency of 10 MHz is used, the reflection characteristic Rb (ω) Rf (irrespective of whether the surface of the steel sheet is sandblasted or not. It has been confirmed that ω) is almost constant.

【0029】続いて、図4(b)(c)及び図6を参照
しながら第二実施例を説明する。本実施例は、上記試験
システム1を用いて、垂直探傷試験により試験体内に発
生した欠陥の評価を行う場合に関する。すなわち、本発
明にいう「試験体の評価」とは、試験体の材料的な性状
評価を行うのみならず、試験体内での欠陥の発生・進行
程度を評価する場合も含むものとする。
Next, a second embodiment will be described with reference to FIGS. 4 (b) (c) and 6. The present embodiment relates to a case where the test system 1 is used to evaluate a defect generated in a test body by a vertical flaw detection test. That is, the “evaluation of a test body” in the present invention includes not only the evaluation of the material properties of the test body but also the case of evaluating the occurrence and progress of defects in the test body.

【0030】まず、図6の最初に行われるステップN1
〜N7は、欠陥部で試験を行った場合に相当し、上記第
一実施例におけるステップN1〜N7とほぼ同様であ
る。欠陥部では、受信パルスb(t)は図4(b)のよ
うに表示される(N8)。それぞれのパルスは、左から
右に向かって第一欠陥部エコーf3、第一底面エコーf
4、第一欠陥部エコーの受信側境界面での反射により再
び探触子に受信される第二欠陥部エコーf5に相当す
る。本実施例では、第一、第二欠陥部エコーf3、f5
をそれぞれ上述の第一、第二パルスb1(t)、b2
(t)として選択する(N9)。
First, the step N1 performed first in FIG.
To N7 correspond to the case where the test is performed on the defective portion, and are substantially the same as steps N1 to N7 in the first embodiment. In the defective portion, the received pulse b (t) is displayed as shown in FIG. 4 (b) (N8). Each pulse includes a first defect echo f3 and a first bottom surface echo f from left to right.
4. It corresponds to the second defect echo f5 which is again received by the probe due to the reflection of the first defect echo on the receiving side boundary surface. In this embodiment, the first and second defect echoes f3 and f5
Are respectively the above-mentioned first and second pulses b1 (t) and b2.
It is selected as (t) (N9).

【0031】ところで、試験体Sの伝達特性Do(ω)
は劣化により変動するため、その影響を除去すべく後に
補正を加える必要がある。そこで、探触子の位置を変更
して、図4(c)に示す正常部での受信パルスb(t)
から第一、第二の底面エコーf8、f9をそれぞれ上述
の第一、第二パルスb1(t)、b2(t)として再度
選択する(N9,N10)。
By the way, the transfer characteristic Do (ω) of the test body S
Changes due to deterioration, so it is necessary to correct it later to remove the effect. Therefore, by changing the position of the probe, the received pulse b (t) in the normal part shown in FIG.
Then, the first and second bottom surface echoes f8 and f9 are selected again as the above-mentioned first and second pulses b1 (t) and b2 (t), respectively (N9, N10).

【0032】これらの選択情報に基づいてパルス選択部
15は受信パルスb(t)より第一、第二パルスb1
(t)、b2(t)を欠陥部及び正常部での試験のそれ
ぞれについて選択してFFTアナライザ16に出力し、
フーリエ変換された第一、第二変換信号B1(ω)、B
2(ω)を一対得る(N11)。そして、第一演算部1
7において、欠陥部及び正常部での試験のそれぞれにつ
き比信号B3(ω)を得る(N12,N13)。
Based on these selection information, the pulse selector 15 selects the first and second pulses b1 from the received pulse b (t).
(T) and b2 (t) are selected for each of the tests on the defective part and the normal part and output to the FFT analyzer 16.
Fourier-transformed first and second transformed signals B1 (ω), B
A pair of 2 (ω) is obtained (N11). Then, the first calculation unit 1
7, the ratio signal B3 (ω) is obtained for each of the tests on the defective portion and the normal portion (N12, N13).

【0033】ステップN14では、第一実施例のステッ
プN12とほぼ同様にしてDo(ω)を求め、さらに欠
陥深さL1の材料が有する伝達特性D1(ω)を求め
る。第一、第二パルスb1(t)、b2(t)の受信時
間間隔をΔt1とすれば、欠陥深さL1は次式により求
められる。 L1=Δt1×C/2 板厚を基準長さに換算すべく、次の通り補正を加える。 D1(ω)=(Do(ω))1/L1 …(h) 欠陥部においてD(ω)はD1(ω)で置換できるの
で、次式が成立する。 B3(ω)=(D1(ω))2Rb(ω)Rf(ω) …(i) 欠陥部の評価を行うために、式(h)(i)を用いて次式を求
める(N15)。 B3(ω)/(D1(ω))2=Rb(ω)Rf(ω)
=RbRf(ω)
In step N14, Do (ω) is obtained in the same manner as in step N12 of the first embodiment, and further the transfer characteristic D1 (ω) of the material having the defect depth L1 is obtained. If the reception time interval of the first and second pulses b1 (t) and b2 (t) is Δt1, the defect depth L1 can be calculated by the following equation. L1 = Δt1 × C / 2 In order to convert the plate thickness to the reference length, the following correction is made. D1 (ω) = (Do (ω)) 1 / L1 (h) Since D (ω) can be replaced with D1 (ω) in the defective portion, the following equation holds. B3 (ω) = (D1 (ω)) 2 Rb (ω) Rf (ω) (i) In order to evaluate the defective portion, the following formula is obtained using formula (h) (i) (N15). . B3 (ω) / (D1 (ω)) 2 = Rb (ω) Rf (ω)
= RbRf (ω)

【0034】一方、欠陥の種類や程度の指標としてのパ
ラメーターkを異ならせた複数の基準片を用いて、反射
特性RfRb(ω,k)を求め、第一実施例同様データ
ーベースから適当な反射特性RfRb(ω,k)を選択
する(N16)。そして、次式の如く、上式より求めた
反射特性RfRb(ω)とデータベースより選択した反
射特性RfRb(ω,k)との差ΔRfRb(ω)を求
める(N17)。すなわち、第一実施例の図5ステップ
N13〜N16に対応する図6のステップN16〜N1
9により、欠陥の評価を行うことが可能である。
On the other hand, the reflection characteristic RfRb (ω, k) is obtained by using a plurality of reference pieces having different parameters k as indices of the type and degree of defects, and an appropriate reflection is obtained from the database as in the first embodiment. The characteristic RfRb (ω, k) is selected (N16). Then, the difference ΔRfRb (ω) between the reflection characteristic RfRb (ω) obtained from the above equation and the reflection characteristic RfRb (ω, k) selected from the database is obtained as in the following equation (N17). That is, steps N16 to N1 of FIG. 6 corresponding to steps N13 to N16 of FIG. 5 of the first embodiment.
9, it is possible to evaluate defects.

【0035】次に、本発明のさらに別の実施例を列挙す
る。図7に示す第三実施例では、上記第一実施例の探触
子2と異なり、探触子2を多重反射パルスの受信専用と
して構成し、パルスの送信は、試験体Sのうち探触子2
の裏面に設けたインパクトハンマ−5により行う。この
場合でも、第二変換信号B2(ω)と第一変換信号B1
(ω)との比である比信号B3(ω)は、第一実施例と
同様に上記式(a)の形式となり不要因子を含まない関数
となる。
Next, another embodiment of the present invention will be listed. In the third embodiment shown in FIG. 7, unlike the probe 2 of the first embodiment, the probe 2 is configured only for receiving multiple reflection pulses, and the pulse transmission is performed by the probe of the test body S. Child 2
Impact hammer 5 provided on the back surface of Even in this case, the second converted signal B2 (ω) and the first converted signal B1
The ratio signal B3 (ω), which is the ratio to (ω), has the form of the above equation (a) as in the first embodiment, and is a function that does not include unnecessary factors.

【0036】図8に示す第四実施例では、液体タンク6
内に収納された液体が試験体Sに相当する。評価試験
は、液体タンク6の外面に接触媒体を用いてトランスジ
ュサ−として機能する探触子2を接触させて行う。この
場合、伝達系の新たな伝達関数として、液体タンク6自
身の伝達特性Q(ω)、及び、液体タンク6と試験体S
との境界面の送受信特性Uo(ω),Ur(ω)が加わ
るが、これらの新たな伝達関数は比信号B3(ω)を求
める過程において相殺され、比信号は上記各実施例と同
じく式(a)の形式となる。本実施例によれば、試験体S
の液体の種類や液体の組成の変化などを比信号B3
(ω)を用いて評価することが可能となる。加えて液体
タンク6内に液体が存在しているか否かも評価試験する
ことが可能である。
In the fourth embodiment shown in FIG. 8, the liquid tank 6
The liquid stored inside corresponds to the test body S. The evaluation test is performed by bringing the probe 2 functioning as a transducer into contact with the outer surface of the liquid tank 6 using a contact medium. In this case, as a new transfer function of the transfer system, the transfer characteristic Q (ω) of the liquid tank 6 itself and the liquid tank 6 and the test body S
The transmission / reception characteristics Uo (ω) and Ur (ω) of the boundary surface between and are added, but these new transfer functions are canceled in the process of obtaining the ratio signal B3 (ω), and the ratio signal is expressed by the same equations as in the above embodiments. The format is (a). According to this embodiment, the test body S
Signals such as changes in the type of liquid and composition of the liquid in B3
It becomes possible to evaluate using (ω). In addition, it is possible to perform an evaluation test on whether or not liquid is present in the liquid tank 6.

【0037】上記各実施例では弾性波パルスとして超音
波を使用したが、超音波以外のパルスにより本発明を実
施することが可能である。また、上記各実施例では試験
体内を伝わる縦波をパルスとして用いたが、試験体内を
伝わる横波をパルスとして使用してもよい。試験体は金
属その他の一般材料のほか、弾性波パルスを伝えること
の可能なあらゆる個体、液体が含まれる。表面波を用い
て薄板の表面に生じたクラック等の欠陥の程度を評価し
たり、薄板の表面粗さを評価することも可能である。上
記第一実施例では材料の伝達特性D(ω)によりデータ
ーベースを構築したが、反射特性Rb(ω)Rf(ω)
を含めたB3(ω)の形でデータベースを構築し、これ
を受信パルスより求めた比信号B3(ω)と比較するよ
うに上記第二演算部18を構成することも可能である。
なお、本発明の特許請求の範囲にいう「比信号B3
(ω)」は、第二変換信号B2(ω)を第一変換信号B
1(ω)で除したものに限らず、第一変換信号B1
(ω)を第二変換信号B2(ω)で除したものも含むも
のとする。
Although ultrasonic waves are used as elastic wave pulses in each of the above-described embodiments, the present invention can be carried out using pulses other than ultrasonic waves. In addition, although the longitudinal wave propagating in the test body is used as the pulse in each of the above embodiments, the transverse wave propagating in the test body may be used as the pulse. The specimen includes metal and other general materials, as well as any solid or liquid capable of transmitting elastic wave pulses. It is also possible to evaluate the degree of defects such as cracks generated on the surface of the thin plate using surface waves, or to evaluate the surface roughness of the thin plate. In the first embodiment described above, the database was constructed by the transfer characteristic D (ω) of the material, but the reflection characteristic Rb (ω) Rf (ω)
It is also possible to construct the database in the form of B3 (ω) including the above and to configure the second calculation unit 18 so as to compare this with the ratio signal B3 (ω) obtained from the received pulse.
The "ratio signal B3" referred to in the claims of the present invention.
(Ω) ”means that the second converted signal B2 (ω) is the first converted signal B
The first converted signal B1 is not limited to one divided by 1 (ω).
The value obtained by dividing (ω) by the second converted signal B2 (ω) is also included.

【図面の簡単な説明】[Brief description of drawings]

【図1】探触子と試験体との間における伝達関数の説明
図である。
FIG. 1 is an explanatory diagram of a transfer function between a probe and a test body.

【図2】基準となる伝達関数Do(ω)を求める際に使
用する基準片と探触子との関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a probe and a reference piece used when obtaining a reference transfer function Do (ω).

【図3】試験システムの概略を示すブロック図である。FIG. 3 is a block diagram showing an outline of a test system.

【図4】受信パルスb(t)の波形を示し、(a)は第
一実施例において材料の劣化度評価を行うための受信波
形、(b)は第二実施例において欠陥部で探傷試験を行
った場合の受信波形、(c)は第二実施例において正常
部で探傷試験を行った場合の受信波形である。
FIG. 4 shows a waveform of a reception pulse b (t), (a) is a reception waveform for evaluating the degree of material deterioration in the first embodiment, and (b) is a flaw detection test at a defect portion in the second embodiment. (C) is the received waveform when the flaw detection test is performed on the normal part in the second embodiment.

【図5】第一実施例における試験手順を示すフロ−チャ
−トである。
FIG. 5 is a flowchart showing a test procedure in the first embodiment.

【図6】第二実施例における試験手順を示すフロ−チャ
−トである。
FIG. 6 is a flowchart showing a test procedure in the second embodiment.

【図7】第三実施例における図1相当図である。FIG. 7 is a view corresponding to FIG. 1 in the third embodiment.

【図8】第四実施例における図1相当図である。FIG. 8 is a view corresponding to FIG. 1 in a fourth embodiment.

【図9】従来における探触子と試験体との間における伝
達関数の説明図である。
FIG. 9 is an explanatory diagram of a transfer function between a conventional probe and a test body.

【符号の説明】[Explanation of symbols]

11 パルサ− 12 レシ−バ− 15 パルス選択手段 16 フ−リエ変換手段 17 演算手段 S 試験体。 11 pulser 12 receiver 15 pulse selecting means 16 Fourier transforming means 17 computing means S test piece.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末次 純 大阪府大阪市西区北堀江1丁目18番14号 非破壊検査株式会社内 (72)発明者 濱 紀昭 大阪府大阪市西区北堀江1丁目18番14号 非破壊検査株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Suetsugu 1-18-14 Kitahorie, Nishi-ku, Osaka City Osaka Prefecture Non-destructive inspection Co., Ltd. No. 14 Nondestructive Inspection Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試験体(S)に弾性波パルスx(t)を
送信するパルサー(11)と、多重反射により前記試験
体(S)中を伝播した前記パルスを受信可能なレシーバ
ー(12)と、前記パルスのうち、前記試験体(S)中
を伝播して前記レシーバー(12)で一番目に受信され
た第一パルスb1(t)、及び、当該第一パルスb1
(t)が当該試験体(S)における受信側の境界面で反
射すると共に再び当該試験体(S)中を伝播して前記レ
シーバー(12)で次に受信された第二パルスb2
(t)を選択するパルス選択手段(15)と、前記第
一、第二パルスb1(t)、b2(t)をそれぞれフー
リエ変換して第一、第二変換信号B1(ω)、B2
(ω)を得るフーリエ変換手段(16)と、前記第二変
換信号B2(ω)及び前記第一変換信号B1(ω)の比
である試験体評価用の比信号B3(ω)=B2(ω)/
B1(ω)を得る演算手段(17)とを備えた弾性波パ
ルスを用いた試験装置。
1. A pulsar (11) for transmitting an elastic wave pulse x (t) to a test body (S), and a receiver (12) capable of receiving the pulse propagated through the test body (S) by multiple reflection. Of the pulses, the first pulse b1 (t) propagated through the test body (S) and received first by the receiver (12), and the first pulse b1.
The second pulse b2 that (t) is reflected by the receiving-side boundary surface of the test body (S) and propagates again in the test body (S) and is received next by the receiver (12).
The pulse selection means (15) for selecting (t) and the first and second pulses b1 (t) and b2 (t) are respectively Fourier-transformed to obtain first and second converted signals B1 (ω) and B2.
Fourier transform means (16) for obtaining (ω), and a ratio signal B3 (ω) = B2 (for test sample evaluation, which is the ratio of the second transform signal B2 (ω) and the first transform signal B1 (ω). ω) /
A test apparatus using an elastic wave pulse, comprising: an arithmetic means (17) for obtaining B1 (ω).
【請求項2】 試験体(S)に弾性波パルスx(t)を
送信し、多重反射により前記試験体(S)中を伝播した
前記パルスをレシーバー(12)で受信し、前記パルス
のうち、前記試験体(S)中を伝播して前記レシーバー
(12)で一番目に受信された第一パルスb1(t)を
フーリエ変換して第一変換信号B1(ω)を求めると共
に、当該第一パルスb1(t)が当該試験体(S)にお
ける受信側の境界面で反射すると共に再び当該試験体
(S)中を伝播して前記レシーバー(12)で次に受信
された第二パルスb2(t)をフーリエ変換して第二変
換信号B2(ω)を求め、前記第二変換信号B2(ω)
と前記第一変換信号B1(ω)との比である比信号B3
(ω)=B2(ω)/B1(ω)を求め、前記比信号B
3(ω)により試験体(S)の評価を行う弾性波パルス
を用いた試験方法。
2. An elastic wave pulse x (t) is transmitted to a test body (S), and the pulse propagated in the test body (S) by multiple reflection is received by a receiver (12). , The first pulse b1 (t) propagated through the test body (S) and received first by the receiver (12) is Fourier-transformed to obtain a first converted signal B1 (ω), and The one pulse b1 (t) is reflected at the boundary surface on the receiving side in the test body (S), propagates again in the test body (S), and is then received by the receiver (12) in the second pulse b2. Fourier transform of (t) is performed to obtain the second converted signal B2 (ω), and the second converted signal B2 (ω) is obtained.
And a ratio signal B3 which is a ratio of the first converted signal B1 (ω)
(Ω) = B2 (ω) / B1 (ω) is obtained, and the ratio signal B
The test method using the elastic wave pulse for evaluating the test body (S) by 3 (ω).
JP6261350A 1994-09-30 1994-09-30 Test apparatus and method using elastic wave pulse Pending JPH08105864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6261350A JPH08105864A (en) 1994-09-30 1994-09-30 Test apparatus and method using elastic wave pulse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6261350A JPH08105864A (en) 1994-09-30 1994-09-30 Test apparatus and method using elastic wave pulse

Publications (1)

Publication Number Publication Date
JPH08105864A true JPH08105864A (en) 1996-04-23

Family

ID=17360627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6261350A Pending JPH08105864A (en) 1994-09-30 1994-09-30 Test apparatus and method using elastic wave pulse

Country Status (1)

Country Link
JP (1) JPH08105864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030615A1 (en) * 2012-08-21 2014-02-27 株式会社Ihi Method and device for inspecting interface of composite structure
JP2020134269A (en) * 2019-02-18 2020-08-31 日本製鉄株式会社 Method for evaluating ratio of mixed grain of crystal grain in metallographic structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030615A1 (en) * 2012-08-21 2014-02-27 株式会社Ihi Method and device for inspecting interface of composite structure
JP5909285B2 (en) * 2012-08-21 2016-04-26 株式会社Ihi Method and apparatus for inspecting interface of composite structure
JP2020134269A (en) * 2019-02-18 2020-08-31 日本製鉄株式会社 Method for evaluating ratio of mixed grain of crystal grain in metallographic structure

Similar Documents

Publication Publication Date Title
JP4785151B2 (en) Ultrasonic flaw detection apparatus and method
US4305294A (en) Ultrasonic apparatus and method for measuring wall thickness
Khalili et al. Excitation of single-mode shear-horizontal guided waves and evaluation of their sensitivity to very shallow crack-like defects
Ma et al. The reflection of guided waves from simple dents in pipes
EP1474680B1 (en) System and method for detecting defects in a manufactured object
WO2015159378A1 (en) Ultrasonic inspection device and ultrasonic inspection method
Demma The interaction of guided waves with discontinuities in structures
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
JP2006200901A (en) Ultrasonic inspection method and device
JP2007017300A (en) Surface inspection device and surface inspection method
JPH08105864A (en) Test apparatus and method using elastic wave pulse
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP2740872B2 (en) Method of measuring compressive strength of concrete using ultrasonic waves
JP2000221076A (en) Ultrasonic sound velocity measuring method
RU2246724C1 (en) Method of ultrasonic testing of material quality
WO2021167835A1 (en) Ultrasonic probe couplant monitoring
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor
Hesse et al. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection
Chen et al. Parameter measurement of the cylindrically curved thin layer using low-frequency circumferential Lamb waves
Gushchina et al. Development of the experimental equipment for measuring the velocity of ultrasonic waves with high accuracy
JP2001337077A (en) Device for non-destructively inspecting exfoliation in concrete structure
JP7261093B2 (en) Damage evaluation equipment for metal welds
Titov et al. Measurements of velocity and attenuation of leaky waves using an ultrasonic array
WO1986004416A1 (en) Method and device for measuring nugget in lap resistance welding with supersonic wave
JPH05333003A (en) Method and apparatus for measuring attenuating amount of ultrasonic wave in body to be inspected