JPH08105660A - Refrigerant composition and refrigerator using the same - Google Patents

Refrigerant composition and refrigerator using the same

Info

Publication number
JPH08105660A
JPH08105660A JP6264366A JP26436694A JPH08105660A JP H08105660 A JPH08105660 A JP H08105660A JP 6264366 A JP6264366 A JP 6264366A JP 26436694 A JP26436694 A JP 26436694A JP H08105660 A JPH08105660 A JP H08105660A
Authority
JP
Japan
Prior art keywords
refrigerant
weight
boiling point
composition
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6264366A
Other languages
Japanese (ja)
Other versions
JP3327705B2 (en
Inventor
Isami Yoneda
伊佐美 米田
Kiminobu Sato
仁宣 佐藤
Takayoshi Hamada
高義 濱田
Minoru Hanai
実 花井
Michio Yoneda
道雄 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26436694A priority Critical patent/JP3327705B2/en
Publication of JPH08105660A publication Critical patent/JPH08105660A/en
Application granted granted Critical
Publication of JP3327705B2 publication Critical patent/JP3327705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To eliminate the damage of an ozonosphere and to stably obtain a ultra-low temperature by forming a refrigerant composition of five types of specific non-azeotrope refrigerants made of specific composition ratios. CONSTITUTION: The composition of this refrigerant composition (non-azeotrope refrigerant) contains 30-80wt.% octafluorocyclobutane, 1-20wt.% difluoromethane, 5-30wt.% trifluoromethane, 5-40wt.% tetrafluoromethane, and 0.5-20wt.% methane. A plurality of stages of cooling means 1S-4S sequentially separate and cool the octafluorocyclobutane (boiling point of -5.75 deg.C), the difluoromethane (boiling point of -51.69 deg.C), the trifluoromethane (boiling point of -82.15 deg.C), the tetrafluoromethane (boiling point of -27.9 deg.C) and the methane (boiling point of -151.5 deg.C), and the cooling means 4S of the final stage reduces the tetrafluoromethane and the methane cooled, for example, to about -155 deg.C under pressure by a throttle 18, and then evaporates it by a cooler 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷媒組成物及びこれを用
いた冷凍装置に関する。
TECHNICAL FIELD The present invention relates to a refrigerant composition and a refrigerating apparatus using the same.

【0002】[0002]

【従来の技術】従来の非共沸混合冷媒を用いる冷凍装置
は、単一の凝縮器でこの非共沸混合冷媒に含まれる最も
沸点温度の高い冷媒から順次沸点温度の低い冷媒を凝縮
させて減圧した後、単一の蒸発器で最も沸点温度の低い
冷媒から順次沸点温度の高い冷媒を蒸発させている。
2. Description of the Related Art A conventional refrigeration system using a non-azeotropic mixed refrigerant is a single condenser in which the refrigerant having the highest boiling point contained in the non-azeotropic mixed refrigerant is condensed in sequence from the refrigerant having the lowest boiling point. After depressurizing, a single evaporator sequentially evaporates the refrigerant having the lowest boiling point temperature and the refrigerant having the highest boiling point temperature.

【0003】約−150 ℃の超低温を得るために用いられ
る非共沸混合冷媒は冷媒R141b 即ち1.1-ジクロロ-1- フ
ルオロエタン(CC12F-CH3) と、冷媒R152a 即ち1.1-ジフ
ルオロエタン(CHF2-CH3)と、冷媒R23 即ちトリフルオロ
エタン(CHF3)と、冷媒R142即ちテトラフルオロメタン(C
F4) と、冷媒R50 即ちメタン(CH4) を混合して構成され
ていた。
The non-azeotrope refrigerants used to obtain ultra-low temperatures of about -150 ° C are refrigerant R141b or 1.1-dichloro-1-fluoroethane (CC1 2 F-CH 3 ) and refrigerant R152a or 1.1-difluoroethane (CHF). 2- CH 3 ), the refrigerant R23 or trifluoroethane (CHF 3 ), and the refrigerant R142 or tetrafluoromethane (C
F 4 ) and a refrigerant R 50, that is, methane (CH 4 ) were mixed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記非
共沸混合冷媒に含まれる冷媒R141b はオゾン層破壊防止
のための国際的な規制措置の第1次規制対象となってお
り、1995年末に全廃が決定されている特定フロンCFC(R1
1 、R12 、R113、R114、R115等) の当面の代替冷媒、即
ち、所謂代替フロンHCFC(R22、R141b 、R142b 、R123
等) に含まれている。
However, the refrigerant R141b contained in the above non-azeotropic mixed refrigerant is subject to the first regulation of international regulatory measures for preventing ozone layer depletion, and was abolished at the end of 1995. Specific CFC CFC (R1
1, R12, R113, R114, R115, etc.), a so-called alternative Freon HCFC (R22, R141b, R142b, R123)
Etc.).

【0005】しかし、代替フロンHCFCは依然オゾン層破
壊の可能性があるため、第2次規制対象としてその削減
スケジュールが決定されている。従って、オゾン層破壊
の可能性の全くない冷媒組成物及びこの冷媒組成物を用
いた超低温冷凍装置の開発が課題となっている。
However, the alternative CFC HCFC still has a possibility of depleting the ozone layer, and therefore its reduction schedule has been decided as a target of the second regulation. Therefore, development of a refrigerant composition having no possibility of depleting the ozone layer and an ultra-low temperature refrigerating apparatus using the refrigerant composition has been an issue.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために発明されたものであって、第1の発明の要旨
とするところは、オクタフルオロシクロブタンとジフル
オロメタンとトリフルオロメタンとテトラフルオロメタ
ンとメタンからなることを特徴とする冷媒組成物にあ
る。
The present invention has been invented to solve the above problems, and the gist of the first invention is that octafluorocyclobutane, difluoromethane, trifluoromethane and tetrafluoro A refrigerant composition comprising methane and methane.

【0007】上記冷媒組成物の組成をオクタフルオロシ
クロブタンが30乃至80重量%、ジフルオロメタンが1乃
至20重量%、トリフルオロメタンが5乃至30重量%、テ
トラフルオロメタンが5乃至40重量%、メタンが0.5 乃
至20重量%とすることができる。
The composition of the above refrigerant composition is such that octafluorocyclobutane is 30 to 80% by weight, difluoromethane is 1 to 20% by weight, trifluoromethane is 5 to 30% by weight, tetrafluoromethane is 5 to 40% by weight, and methane is It can be 0.5 to 20% by weight.

【0008】アルゴンを追加することができる。この場
合には冷媒組成物の組成をオクタフルオロシクロブタン
が30乃至80重量%、ジフルオロメタンが1乃至20重量
%、トリフルオロメタン5乃至30重量%、テトラフルオ
ロメタン5乃至40重量%、メタンが0.5 乃至20重量%、
アルゴンが0.5 乃至15重量%とすることかできる。
Argon can be added. In this case, the composition of the refrigerant composition is 30 to 80% by weight of octafluorocyclobutane, 1 to 20% by weight of difluoromethane, 5 to 30% by weight of trifluoromethane, 5 to 40% by weight of tetrafluoromethane, and 0.5 to 5% of methane. 20% by weight,
Argon can be 0.5 to 15% by weight.

【0009】第2の発明の要旨とするところは、請求項
1、2、3又は4記載の冷媒組成物から成る混合冷媒を
封入してなり、この混合冷媒を圧縮する圧縮機と、この
圧縮機で圧縮された高温高圧の混合冷媒を冷却する凝縮
器と、この冷却された混合冷媒を主として高沸点液冷媒
と残留ガス冷媒とに分離する気液分離器とこの気液分離
器で分離された液冷媒を減圧する絞りとこの絞りによっ
て減圧された液冷媒を帰還ガス冷媒及び上記気液分離器
で分離された残留ガス冷媒との間で熱交換させて冷却す
る中間熱交換器とからなり、高沸点冷媒から順次低沸点
冷媒を分離して冷却する複数段の冷却手段と、最終段の
冷却手段で冷却された低沸点液冷媒を減圧した後、蒸発
させる冷却器を具備することを特徴とする冷凍装置にあ
る。
The gist of the second invention is that a mixed refrigerant comprising the refrigerant composition according to claim 1, 2, 3 or 4 is enclosed, and a compressor for compressing the mixed refrigerant, and the compressor. And a condenser for cooling the high-temperature and high-pressure mixed refrigerant compressed by the machine, a gas-liquid separator mainly for separating the cooled mixed refrigerant into a high-boiling-point liquid refrigerant and a residual gas refrigerant, and a gas-liquid separator for separating the same. And an intermediate heat exchanger for cooling by cooling the liquid refrigerant by heat exchange between the return refrigerant and the residual gas refrigerant separated by the gas-liquid separator. The multi-stage cooling means for sequentially separating and cooling the low-boiling-point refrigerant from the high-boiling-point refrigerant, and the cooler for depressurizing and evaporating the low-boiling-point liquid refrigerant cooled by the final-stage cooling means are provided. And in the refrigeration equipment.

【0010】[0010]

【作用】本発明の冷媒組成物は塩素を含んでいないた
め、オゾン層を破壊する可能性がない。
Since the refrigerant composition of the present invention does not contain chlorine, there is no possibility of destroying the ozone layer.

【0011】請求項2の組成とすれば、この冷媒組成を
用いた冷凍装置によって−150 ℃以下の超低温を得るこ
とができる。
According to the composition of claim 2, an ultralow temperature of −150 ° C. or less can be obtained by the refrigerating apparatus using this refrigerant composition.

【0012】上記冷媒組成物にアルゴンを追加すれば、
超低温冷却器におけるメタンの流動性を向上しうる。
If argon is added to the above refrigerant composition,
The fluidity of methane in the cryogenic cooler can be improved.

【0013】本発明の冷凍装置においては、圧縮機で圧
縮された高温高圧の混合冷媒は凝縮器で冷却された後、
複数段の冷却手段を流過する過程で高沸点冷媒から順次
低沸点冷媒が分離されて冷却される。最終段の冷却手段
で冷却された低沸点液冷媒は減圧された後冷却器で蒸発
する。
In the refrigerating apparatus of the present invention, after the high temperature and high pressure mixed refrigerant compressed by the compressor is cooled by the condenser,
In the process of passing through the cooling means of a plurality of stages, the low boiling point refrigerant is sequentially separated from the high boiling point refrigerant and cooled. The low boiling liquid refrigerant cooled by the cooling means at the final stage is depressurized and then evaporated in the cooler.

【0014】[0014]

【実施例】図1には本発明の1実施例に係わる冷凍装置
の冷媒系統図が示されている。圧縮機1の吐出側は油分
離器2を介して凝縮器3の入口に接続されている。凝縮
器3の出口は補助凝縮器4を介して第1気液分離器5の
入口に接続されている。そして、第1気液分離器5の気
相部5aは第1中間熱交換器6の外管入口に接続され、液
相部5bは第1絞り7を介して第1中間熱交換器6の内管
入口に接続されている。
1 is a refrigerant system diagram of a refrigerating apparatus according to an embodiment of the present invention. The discharge side of the compressor 1 is connected to the inlet of the condenser 3 via the oil separator 2. The outlet of the condenser 3 is connected to the inlet of the first gas-liquid separator 5 via the auxiliary condenser 4. The gas phase part 5a of the first gas-liquid separator 5 is connected to the outer pipe inlet of the first intermediate heat exchanger 6, and the liquid phase part 5b of the first intermediate heat exchanger 6 is connected via the first throttle 7. It is connected to the inner pipe entrance.

【0015】第1中間熱交換器6は2重管で形成されて
おり、外管内を流れる冷媒と内管内を流れる冷媒との間
の熱交換の効率を高めるため、外管入口と内管出口が中
間熱交換器6の一方の端に設けられ、外管出口と内管入
口は他方の端に設けられている。
The first intermediate heat exchanger 6 is formed of a double tube, and in order to enhance the efficiency of heat exchange between the refrigerant flowing in the outer tube and the refrigerant flowing in the inner tube, the outer tube inlet and the inner tube outlet are provided. Is provided at one end of the intermediate heat exchanger 6, and the outer pipe outlet and the inner pipe inlet are provided at the other end.

【0016】このようにして、第1気液分離器5と第1
中間熱交換器6と第1絞り7により第1段の冷却手段1S
が形成される。以下同様に、第2気液分離器8と第2中
間熱交換器9と第2絞り10によって第2段の冷却手段2S
が、第3気液分離器11と第3中間熱交換器12と第3絞り
13によって第3段の冷却手段3Sが、第4気液分離器14と
第4中間熱交換器15と第4絞り16によって第4段の冷却
手段4Sが形成される。
In this way, the first gas-liquid separator 5 and the first
The intermediate stage heat exchanger 6 and the first throttle 7 make the first stage cooling means 1S
Is formed. Similarly, the second gas-liquid separator 8, the second intermediate heat exchanger 9, and the second throttle 10 are used to cool the second stage cooling means 2S.
Is the third gas-liquid separator 11, the third intermediate heat exchanger 12 and the third throttle.
13 forms the third-stage cooling means 3S, and the fourth gas-liquid separator 14, the fourth intermediate heat exchanger 15, and the fourth throttle 16 form the fourth-stage cooling means 4S.

【0017】そして、第4中間熱交換器15の外管出口は
補助冷却器17及び絞り18を介して超低温貯蔵庫内に設け
られた冷却器19の入口に接続されている。冷却器19の出
口は補助冷却器17を経て第4中間熱交換器15の内管入口
に接続されている。
The outer tube outlet of the fourth intermediate heat exchanger 15 is connected to the inlet of a cooler 19 provided in the ultra-low temperature storage via an auxiliary cooler 17 and a throttle 18. The outlet of the cooler 19 is connected to the inner pipe inlet of the fourth intermediate heat exchanger 15 via the auxiliary cooler 17.

【0018】第4中間熱交換器15の内管出口は第3中間
熱交換器12の内管入口に、第3中間熱交換器12の内管出
口は第2中間熱交換器9の内管入口に、第2中間熱交換
器9の内管出口は第1中間熱交換器6の内管入口に、第
1中間熱交換器6の内管出口は補助凝縮器4を介して圧
縮機1の吸入側に接続されている。
The inner pipe outlet of the fourth intermediate heat exchanger 15 is the inner pipe inlet of the third intermediate heat exchanger 12, and the inner pipe outlet of the third intermediate heat exchanger 12 is the inner pipe of the second intermediate heat exchanger 9. The inner pipe outlet of the second intermediate heat exchanger 9 is at the inlet, the inner pipe outlet of the first intermediate heat exchanger 6 is at the inlet, and the inner pipe outlet of the first intermediate heat exchanger 6 is at the compressor 1 via the auxiliary condenser 4. Is connected to the suction side of.

【0019】この冷凍装置の冷媒回路内には沸点の異な
る5種類の冷媒を混合してなる冷媒組成物、即ち、冷媒
RC318(オクタフルオロシクロブタン) と、冷媒R32(ジフ
ルオロメタン) と、冷媒R23(トリフルオロメタン) と、
冷媒R14(テトラフルオロメタン) と、冷媒R50(メタン)
とからなる非共沸混合冷媒があらかじめ混合された状態
で封入される。
In the refrigerant circuit of this refrigeration system, a refrigerant composition prepared by mixing five kinds of refrigerants having different boiling points, that is, a refrigerant
RC318 (octafluorocyclobutane), refrigerant R32 (difluoromethane), refrigerant R23 (trifluoromethane),
Refrigerant R14 (Tetrafluoromethane) and Refrigerant R50 (Methane)
The non-azeotropic mixed refrigerant consisting of and is sealed in a premixed state.

【0020】各冷媒の沸点は大気圧において、RC318 が
-5.75 ℃、R32 が-51.69℃、R23 が-82.15℃、R14 が-1
27.9℃、R50 が-161.5℃である。また、各冷媒の組成は
例えば、RC318 が56重量%、R32 が5重量%、R23 が17
重量%、R14 が17重量%、R50 が5重量%である。
The boiling point of each refrigerant is
-5.75 ℃, R32 is -51.69 ℃, R23 is -82.15 ℃, R14 is -1
27.9 ℃, R50 is -161.5 ℃. The composition of each refrigerant is, for example, RC318 56% by weight, R32 5% by weight, and R23 17%.
% By weight, 17% by weight of R14 and 5% by weight of R50.

【0021】次に動作を説明する。圧縮機1から吐出さ
れた高温高圧のガス状混合冷媒は油分離器2に入り、こ
こで油を分離除去した後、補助凝縮器3に流入し、ここ
で冷却水によって例えば30℃程に冷却された後、凝縮器
4に流入する。ここで帰還冷媒によって例えば15℃程に
更に冷却されることによりその中の低沸点冷媒、即ち、
RC318 の全部とR32の一部が液化して第1気液分離器5
に流入する。
Next, the operation will be described. The high-temperature and high-pressure gaseous mixed refrigerant discharged from the compressor 1 enters the oil separator 2, where the oil is separated and removed, and then flows into the auxiliary condenser 3, where it is cooled to about 30 ° C. by cooling water. Then, it flows into the condenser 4. Here, the low boiling point refrigerant therein by being further cooled to about 15 ° C. by the return refrigerant, that is,
The entire RC318 and part of R32 are liquefied and the first gas-liquid separator 5
Flows into.

【0022】ここで低沸点冷媒RC318 の全部とR32 の一
部とからなる液状冷媒から高沸点冷媒R50 、R14 、R23
及び未凝縮のR32 からなる残留ガス状冷媒が分離され
る。分離された液状冷媒RC318 の全部とR32 の一部は第
1絞り7で減圧された後、第1中間熱交換器6の内管に
流入し、ここで帰還ガス冷媒と合流して蒸発する。
Here, from the liquid refrigerant consisting of the entire low boiling point refrigerant RC318 and a part of R32, the high boiling point refrigerants R50, R14 and R23 are obtained.
And the residual gaseous refrigerant consisting of uncondensed R32 is separated. All of the separated liquid refrigerant RC318 and a part of R32 are decompressed by the first throttle 7, then flow into the inner pipe of the first intermediate heat exchanger 6, where they join the return gas refrigerant and evaporate.

【0023】一方、残留ガス状冷媒R32 の一部と、R23
、R14 、R50 の全部は第1中間熱交換器6の外管を流
過する過程で内管を流れる帰還冷媒及び分離された残留
ガス状冷媒と熱交換することによって例えば-15 ℃程に
冷却されることによってその中のR32 の全部とR23 の一
部が液化する。
On the other hand, a part of the residual gaseous refrigerant R32 and R23
, R14, R50 are all cooled to, for example, about -15 ° C by exchanging heat with the return refrigerant and the separated residual gaseous refrigerant flowing through the inner tube in the process of passing through the outer tube of the first intermediate heat exchanger 6. As a result, all of R32 and part of R23 in it are liquefied.

【0024】次いで、この冷媒は第2気液分離器8に流
入しここで液状冷媒と残留ガス冷媒とに分離される。液
状のR32 の全部とR23 の一部は第2絞り10で減圧された
後、第2中間熱交換器9の内管に流入し、ここで帰還冷
媒と合流して蒸発する。
Next, this refrigerant flows into the second gas-liquid separator 8 where it is separated into a liquid refrigerant and a residual gas refrigerant. The entire liquid R32 and a part of R23 are decompressed by the second throttle 10, then flow into the inner pipe of the second intermediate heat exchanger 9, where they are combined with the return refrigerant and evaporated.

【0025】一方、残留ガス冷媒R23 の一部とR14 、R5
0 の全部は第2中間熱交換器9の外管を流過する過程で
内管を流れる冷媒によって例えば-40 ℃程に冷却される
ことによりその中のR23 の全部とR14 の一部が液化す
る。
On the other hand, a part of the residual gas refrigerant R23 and R14, R5
All of 0 is cooled to about -40 ° C. by the refrigerant flowing through the inner pipe in the process of flowing through the outer pipe of the second intermediate heat exchanger 9, so that all of R23 and a part of R14 therein are liquefied. To do.

【0026】この冷媒は第3気液分離器11に流入し、こ
こで液状冷媒とガス状冷媒とに分離される。液状のR23
とR14 の一部は第3絞り13で減圧された後、第3中間熱
交換器12の内管に流入し、ここで外管を流れる冷媒と合
流して蒸発する。
This refrigerant flows into the third gas-liquid separator 11, where it is separated into a liquid refrigerant and a gaseous refrigerant. Liquid R23
After being decompressed by the third throttle 13, a part of R14 and R14 flows into the inner tube of the third intermediate heat exchanger 12, where it joins the refrigerant flowing through the outer tube and evaporates.

【0027】一方、残留ガス冷媒R14 の一部とR50 の全
部は第3中間熱交換器12の外管を流過する過程で内管を
流過する冷媒によって例えば−17℃程に冷却されること
によりその中のR14 の全部とR50 の一部が液化して第4
気液分離器14に流入し、ここで液状冷媒とガス状冷媒と
に分離される。
On the other hand, part of the residual gas refrigerant R14 and all of R50 are cooled to about -17 ° C., for example, by the refrigerant flowing through the inner tube in the process of passing through the outer tube of the third intermediate heat exchanger 12. As a result, all of R14 and part of R50 in it are liquefied and the fourth
It flows into the gas-liquid separator 14 where it is separated into a liquid refrigerant and a gaseous refrigerant.

【0028】液状のR14 の一部とR50 の全部は第4絞り
16で減圧された後、第4中間熱交換器15の内管に流入
し、ここで帰還冷媒と合流して蒸発する。一方、残留ガ
ス冷媒R14 の一部とR50 の大部分は第4中間熱交換器15
の外管を流過する過程で内管を流過する冷媒によって例
えば−100 ℃程に冷却されることによりR14 の全部とR5
0 の相当部分が液化して補助冷却器17に流入し、ここで
冷却器19からの帰還冷媒によって例えば−115 ℃程に更
に冷却されてR50の大部分が液化する。
Part of the liquid R14 and all of R50 are the fourth diaphragm
After being decompressed at 16, it flows into the inner pipe of the fourth intermediate heat exchanger 15, where it joins the return refrigerant and evaporates. On the other hand, part of the residual gas refrigerant R14 and most of R50 are the fourth intermediate heat exchanger 15
In the process of flowing through the outer pipe of R14, all of R14 and R5 are cooled by being cooled to about -100 ° C by the refrigerant flowing through the inner pipe.
A substantial part of 0 flows into the auxiliary cooler 17 and is liquefied, where it is further cooled by the return refrigerant from the cooler 19 to, for example, about -115 ° C, and most of R50 is liquefied.

【0029】これら液化したR14 及びR50 は第5絞り18
に減圧されることにより降温して例えば、−155 ℃程で
冷却器19に流入し、ここで蒸発することにより超低温貯
蔵庫内を−150 ℃の低温に冷却する。
The liquefied R14 and R50 are the fifth throttle 18
The temperature is lowered by depressurizing to, for example, about −155 ° C. and then flows into the cooler 19, where it is evaporated to cool the inside of the ultralow temperature storage to a low temperature of −150 ° C.

【0030】冷却器19で蒸発した冷媒は補助冷却器17、
各中間熱交換器15、12、9、6、凝縮器4をこの順に通
って圧縮機1に帰還する。なお、圧縮機1の吐出配管か
ら吐出冷媒に混入して流出した潤滑油は油分離器2内で
分離され、圧縮機1への帰還冷媒に合流して圧縮機1に
戻される。
The refrigerant evaporated in the cooler 19 is the auxiliary cooler 17,
The intermediate heat exchangers 15, 12, 9, 6 and the condenser 4 are returned to the compressor 1 in this order. The lubricating oil mixed with the discharge refrigerant from the discharge pipe of the compressor 1 and flowing out is separated in the oil separator 2, merges with the return refrigerant to the compressor 1, and is returned to the compressor 1.

【0031】非共沸混合冷媒の組成をRC318 が30乃至80
重量%、R32 が1乃至30重量%、R23 が5乃至40重量
%、R14 が5乃至40重量%、R50 が0.5 乃至20重量%の
範囲内とすることにより冷却器19において−150 ℃以下
の超低温が得られることが確認された。
The composition of the non-azeotropic mixed refrigerant is RC318 30-80.
%, R32 is 1 to 30% by weight, R23 is 5 to 40% by weight, R14 is 5 to 40% by weight, and R50 is 0.5 to 20% by weight. It was confirmed that ultra low temperature could be obtained.

【0032】また、非共沸混合冷媒にアルゴン(R740)を
追加し、その組成をRC318 が30乃至80重量%、R32 が1
乃至30重量%、R23 が5乃至40重量%、R14 が5乃至40
重量%、R50 が0.5 乃至15重量%、R740が0.5 乃至15重
量%の範囲内とすることにより冷却器19において−150
℃以下の超低温が得られた。
Further, argon (R740) was added to the non-azeotropic mixed refrigerant, and the composition thereof was 30 to 80% by weight for RC318 and 1 for R32.
To 30% by weight, R23 5 to 40% by weight, R14 5 to 40%
% By weight, R50 by 0.5 to 15% by weight, and R740 by 0.5 to 15% by weight.
An ultra-low temperature below ℃ was obtained.

【0033】なお、アルゴン(R740)は沸点が低く( −18
5.65℃) 、それ自体は冷凍効果を発揮しないが、キヤリ
アガスとして最終段の冷却器19におけるメタン(R50) の
流動性を向上してその蒸発を促進し冷凍能力を向上す
る。
Argon (R740) has a low boiling point (−18
5.65 ° C), it does not exert a refrigerating effect by itself, but improves the fluidity of methane (R50) in the final stage cooler 19 as carrier gas to promote its evaporation and improve the refrigerating capacity.

【0034】[0034]

【発明の効果】本発明の冷媒組成物によれば、オゾン層
を破壊する可能性は全くない。また、本発明の冷凍装置
によれば、冷却器において−150 ℃以下の超低温を安定
して得ることができる。
According to the refrigerant composition of the present invention, there is no possibility of destroying the ozone layer. Further, according to the refrigerating apparatus of the present invention, it is possible to stably obtain an ultra-low temperature of −150 ° C. or lower in the cooler.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる冷凍装置の冷媒系統図
である。
FIG. 1 is a refrigerant system diagram of a refrigerating apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 凝縮器 5、8、11、14 気液分離器 6、9、12、15 中間熱交換器 19 冷却器 1S、2S、3S、4S 冷却手段 1 Compressor 3 Condenser 5, 8, 11, 14 Gas-liquid separator 6, 9, 12, 15 Intermediate heat exchanger 19 Cooler 1S, 2S, 3S, 4S Cooling means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱田 高義 名古屋市中村区岩塚町字高道1番地 三菱 重工業株式会社名古屋研究所内 (72)発明者 花井 実 名古屋市中村区岩塚町字高道1番地 三菱 重工業株式会社名古屋研究所内 (72)発明者 米田 道雄 名古屋市中村区岩塚町字高道1番地 三菱 重工業株式会社名古屋研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayoshi Hamada No. 1 Takamichi, Iwazuka-cho, Nakamura-ku, Nagoya City Mitsubishi Heavy Industries, Ltd. Nagoya Research Institute (72) Minor Hanai No. 1 Takamichi, Iwatsuka-machi, Nakamura-ku, Nagoya City Mitsubishi Heavy Industries, Ltd. Nagoya Research Institute (72) Inventor Michio Yoneda 1 Takamichi, Iwazuka-cho, Nakamura-ku, Nagoya City Mitsubishi Heavy Industries Ltd. Nagoya Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 オクタフルオロシクロブタンとジフルオ
ロメタンとトリフルオロメタンとテトラフルオロメタン
とメタンからなることを特徴とする冷媒組成物。
1. A refrigerant composition comprising octafluorocyclobutane, difluoromethane, trifluoromethane, tetrafluoromethane and methane.
【請求項2】 上記冷媒組成物の組成をオクタフルオロ
シクロブタンが30乃至80重量%、ジフルオロメタンが1
乃至20重量%、トリフルオロメタンが5乃至30重量%、
テトラフルオロメタンが5乃至40重量%、メタンが0.5
乃至20重量%としたことを特徴とする請求項1記載の冷
媒組成物。
2. The composition of the refrigerant composition comprises octafluorocyclobutane of 30 to 80% by weight and difluoromethane of 1
To 20% by weight, trifluoromethane 5 to 30% by weight,
5 to 40% by weight of tetrafluoromethane and 0.5 of methane
The refrigerant composition according to claim 1, characterized in that the amount is 20 to 20% by weight.
【請求項3】 アルゴンを追加したことを特徴とする請
求項1記載の冷媒組成物。
3. The refrigerant composition according to claim 1, further comprising argon.
【請求項4】 上記冷媒組成物の組成をオクタフルオロ
シクロブタンが30乃至80重量%、ジフルオロメタンが1
乃至20重量%、トリフルオロメタンが5乃至30重量%、
テトラフルオロメタンが5乃至40重量%、メタンが0.5
乃至20重量%、アルゴンが0.5 乃至15重量%としたこと
を特徴とする請求項3記載の冷媒組成物。
4. The composition of the refrigerant composition comprises octafluorocyclobutane of 30 to 80% by weight and difluoromethane of 1%.
To 20% by weight, trifluoromethane 5 to 30% by weight,
5 to 40% by weight of tetrafluoromethane and 0.5 of methane
4. The refrigerant composition according to claim 3, wherein the content of argon is 0.5 to 20% by weight and the content of argon is 0.5 to 15% by weight.
【請求項5】 上記請求項1、2、3又は4記載の冷媒
組成物から成る混合冷媒を封入してなり、この混合冷媒
を圧縮する圧縮機と、この圧縮機で圧縮された高温高圧
の混合冷媒を冷却する凝縮器と、この冷却された混合冷
媒を主として高沸点液冷媒と残留ガス冷媒とに分離する
気液分離器とこの気液分離器で分離された液冷媒を減圧
する絞りとこの絞りによって減圧された液冷媒を帰還ガ
ス冷媒及び上記気液分離器で分離された残留ガス冷媒と
の間で熱交換させて冷却する中間熱交換器とからなり、
高沸点冷媒から順次低沸点冷媒を分離して冷却する複数
段の冷却手段と、最終段の冷却手段で冷却された低沸点
液冷媒を減圧した後、蒸発させる冷却器を具備すること
を特徴とする冷凍装置。
5. A compressor, which is filled with a mixed refrigerant comprising the refrigerant composition according to claim 1, 2, 3 or 4, and which compresses the mixed refrigerant, and a high-temperature high-pressure compressed by the compressor. A condenser that cools the mixed refrigerant, a gas-liquid separator that mainly separates the cooled mixed refrigerant into a high-boiling-point liquid refrigerant and a residual gas refrigerant, and a throttle that depressurizes the liquid refrigerant separated by the gas-liquid separator. An intermediate heat exchanger for cooling the liquid refrigerant decompressed by this throttle by exchanging heat between the return gas refrigerant and the residual gas refrigerant separated by the gas-liquid separator,
It is characterized by comprising a plurality of stages of cooling means for sequentially separating and cooling the low boiling point refrigerant from the high boiling point refrigerant, and a cooler for depressurizing the low boiling point liquid refrigerant cooled by the final stage cooling means and then evaporating it. Refrigerating device.
JP26436694A 1994-10-05 1994-10-05 Refrigerant composition and refrigeration apparatus using the same Expired - Fee Related JP3327705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26436694A JP3327705B2 (en) 1994-10-05 1994-10-05 Refrigerant composition and refrigeration apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26436694A JP3327705B2 (en) 1994-10-05 1994-10-05 Refrigerant composition and refrigeration apparatus using the same

Publications (2)

Publication Number Publication Date
JPH08105660A true JPH08105660A (en) 1996-04-23
JP3327705B2 JP3327705B2 (en) 2002-09-24

Family

ID=17402161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26436694A Expired - Fee Related JP3327705B2 (en) 1994-10-05 1994-10-05 Refrigerant composition and refrigeration apparatus using the same

Country Status (1)

Country Link
JP (1) JP3327705B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029337A1 (en) * 2000-10-05 2002-04-11 Operon Co., Ltd. Cryogenic refrigerating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029337A1 (en) * 2000-10-05 2002-04-11 Operon Co., Ltd. Cryogenic refrigerating system
US6622518B2 (en) 2000-10-05 2003-09-23 Operon Co., Ltd. Cryogenic refrigerating system
DE10194530B4 (en) * 2000-10-05 2007-10-04 Operon Co., Ltd., Kimpo Multi-stage mixed refrigerant cryogenic system that achieves low temperature by repetition of expansion and evaporation of a mixed refrigerant.

Also Published As

Publication number Publication date
JP3327705B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US10731898B2 (en) Binary refrigerating apparatus
Didion et al. Role of refrigerant mixtures as alternatives to CFCs
JP4787916B2 (en) Compression system for cryogenic cooling using multi-component coolant
EP2333459A2 (en) Refrigerating apparatus
US5265443A (en) Refrigerating unit
KR100652080B1 (en) Refrigeration apparatus
JP5674157B2 (en) Trans-chloro-3,3,3-trifluoropropene for use in cooler applications
JP6254614B2 (en) Liquefied natural gas production
JP2017096503A (en) Binary refrigeration device
JP4651255B2 (en) Refrigerant composition and refrigeration circuit using the same
JPH08166172A (en) Refrigerating equipment
US20040124394A1 (en) Non-HCFC refrigerant mixture for an ultra-low temperature refrigeration system
JPH08105660A (en) Refrigerant composition and refrigerator using the same
JPH08165465A (en) Cooling medium composition and refrigerating system
US6951115B2 (en) Refrigerant composition and refrigerating circuit using the same
JP6181401B2 (en) Dual refrigeration equipment
JPH08233386A (en) Heat exchanger
JP2562723B2 (en) Refrigerant composition and refrigeration system
JP3448377B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JPH10153352A (en) Refrigerating device
JP2014196869A (en) Cascade refrigeration system
MXPA99011873A (en) Method to provide refrigerate
JPH09208942A (en) Mixed refrigerant of chlorodifluoromethane with cyclopropane and apparatus for refrigerating cycle using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

LAPS Cancellation because of no payment of annual fees