JPH08105513A - High strength gear - Google Patents

High strength gear

Info

Publication number
JPH08105513A
JPH08105513A JP26156094A JP26156094A JPH08105513A JP H08105513 A JPH08105513 A JP H08105513A JP 26156094 A JP26156094 A JP 26156094A JP 26156094 A JP26156094 A JP 26156094A JP H08105513 A JPH08105513 A JP H08105513A
Authority
JP
Japan
Prior art keywords
tooth
tooth profile
gear
bottom section
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26156094A
Other languages
Japanese (ja)
Inventor
Yoshio Haruhara
好夫 春原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Machine Industry Co Ltd
Original Assignee
Aichi Machine Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Machine Industry Co Ltd filed Critical Aichi Machine Industry Co Ltd
Priority to JP26156094A priority Critical patent/JPH08105513A/en
Publication of JPH08105513A publication Critical patent/JPH08105513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Forging (AREA)

Abstract

PURPOSE: To furthermore increase strength by forming a bottom section into a tooth profile which is not based on a tooth profile generating theory, and thereby forming the bottom section into a profile capable of avoiding stress concentration. CONSTITUTION: The bottom section of an involute gear is formed into a profile which is not based on a tooth profile generating theory by either one of a forging method, a heading method and a sizing method. For example, the bottom section 1 in a recessed curved surface deeper than a current standard one is formed, which is recessed much more to the center side of a gear beyond the root circle 6 of the gear or the root circle 8 of a mating gear. Or two recessed sections 1a and 1b are formed in the bottom section 1. The formation of the bottom section into a profile as mentioned above enables stresses to be less concentrated to the bottom section as compared to a profile formed by a current standardized involute curve, and the strength of the bottom section can thereby be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、歯形創成理論に基づ
かない歯形に形成されて歯元強度の向上した高強度歯車
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength gear having a tooth profile which is not based on the theory of tooth profile generation and which has improved root strength.

【0002】[0002]

【従来の技術及びその課題】従来、歯車の歯面の断面輪
郭は図8に示すように標準化したものとなっており、歯
元円6に沿って歯底1が形成され、歯先円8に沿って歯
先5が形成されるもので、一般的にインボリュート曲線
A等による歯形創成理論に基づく曲線で形成されてお
り、従来においては歯切工具により、このような歯形創
成理論に基づく歯形が切削加工で形成されるものであ
る。即ち、歯切工具のカッターの軌跡は歯形創成理論に
基づいた形状となり、製作される歯形や歯元形状は歯切
工具により一義的に決定されるものとなっていた。この
ような従来の歯車の歯形においては、歯元部分の強度も
歯形に基づき一義的に決まることとなり、歯元部分の強
度が特に要求される際には対応できない場合が生じ、特
に自動車用変速機の歯車においては歯元強度が特に要求
されており、従来の歯形では変速機の小型化,軽量化を
図ることが困難であるという問題点があった。
2. Description of the Related Art Conventionally, the cross-sectional contour of the tooth surface of a gear has been standardized as shown in FIG. 8, and a root 1 is formed along a root circle 6 and a tip circle 8 is formed. A tooth tip 5 is formed along the tooth profile and is generally formed by a curve based on a tooth profile creation theory such as an involute curve A. Conventionally, a tooth cutting tool uses a tooth profile based on such a tooth profile creation theory. Is formed by cutting. That is, the trajectory of the cutter of the gear cutting tool has a shape based on the tooth profile generation theory, and the manufactured tooth profile and tooth root shape are uniquely determined by the gear cutting tool. In such a conventional gear tooth profile, the strength of the root portion is also uniquely determined based on the tooth profile, and there is a case where the strength of the root portion cannot be dealt with particularly when it is required. Gear teeth of machines are particularly required to have root strength, and there is a problem that it is difficult to reduce the size and weight of a transmission with a conventional tooth profile.

【0003】[0003]

【課題を解決するための手段】本発明は上記従来の問題
点に鑑み案出したものであって、歯元部分の強度が優れ
た高強度歯車を提供せんことを目的とし、その第1の要
旨は、インボリュート歯車等において、歯元部分の形状
が、歯形創成理論に基づいた形状でない歯形に形成され
ていることである。また、第2の要旨は、歯底が、歯形
創成理論外の歯底曲線により応力集中を回避し得る歯底
面に形成されていることである。また、第3の要旨は、
前記歯形が鍛造工法,圧造工法,サイジング工法等によ
り形成されたものであることである。また、第4の要旨
は、前記歯形が、歯形中心または歯底中心に対し左右非
対称に形成されていることである。また、第5の要旨
は、歯底が、歯形中心または歯底中心に対し左右異なる
形状に形成されていることである。また、第6の要旨
は、前記歯形内部に、前記鍛造工法,圧造工法,サイジ
ング工法等により連続したファイバーフロー(繊維組
織)が形成されていることである。
SUMMARY OF THE INVENTION The present invention was devised in view of the above-mentioned problems of the prior art, and an object thereof is to provide a high-strength gear having excellent strength at the tooth root portion. The gist is that in the involute gear or the like, the shape of the tooth root portion is formed into a tooth profile that is not based on the tooth profile generation theory. The second gist is that the tooth root is formed on the tooth bottom surface capable of avoiding stress concentration due to the tooth root curve outside the theory of tooth profile generation. In addition, the third summary is
The tooth profile is formed by a forging method, a forging method, a sizing method, or the like. A fourth gist is that the tooth profile is formed asymmetrically with respect to the tooth profile center or the tooth root center. The fifth gist is that the tooth root is formed in the shape of the tooth profile or in a shape that is different left and right with respect to the center of the tooth root. The sixth gist is that a continuous fiber flow (fiber structure) is formed inside the tooth profile by the forging method, the forging method, the sizing method, and the like.

【0004】[0004]

【作用】従来のような切削工法ではなく、鍛造工法,圧
造工法,サイジング工法等により、歯形創成理論に基づ
かない歯形の歯車を形成させることができ、特に歯元部
分の形状を応力集中を回避し得る形状に良好に形成する
ことができ、しかも歯形内部に連続したファイバーフロ
ーを良好に形成させて、さらに強度を高めることができ
る。
[Function] By using the forging method, the forging method, the sizing method, etc. instead of the conventional cutting method, it is possible to form a gear with a tooth profile that is not based on the theory of tooth profile generation, especially avoiding stress concentration on the tooth root shape. It is possible to satisfactorily form into a possible shape, and further to form a continuous fiber flow inside the tooth profile satisfactorily to further increase the strength.

【0005】[0005]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明は、一般的なインボリュート曲線を有する
スーパー歯車,ヘリカル歯車,ハイポイド歯車,カサ歯
車に適応され、また、トロコイド曲線を有した歯車にも
適応することができるもので、図1では本例の歯車を造
形する金型10の一例を示しており、本例の歯車は金型
10を用いて鍛造工法または圧造工法またはサイジング
工法により歯形を形成するものであり、金型10に形成
された底部10aが歯車の歯底1を形成するものであ
り、また、底部10aから連続して立ち上がる金型10
の側面部10bにより歯面が形成されるもので、金型1
0を押し付ける等して図1のように歯車の歯を盛り上げ
させて形成することができる。尚、あらかじめ切削加工
により歯形を形成させた後に前記金型10を用いて鍛造
工法または圧造工法またはサイジング工法により歯元部
分等を形成することもでき、冷間,温間,熱間を問わず
行なうことができ、金型10を押圧させて形成させる際
に、金型10からの押圧力を受けて歯車には矢印方向に
押圧力が作用し、後述するファイバーフローが歯形の内
側に連続状に形成されるものである。
Embodiments of the present invention will be described below with reference to the drawings. INDUSTRIAL APPLICABILITY The present invention is applicable to super gears, helical gears, hypoid gears and bevel gears having a general involute curve, and can also be applied to gears having a trochoidal curve. 1 shows an example of a mold 10 for molding a gear, and the gear of this example is one for forming a tooth profile by a forging method, a forging method or a sizing method using the mold 10, and a bottom portion formed on the mold 10. 10a forms the tooth bottom 1 of the gear, and the die 10 that continuously rises from the bottom 10a.
The tooth surface is formed by the side surface portion 10b of the
As shown in FIG. 1, the teeth of the gear can be raised by pressing 0 or the like. In addition, after the tooth profile is formed by cutting in advance, it is possible to form the tooth root portion by the forging method, the forging method, or the sizing method using the mold 10, regardless of cold, warm, or hot. When the mold 10 is formed by pressing, the pressing force from the mold 10 exerts a pressing force on the gear in the direction of the arrow, and the fiber flow described later is continuously formed inside the tooth profile. Is formed.

【0006】本例では金型10の底部10a等の形状を
変更させることにより任意の歯形形状を得ることがで
き、従来のような歯形創成理論に基づくカッターの歯先
形状により決定される歯形ではなく、図2に示すよう
に、歯元円6または相手歯車(想像線)の歯先円8aよ
りもさらに歯車の中心側へ凹んだ従来の標準よりも深い
凹状曲面の歯底1を形成させることもでき、また図3に
示すように、歯底1に二つの凹部1a,1bを形成させ
ることもでき、また図4に示すように、歯元部分に歯元
円6または相手歯車(想像線)の歯先円8aよりも中心
方向へ凹んだアンダーカット形状の凹部2a,2aを形
成させることもでき、また図5に示すように、歯形中心
または歯底中心に対し左右対称状に歯元円6に沿って凹
部2b,2bを形成させることもでき、さらに図6に示
すように、前記凹部2a,2aを歯底1側へ連続させた
一個の凹部2cに形成させることもでき、このように金
型の底部10aの形状を変更させることにより任意の形
状の歯底1を形成させることが可能であり、図2〜図6
のような歯元形状に形成させることにより、従来の標準
化したインボリュート曲線による歯形よりも歯元部分の
応力集中の少ない形状とすることができ、歯元部分の強
度を従来よりも向上させることができるものである。
In this example, an arbitrary tooth profile can be obtained by changing the shape of the bottom portion 10a of the mold 10, and the conventional tooth profile determined by the shape of the tip of the cutter based on the theory of tooth profile creation is used. Instead, as shown in FIG. 2, the tooth bottom 1 having a concave curved surface which is deeper than the conventional standard and which is recessed further toward the center side of the gear than the root circle 6 or the tip circle 8a of the mating gear (imaginary line) is formed. It is also possible to form two recesses 1a and 1b in the tooth bottom 1 as shown in FIG. 3, and as shown in FIG. 4, a tooth circle 6 or a mating gear (imaginary gear) at the tooth root portion. It is also possible to form undercut recesses 2a, 2a recessed in the direction of the center from the tip circle 8a of the line), and as shown in FIG. 5, the teeth are symmetrical with respect to the tooth profile center or the tooth root center. The concave portions 2b, 2b are formed along the original circle 6. Further, as shown in FIG. 6, it is also possible to form the recesses 2a, 2a into a single recess 2c continuous to the tooth bottom 1 side, thus changing the shape of the bottom 10a of the mold. By doing so, it is possible to form the tooth bottom 1 having an arbitrary shape.
By forming a tooth root shape like that, it is possible to make the shape with less stress concentration at the tooth root part than the conventional standardized involute curve tooth shape, and it is possible to improve the strength of the tooth root part more than before. It is possible.

【0007】なお、図7に示すように、前述した図4の
ように凹部2a,2aをアンダーカット状に形成させた
場合においても、従来の切削工法によればこの凹部2a
の部分の内側にファイバーフロー(繊維組織)20を連
続して形成させることは困難であるが、本例においては
金型10により造形するものであるため、凹部2a,2
aの内側にも連続状にファイバーフロー20,20,2
0が良好に形成されるものであり、この連続したファイ
バーフロー20,20,20により、より歯元部分の強
度が向上されるものである。
As shown in FIG. 7, even when the recesses 2a, 2a are formed in an undercut shape as shown in FIG. 4, the recess 2a is formed by the conventional cutting method.
Although it is difficult to continuously form the fiber flow (fiber structure) 20 inside the portion of FIG. 2, since the molding is performed by the mold 10 in this example, the concave portions 2a, 2
Continuous fiber flow inside 20, a
0 is a good formation, and the strength of the tooth root portion is further improved by this continuous fiber flow 20, 20, 20.

【0008】なお、本例では凹部2a,2aを歯形中心
または歯底中心に対し左右対称に形成したものを例示し
たが、左右の一方側のみに凹部2aを形成させて非対称
の形状とすることもでき、特に強度の要求される左右い
ずれか(例えばドライブ側)に凹部2aを形成させて応
力集中を回避させた形状とし、強度を高めることが可能
となる。
In this embodiment, the recesses 2a, 2a are formed symmetrically with respect to the center of the tooth profile or the center of the tooth bottom. However, the recesses 2a are formed only on one of the left and right sides to have an asymmetrical shape. It is also possible to increase the strength by forming a recess 2a on either the right or left side (for example, the drive side) where strength is particularly required to avoid stress concentration.

【0009】このように本例では、従来のような切削工
法ではなく、鍛造工法または圧造工法またはサイジング
工法により、歯元部分の形状を応力集中を回避する良好
な形状に形成することができ、しかも歯形の内側に連続
したファイバーフローを良好に形成させて強度を高める
ことができ、自動車用変速機の歯車として強度の極めて
向上した歯車を製作することができ、これにより変速機
の小型化,軽量化を図ることが可能となる。
As described above, in this embodiment, the shape of the tooth root portion can be formed into a good shape that avoids stress concentration by the forging method, the forging method, or the sizing method, instead of the conventional cutting method. Moreover, it is possible to form a continuous fiber flow inside the tooth profile satisfactorily to increase the strength, and it is possible to manufacture a gear with extremely improved strength as a gear for an automobile transmission, which results in downsizing of the transmission, It is possible to reduce the weight.

【0010】[0010]

【発明の効果】本発明は、従来のような切削工法ではな
く、鍛造工法または圧造工法またはサイジング工法によ
り、歯形創成理論に基づかない歯形の歯車を形成させる
ことができ、特に歯元部分の形状を応力集中を回避し得
る形状に良好に形成することができ、しかも歯形内部に
連続したファイバーフローを良好に形成させて、さらに
強度を高めることができ、自動車用変速機の歯車として
強度の極めて向上した歯車を製作することができ、これ
により変速機の小型化,軽量化を図ることが可能となる
効果を有する。
INDUSTRIAL APPLICABILITY According to the present invention, a gear having a tooth profile which is not based on the theory of tooth profile creation can be formed by a forging method, a forging method or a sizing method, rather than the conventional cutting method. Can be formed in a shape that avoids stress concentration, and further, a continuous fiber flow can be formed well in the tooth profile to further increase the strength, making it extremely strong as a gear for an automobile transmission. It is possible to manufacture an improved gear, which has the effect of reducing the size and weight of the transmission.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧造工法等による歯車の成形状態の斜視構成図
である。
FIG. 1 is a perspective configuration view of a gear in a molded state by a press forming method or the like.

【図2】造形される歯底部分の一例の概略構成図であ
る。
FIG. 2 is a schematic configuration diagram of an example of a tooth bottom portion to be formed.

【図3】さらに異なる歯底部分の一例を示す概略構成図
である。
FIG. 3 is a schematic configuration diagram showing an example of a further different tooth root portion.

【図4】さらに異なる歯底部分の形状を示す概略構成図
である。
FIG. 4 is a schematic configuration diagram showing still another different tooth bottom portion shape.

【図5】さらに異なる歯底部分の形状を示す概略構成図
である。
FIG. 5 is a schematic configuration diagram showing still another tooth bottom portion shape.

【図6】さらに異なる歯底部分の形状を示す概略構成図
である。
FIG. 6 is a schematic configuration diagram showing still another different tooth bottom portion shape.

【図7】歯形の内側に形成される連続したファイバーフ
ローの説明概略構成図である。
FIG. 7 is an explanatory schematic configuration diagram of a continuous fiber flow formed inside the tooth profile.

【図8】従来のインボリュート曲線による歯形図であ
る。
FIG. 8 is a tooth profile diagram based on a conventional involute curve.

【符号の説明】[Explanation of symbols]

1 歯底 1a,1b 凹部 2a,2b,2c 凹部 10 金型 10a 底部 10b 側面部 20 ファイバーフロー 1 Tooth root 1a, 1b Recessed portion 2a, 2b, 2c Recessed portion 10 Mold 10a Bottom portion 10b Side portion 20 Fiber flow

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 インボリュート歯車等において、歯元部
分の形状が、歯形創成理論に基づいた形状でない歯形に
形成されている高強度歯車。
1. A high-strength gear, such as an involute gear, in which a tooth root portion is formed in a tooth profile that is not based on the tooth profile generation theory.
【請求項2】 歯底が、歯形創成理論外の歯底曲線によ
り応力集中を回避し得る歯底面に形成されている請求項
1に記載の高強度歯車。
2. The high-strength gear according to claim 1, wherein the tooth bottom is formed on the tooth bottom surface where stress concentration can be avoided by a tooth root curve outside the theory of tooth profile generation.
【請求項3】 前記歯形が鍛造工法,圧造工法,サイジ
ング工法等により形成されたものである請求項1または
請求項2に記載の高強度歯車。
3. The high-strength gear according to claim 1, wherein the tooth profile is formed by a forging method, a forging method, a sizing method, or the like.
【請求項4】 前記歯形が、歯形中心または歯底中心に
対し左右非対称に形成されている請求項1または請求項
2に記載の高強度歯車。
4. The high-strength gear according to claim 1, wherein the tooth profile is formed asymmetrically with respect to the center of the tooth profile or the center of the tooth bottom.
【請求項5】 歯底が、歯形中心または歯底中心に対し
左右異なる形状に形成されている請求項1または請求項
2に記載の高強度歯車。
5. The high-strength gear according to claim 1, wherein the tooth bottom is formed in a center of the tooth profile or in a shape different from the center of the tooth bottom in the left and right directions.
【請求項6】 前記歯形内部に、前記鍛造工法,圧造工
法,サイジング工法等により連続したファイバーフロー
(繊維組織)が形成されている請求項3または請求項4
または請求項5に記載の高強度歯車。
6. A continuous fiber flow (fiber structure) is formed inside the tooth profile by the forging method, the forging method, the sizing method, and the like.
Alternatively, the high-strength gear according to claim 5.
JP26156094A 1994-09-30 1994-09-30 High strength gear Pending JPH08105513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26156094A JPH08105513A (en) 1994-09-30 1994-09-30 High strength gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26156094A JPH08105513A (en) 1994-09-30 1994-09-30 High strength gear

Publications (1)

Publication Number Publication Date
JPH08105513A true JPH08105513A (en) 1996-04-23

Family

ID=17363603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26156094A Pending JPH08105513A (en) 1994-09-30 1994-09-30 High strength gear

Country Status (1)

Country Link
JP (1) JPH08105513A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227875A (en) * 2001-01-31 2002-08-14 Moric Co Ltd Torque limiter
JP2003207031A (en) * 2002-01-11 2003-07-25 Koyo Seiko Co Ltd Toothed gear, reduction gear mechanism and electric power steering device
JP2005254307A (en) * 2004-03-12 2005-09-22 Ooka Giken Kk Gear, method and apparatus for producing gear
KR100754995B1 (en) * 2005-08-19 2007-09-04 주식회사 해성산전 An outer gear of a planetary reduction gear having cycloid tooth type and the manufacturing thereof
JP2009531613A (en) * 2006-03-31 2009-09-03 ゾナ ベーエルヴェー プレチジオンズシュミーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Involute rolled gear teeth
JP2011144837A (en) * 2010-01-12 2011-07-28 Hino Motors Ltd Gear
JP2011153710A (en) * 2000-04-19 2011-08-11 Dana Automotive Systems Group Llc Gear having a plurality of teeth and method of manufacturing forging die for making gear
WO2011161742A1 (en) 2010-06-21 2011-12-29 大岡技研株式会社 Gear with free curved surfaces
JP2012504215A (en) * 2008-09-29 2012-02-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Deceleration transmission and internal combustion engine starter
KR101162324B1 (en) * 2006-10-02 2012-07-04 주식회사 만도 manufacture method and Worm wheel of electrical power steering
JP2013068301A (en) * 2011-09-26 2013-04-18 Honda Motor Co Ltd Worm speed reducer and electric power steering device
JP2013527892A (en) * 2010-03-26 2013-07-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Tooth optimized for noise
WO2017013344A1 (en) * 2015-07-20 2017-01-26 Valeo Equipements Electriques Moteur Motor-vehicle starter provided with breaks on the pinion teeth
JP2018531350A (en) * 2015-10-13 2018-10-25 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Internal gear having internal teeth and crown teeth, method for manufacturing the internal gear, and shift type transmission including the internal gear
EP4310315A1 (en) * 2022-07-21 2024-01-24 MAHLE International GmbH Starter device and internal combustion engine having the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153710A (en) * 2000-04-19 2011-08-11 Dana Automotive Systems Group Llc Gear having a plurality of teeth and method of manufacturing forging die for making gear
JP2002227875A (en) * 2001-01-31 2002-08-14 Moric Co Ltd Torque limiter
JP2003207031A (en) * 2002-01-11 2003-07-25 Koyo Seiko Co Ltd Toothed gear, reduction gear mechanism and electric power steering device
JP2005254307A (en) * 2004-03-12 2005-09-22 Ooka Giken Kk Gear, method and apparatus for producing gear
KR100754995B1 (en) * 2005-08-19 2007-09-04 주식회사 해성산전 An outer gear of a planetary reduction gear having cycloid tooth type and the manufacturing thereof
JP2009531613A (en) * 2006-03-31 2009-09-03 ゾナ ベーエルヴェー プレチジオンズシュミーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Involute rolled gear teeth
KR101162324B1 (en) * 2006-10-02 2012-07-04 주식회사 만도 manufacture method and Worm wheel of electrical power steering
JP2012504215A (en) * 2008-09-29 2012-02-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Deceleration transmission and internal combustion engine starter
US9004034B2 (en) 2008-09-29 2015-04-14 Robert Bosch Gmbh Reducing gear and starter device of an internal combustion engine
JP2011144837A (en) * 2010-01-12 2011-07-28 Hino Motors Ltd Gear
JP2013527892A (en) * 2010-03-26 2013-07-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Tooth optimized for noise
WO2011161742A1 (en) 2010-06-21 2011-12-29 大岡技研株式会社 Gear with free curved surfaces
US9091338B2 (en) 2010-06-21 2015-07-28 O-Oka Corporation Free-form surface gear
JP2013068301A (en) * 2011-09-26 2013-04-18 Honda Motor Co Ltd Worm speed reducer and electric power steering device
WO2017013344A1 (en) * 2015-07-20 2017-01-26 Valeo Equipements Electriques Moteur Motor-vehicle starter provided with breaks on the pinion teeth
FR3039223A1 (en) * 2015-07-20 2017-01-27 Valeo Equip Electr Moteur MOTOR VEHICLE STARTER GEAR WITH DECROCHEMENT
JP2018531350A (en) * 2015-10-13 2018-10-25 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Internal gear having internal teeth and crown teeth, method for manufacturing the internal gear, and shift type transmission including the internal gear
EP4310315A1 (en) * 2022-07-21 2024-01-24 MAHLE International GmbH Starter device and internal combustion engine having the same

Similar Documents

Publication Publication Date Title
JPH08105513A (en) High strength gear
CN103038548B (en) Gear with free curved surfaces
US6732605B2 (en) Bevel gear
JPH01199062A (en) Forged gear for transmission
CA2482988A1 (en) Gear tooth profile
JPS61502736A (en) Forging method
JP4220121B2 (en) Especially clutch gear in manual transmission
JPS5881535A (en) Manufacture of rack for rack and pinion steering device
JP3069666B2 (en) Gears for transmission
KR100273662B1 (en) Gear
JP3931970B2 (en) Manufacturing method of toothed product
JP3569852B2 (en) Gear manufacturing method
JPS63256237A (en) Forged bevel gear provided with tooth tip chamfering
JP2870373B2 (en) Manufacturing method of bevel gear
JPH06101718A (en) Spline connection structure
JPH08105518A (en) Gear
JPH08105516A (en) High strength gear
JPS597455A (en) Manufacture of rack of variable gear ratio steering device
JPH08105515A (en) Gear
JPS58221768A (en) Manufacture of rack for variable gear ratio rack and pinion steering
CN219263025U (en) Bell shell blank before cold forging forming
JP3826655B2 (en) Hollow rack shaft, rack tooth molding method thereof and mold therefor
JPH06246388A (en) Production of integrated type synchro clutch gear for synchro mechanism of transmission
JP3546489B2 (en) Gear manufacturing method
SK4702001A3 (en) Gear pair with toothing which is produced especially by powder metallurgy

Legal Events

Date Code Title Description
A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20040611

Free format text: JAPANESE INTERMEDIATE CODE: A912